Properties

Label 3060.2.w.f.2177.8
Level $3060$
Weight $2$
Character 3060.2177
Analytic conductor $24.434$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3060,2,Mod(953,3060)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3060.953"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3060, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 3, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3060.w (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.4342230185\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 2177.8
Character \(\chi\) \(=\) 3060.2177
Dual form 3060.2.w.f.953.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0301846 + 2.23586i) q^{5} +(-0.0761394 - 0.0761394i) q^{7} -3.96321i q^{11} +(0.813455 - 0.813455i) q^{13} +(0.707107 - 0.707107i) q^{17} -3.30260i q^{19} +(2.91151 + 2.91151i) q^{23} +(-4.99818 + 0.134977i) q^{25} +4.02358 q^{29} -3.06509 q^{31} +(0.167939 - 0.172536i) q^{35} +(-4.09970 - 4.09970i) q^{37} +1.86567i q^{41} +(7.28362 - 7.28362i) q^{43} +(-0.576219 + 0.576219i) q^{47} -6.98841i q^{49} +(-8.09941 - 8.09941i) q^{53} +(8.86119 - 0.119628i) q^{55} -1.40560 q^{59} -11.3956 q^{61} +(1.84333 + 1.79422i) q^{65} +(1.53597 + 1.53597i) q^{67} -8.56989i q^{71} +(-5.01252 + 5.01252i) q^{73} +(-0.301756 + 0.301756i) q^{77} -14.7881i q^{79} +(10.0852 + 10.0852i) q^{83} +(1.60234 + 1.55965i) q^{85} +17.8344 q^{89} -0.123872 q^{91} +(7.38416 - 0.0996875i) q^{95} +(2.06743 + 2.06743i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 8 q^{13} + 16 q^{25} - 24 q^{31} - 4 q^{37} + 36 q^{43} + 40 q^{55} - 40 q^{61} + 64 q^{67} + 28 q^{73} - 4 q^{85} - 120 q^{91} + 44 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3060\mathbb{Z}\right)^\times\).

\(n\) \(1261\) \(1361\) \(1531\) \(1837\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.0301846 + 2.23586i 0.0134990 + 0.999909i
\(6\) 0 0
\(7\) −0.0761394 0.0761394i −0.0287780 0.0287780i 0.692571 0.721349i \(-0.256478\pi\)
−0.721349 + 0.692571i \(0.756478\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.96321i 1.19495i −0.801887 0.597476i \(-0.796170\pi\)
0.801887 0.597476i \(-0.203830\pi\)
\(12\) 0 0
\(13\) 0.813455 0.813455i 0.225612 0.225612i −0.585245 0.810857i \(-0.699002\pi\)
0.810857 + 0.585245i \(0.199002\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.707107 0.707107i 0.171499 0.171499i
\(18\) 0 0
\(19\) 3.30260i 0.757668i −0.925465 0.378834i \(-0.876325\pi\)
0.925465 0.378834i \(-0.123675\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.91151 + 2.91151i 0.607091 + 0.607091i 0.942185 0.335094i \(-0.108768\pi\)
−0.335094 + 0.942185i \(0.608768\pi\)
\(24\) 0 0
\(25\) −4.99818 + 0.134977i −0.999636 + 0.0269955i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.02358 0.747159 0.373580 0.927598i \(-0.378130\pi\)
0.373580 + 0.927598i \(0.378130\pi\)
\(30\) 0 0
\(31\) −3.06509 −0.550507 −0.275254 0.961372i \(-0.588762\pi\)
−0.275254 + 0.961372i \(0.588762\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.167939 0.172536i 0.0283869 0.0291638i
\(36\) 0 0
\(37\) −4.09970 4.09970i −0.673987 0.673987i 0.284646 0.958633i \(-0.408124\pi\)
−0.958633 + 0.284646i \(0.908124\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.86567i 0.291368i 0.989331 + 0.145684i \(0.0465383\pi\)
−0.989331 + 0.145684i \(0.953462\pi\)
\(42\) 0 0
\(43\) 7.28362 7.28362i 1.11074 1.11074i 0.117692 0.993050i \(-0.462450\pi\)
0.993050 0.117692i \(-0.0375496\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.576219 + 0.576219i −0.0840501 + 0.0840501i −0.747882 0.663832i \(-0.768929\pi\)
0.663832 + 0.747882i \(0.268929\pi\)
\(48\) 0 0
\(49\) 6.98841i 0.998344i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −8.09941 8.09941i −1.11254 1.11254i −0.992806 0.119734i \(-0.961796\pi\)
−0.119734 0.992806i \(-0.538204\pi\)
\(54\) 0 0
\(55\) 8.86119 0.119628i 1.19484 0.0161306i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.40560 −0.182994 −0.0914970 0.995805i \(-0.529165\pi\)
−0.0914970 + 0.995805i \(0.529165\pi\)
\(60\) 0 0
\(61\) −11.3956 −1.45905 −0.729527 0.683952i \(-0.760260\pi\)
−0.729527 + 0.683952i \(0.760260\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.84333 + 1.79422i 0.228637 + 0.222546i
\(66\) 0 0
\(67\) 1.53597 + 1.53597i 0.187649 + 0.187649i 0.794679 0.607030i \(-0.207639\pi\)
−0.607030 + 0.794679i \(0.707639\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 8.56989i 1.01706i −0.861045 0.508529i \(-0.830189\pi\)
0.861045 0.508529i \(-0.169811\pi\)
\(72\) 0 0
\(73\) −5.01252 + 5.01252i −0.586671 + 0.586671i −0.936728 0.350057i \(-0.886162\pi\)
0.350057 + 0.936728i \(0.386162\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.301756 + 0.301756i −0.0343883 + 0.0343883i
\(78\) 0 0
\(79\) 14.7881i 1.66379i −0.554935 0.831893i \(-0.687257\pi\)
0.554935 0.831893i \(-0.312743\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 10.0852 + 10.0852i 1.10700 + 1.10700i 0.993543 + 0.113457i \(0.0361923\pi\)
0.113457 + 0.993543i \(0.463808\pi\)
\(84\) 0 0
\(85\) 1.60234 + 1.55965i 0.173798 + 0.169168i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 17.8344 1.89045 0.945223 0.326424i \(-0.105844\pi\)
0.945223 + 0.326424i \(0.105844\pi\)
\(90\) 0 0
\(91\) −0.123872 −0.0129853
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 7.38416 0.0996875i 0.757599 0.0102277i
\(96\) 0 0
\(97\) 2.06743 + 2.06743i 0.209916 + 0.209916i 0.804232 0.594316i \(-0.202577\pi\)
−0.594316 + 0.804232i \(0.702577\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0.983719i 0.0978837i 0.998802 + 0.0489418i \(0.0155849\pi\)
−0.998802 + 0.0489418i \(0.984415\pi\)
\(102\) 0 0
\(103\) 7.27911 7.27911i 0.717232 0.717232i −0.250805 0.968038i \(-0.580695\pi\)
0.968038 + 0.250805i \(0.0806954\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 11.3722 11.3722i 1.09939 1.09939i 0.104907 0.994482i \(-0.466545\pi\)
0.994482 0.104907i \(-0.0334546\pi\)
\(108\) 0 0
\(109\) 7.53792i 0.722002i −0.932566 0.361001i \(-0.882435\pi\)
0.932566 0.361001i \(-0.117565\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 13.6371 + 13.6371i 1.28287 + 1.28287i 0.939025 + 0.343849i \(0.111731\pi\)
0.343849 + 0.939025i \(0.388269\pi\)
\(114\) 0 0
\(115\) −6.42185 + 6.59762i −0.598841 + 0.615231i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.107677 −0.00987077
\(120\) 0 0
\(121\) −4.70701 −0.427910
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −0.452659 11.1712i −0.0404870 0.999180i
\(126\) 0 0
\(127\) 6.44506 + 6.44506i 0.571906 + 0.571906i 0.932661 0.360755i \(-0.117481\pi\)
−0.360755 + 0.932661i \(0.617481\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 8.57897i 0.749548i 0.927116 + 0.374774i \(0.122280\pi\)
−0.927116 + 0.374774i \(0.877720\pi\)
\(132\) 0 0
\(133\) −0.251458 + 0.251458i −0.0218042 + 0.0218042i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 11.6965 11.6965i 0.999296 0.999296i −0.000703436 1.00000i \(-0.500224\pi\)
1.00000 0.000703436i \(0.000223911\pi\)
\(138\) 0 0
\(139\) 18.5729i 1.57533i 0.616104 + 0.787665i \(0.288710\pi\)
−0.616104 + 0.787665i \(0.711290\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.22389 3.22389i −0.269595 0.269595i
\(144\) 0 0
\(145\) 0.121450 + 8.99617i 0.0100859 + 0.747091i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 12.6194 1.03382 0.516909 0.856040i \(-0.327082\pi\)
0.516909 + 0.856040i \(0.327082\pi\)
\(150\) 0 0
\(151\) 0.455155 0.0370400 0.0185200 0.999828i \(-0.494105\pi\)
0.0185200 + 0.999828i \(0.494105\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.0925186 6.85314i −0.00743127 0.550457i
\(156\) 0 0
\(157\) −13.3139 13.3139i −1.06257 1.06257i −0.997907 0.0646603i \(-0.979404\pi\)
−0.0646603 0.997907i \(-0.520596\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.443361i 0.0349417i
\(162\) 0 0
\(163\) 6.39362 6.39362i 0.500787 0.500787i −0.410896 0.911682i \(-0.634784\pi\)
0.911682 + 0.410896i \(0.134784\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 5.46063 5.46063i 0.422556 0.422556i −0.463527 0.886083i \(-0.653416\pi\)
0.886083 + 0.463527i \(0.153416\pi\)
\(168\) 0 0
\(169\) 11.6766i 0.898199i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −6.07524 6.07524i −0.461892 0.461892i 0.437383 0.899275i \(-0.355905\pi\)
−0.899275 + 0.437383i \(0.855905\pi\)
\(174\) 0 0
\(175\) 0.390835 + 0.370281i 0.0295444 + 0.0279906i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 11.8877 0.888530 0.444265 0.895895i \(-0.353465\pi\)
0.444265 + 0.895895i \(0.353465\pi\)
\(180\) 0 0
\(181\) 1.33303 0.0990836 0.0495418 0.998772i \(-0.484224\pi\)
0.0495418 + 0.998772i \(0.484224\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 9.04263 9.29013i 0.664828 0.683024i
\(186\) 0 0
\(187\) −2.80241 2.80241i −0.204933 0.204933i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 20.6539i 1.49446i 0.664565 + 0.747230i \(0.268617\pi\)
−0.664565 + 0.747230i \(0.731383\pi\)
\(192\) 0 0
\(193\) 5.42963 5.42963i 0.390833 0.390833i −0.484151 0.874984i \(-0.660871\pi\)
0.874984 + 0.484151i \(0.160871\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −4.74669 + 4.74669i −0.338188 + 0.338188i −0.855685 0.517497i \(-0.826864\pi\)
0.517497 + 0.855685i \(0.326864\pi\)
\(198\) 0 0
\(199\) 22.2154i 1.57481i −0.616437 0.787405i \(-0.711424\pi\)
0.616437 0.787405i \(-0.288576\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −0.306353 0.306353i −0.0215017 0.0215017i
\(204\) 0 0
\(205\) −4.17137 + 0.0563143i −0.291341 + 0.00393316i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −13.0889 −0.905376
\(210\) 0 0
\(211\) 7.08612 0.487828 0.243914 0.969797i \(-0.421568\pi\)
0.243914 + 0.969797i \(0.421568\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 16.5050 + 16.0653i 1.12564 + 1.09565i
\(216\) 0 0
\(217\) 0.233375 + 0.233375i 0.0158425 + 0.0158425i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.15040i 0.0773842i
\(222\) 0 0
\(223\) 3.37593 3.37593i 0.226069 0.226069i −0.584979 0.811048i \(-0.698897\pi\)
0.811048 + 0.584979i \(0.198897\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 8.60725 8.60725i 0.571283 0.571283i −0.361204 0.932487i \(-0.617634\pi\)
0.932487 + 0.361204i \(0.117634\pi\)
\(228\) 0 0
\(229\) 9.06035i 0.598725i −0.954140 0.299362i \(-0.903226\pi\)
0.954140 0.299362i \(-0.0967739\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −15.6054 15.6054i −1.02234 1.02234i −0.999745 0.0225975i \(-0.992806\pi\)
−0.0225975 0.999745i \(-0.507194\pi\)
\(234\) 0 0
\(235\) −1.30574 1.27095i −0.0851771 0.0829079i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −15.5313 −1.00464 −0.502320 0.864682i \(-0.667520\pi\)
−0.502320 + 0.864682i \(0.667520\pi\)
\(240\) 0 0
\(241\) −24.2407 −1.56148 −0.780741 0.624854i \(-0.785158\pi\)
−0.780741 + 0.624854i \(0.785158\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 15.6251 0.210942i 0.998253 0.0134766i
\(246\) 0 0
\(247\) −2.68651 2.68651i −0.170939 0.170939i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4.21845i 0.266266i 0.991098 + 0.133133i \(0.0425038\pi\)
−0.991098 + 0.133133i \(0.957496\pi\)
\(252\) 0 0
\(253\) 11.5389 11.5389i 0.725445 0.725445i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6.18145 + 6.18145i −0.385588 + 0.385588i −0.873110 0.487522i \(-0.837901\pi\)
0.487522 + 0.873110i \(0.337901\pi\)
\(258\) 0 0
\(259\) 0.624298i 0.0387920i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −2.87813 2.87813i −0.177473 0.177473i 0.612780 0.790253i \(-0.290051\pi\)
−0.790253 + 0.612780i \(0.790051\pi\)
\(264\) 0 0
\(265\) 17.8647 18.3537i 1.09742 1.12746i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −15.5001 −0.945060 −0.472530 0.881315i \(-0.656659\pi\)
−0.472530 + 0.881315i \(0.656659\pi\)
\(270\) 0 0
\(271\) −26.0269 −1.58102 −0.790512 0.612446i \(-0.790186\pi\)
−0.790512 + 0.612446i \(0.790186\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.534943 + 19.8088i 0.0322583 + 1.19452i
\(276\) 0 0
\(277\) 5.79861 + 5.79861i 0.348405 + 0.348405i 0.859515 0.511111i \(-0.170766\pi\)
−0.511111 + 0.859515i \(0.670766\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.23601i 0.0737341i −0.999320 0.0368671i \(-0.988262\pi\)
0.999320 0.0368671i \(-0.0117378\pi\)
\(282\) 0 0
\(283\) 4.15805 4.15805i 0.247171 0.247171i −0.572638 0.819808i \(-0.694080\pi\)
0.819808 + 0.572638i \(0.194080\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.142051 0.142051i 0.00838499 0.00838499i
\(288\) 0 0
\(289\) 1.00000i 0.0588235i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6.58019 + 6.58019i 0.384419 + 0.384419i 0.872691 0.488272i \(-0.162373\pi\)
−0.488272 + 0.872691i \(0.662373\pi\)
\(294\) 0 0
\(295\) −0.0424276 3.14274i −0.00247023 0.182977i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 4.73676 0.273934
\(300\) 0 0
\(301\) −1.10914 −0.0639299
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −0.343971 25.4790i −0.0196957 1.45892i
\(306\) 0 0
\(307\) 0.440704 + 0.440704i 0.0251523 + 0.0251523i 0.719571 0.694419i \(-0.244338\pi\)
−0.694419 + 0.719571i \(0.744338\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 10.5637i 0.599013i 0.954094 + 0.299507i \(0.0968221\pi\)
−0.954094 + 0.299507i \(0.903178\pi\)
\(312\) 0 0
\(313\) −10.2206 + 10.2206i −0.577704 + 0.577704i −0.934270 0.356566i \(-0.883948\pi\)
0.356566 + 0.934270i \(0.383948\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9.50766 9.50766i 0.534003 0.534003i −0.387758 0.921761i \(-0.626750\pi\)
0.921761 + 0.387758i \(0.126750\pi\)
\(318\) 0 0
\(319\) 15.9463i 0.892819i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −2.33529 2.33529i −0.129939 0.129939i
\(324\) 0 0
\(325\) −3.95600 + 4.17559i −0.219439 + 0.231620i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0.0877459 0.00483759
\(330\) 0 0
\(331\) −11.7397 −0.645270 −0.322635 0.946523i \(-0.604569\pi\)
−0.322635 + 0.946523i \(0.604569\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3.38786 + 3.48059i −0.185099 + 0.190165i
\(336\) 0 0
\(337\) 7.31088 + 7.31088i 0.398249 + 0.398249i 0.877615 0.479366i \(-0.159133\pi\)
−0.479366 + 0.877615i \(0.659133\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 12.1476i 0.657830i
\(342\) 0 0
\(343\) −1.06507 + 1.06507i −0.0575083 + 0.0575083i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −6.20743 + 6.20743i −0.333232 + 0.333232i −0.853813 0.520580i \(-0.825716\pi\)
0.520580 + 0.853813i \(0.325716\pi\)
\(348\) 0 0
\(349\) 23.1200i 1.23759i −0.785553 0.618794i \(-0.787622\pi\)
0.785553 0.618794i \(-0.212378\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −15.3258 15.3258i −0.815711 0.815711i 0.169773 0.985483i \(-0.445697\pi\)
−0.985483 + 0.169773i \(0.945697\pi\)
\(354\) 0 0
\(355\) 19.1611 0.258678i 1.01697 0.0137292i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −30.9673 −1.63439 −0.817195 0.576361i \(-0.804472\pi\)
−0.817195 + 0.576361i \(0.804472\pi\)
\(360\) 0 0
\(361\) 8.09285 0.425940
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −11.3586 11.0560i −0.594537 0.578698i
\(366\) 0 0
\(367\) 4.15037 + 4.15037i 0.216648 + 0.216648i 0.807084 0.590436i \(-0.201044\pi\)
−0.590436 + 0.807084i \(0.701044\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.23337i 0.0640333i
\(372\) 0 0
\(373\) −9.91982 + 9.91982i −0.513629 + 0.513629i −0.915636 0.402008i \(-0.868313\pi\)
0.402008 + 0.915636i \(0.368313\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.27300 3.27300i 0.168568 0.168568i
\(378\) 0 0
\(379\) 16.1016i 0.827084i −0.910485 0.413542i \(-0.864292\pi\)
0.910485 0.413542i \(-0.135708\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −2.08442 2.08442i −0.106509 0.106509i 0.651844 0.758353i \(-0.273996\pi\)
−0.758353 + 0.651844i \(0.773996\pi\)
\(384\) 0 0
\(385\) −0.683794 0.665578i −0.0348494 0.0339210i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −13.2415 −0.671372 −0.335686 0.941974i \(-0.608968\pi\)
−0.335686 + 0.941974i \(0.608968\pi\)
\(390\) 0 0
\(391\) 4.11749 0.208231
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 33.0641 0.446371i 1.66364 0.0224594i
\(396\) 0 0
\(397\) 8.44355 + 8.44355i 0.423770 + 0.423770i 0.886499 0.462730i \(-0.153130\pi\)
−0.462730 + 0.886499i \(0.653130\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5.72761i 0.286023i 0.989721 + 0.143012i \(0.0456786\pi\)
−0.989721 + 0.143012i \(0.954321\pi\)
\(402\) 0 0
\(403\) −2.49332 + 2.49332i −0.124201 + 0.124201i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −16.2480 + 16.2480i −0.805382 + 0.805382i
\(408\) 0 0
\(409\) 4.99079i 0.246779i 0.992358 + 0.123389i \(0.0393764\pi\)
−0.992358 + 0.123389i \(0.960624\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0.107022 + 0.107022i 0.00526620 + 0.00526620i
\(414\) 0 0
\(415\) −22.2448 + 22.8537i −1.09196 + 1.12184i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 16.2594 0.794324 0.397162 0.917748i \(-0.369995\pi\)
0.397162 + 0.917748i \(0.369995\pi\)
\(420\) 0 0
\(421\) 1.77155 0.0863401 0.0431700 0.999068i \(-0.486254\pi\)
0.0431700 + 0.999068i \(0.486254\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.43880 + 3.62969i −0.166806 + 0.176066i
\(426\) 0 0
\(427\) 0.867652 + 0.867652i 0.0419886 + 0.0419886i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 38.8433i 1.87102i 0.353305 + 0.935508i \(0.385058\pi\)
−0.353305 + 0.935508i \(0.614942\pi\)
\(432\) 0 0
\(433\) −7.72967 + 7.72967i −0.371464 + 0.371464i −0.868010 0.496546i \(-0.834601\pi\)
0.496546 + 0.868010i \(0.334601\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 9.61553 9.61553i 0.459973 0.459973i
\(438\) 0 0
\(439\) 26.0752i 1.24450i 0.782817 + 0.622252i \(0.213782\pi\)
−0.782817 + 0.622252i \(0.786218\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 8.38643 + 8.38643i 0.398452 + 0.398452i 0.877687 0.479235i \(-0.159086\pi\)
−0.479235 + 0.877687i \(0.659086\pi\)
\(444\) 0 0
\(445\) 0.538325 + 39.8754i 0.0255191 + 1.89027i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −2.91069 −0.137364 −0.0686819 0.997639i \(-0.521879\pi\)
−0.0686819 + 0.997639i \(0.521879\pi\)
\(450\) 0 0
\(451\) 7.39402 0.348171
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −0.00373902 0.276961i −0.000175288 0.0129841i
\(456\) 0 0
\(457\) −8.81377 8.81377i −0.412291 0.412291i 0.470245 0.882536i \(-0.344166\pi\)
−0.882536 + 0.470245i \(0.844166\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 28.8380i 1.34312i −0.740951 0.671559i \(-0.765625\pi\)
0.740951 0.671559i \(-0.234375\pi\)
\(462\) 0 0
\(463\) 22.8686 22.8686i 1.06279 1.06279i 0.0649029 0.997892i \(-0.479326\pi\)
0.997892 0.0649029i \(-0.0206738\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12.7684 12.7684i 0.590849 0.590849i −0.347012 0.937861i \(-0.612804\pi\)
0.937861 + 0.347012i \(0.112804\pi\)
\(468\) 0 0
\(469\) 0.233896i 0.0108003i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −28.8665 28.8665i −1.32728 1.32728i
\(474\) 0 0
\(475\) 0.445775 + 16.5070i 0.0204536 + 0.757392i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −25.3325 −1.15747 −0.578737 0.815514i \(-0.696454\pi\)
−0.578737 + 0.815514i \(0.696454\pi\)
\(480\) 0 0
\(481\) −6.66985 −0.304119
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −4.56008 + 4.68489i −0.207063 + 0.212730i
\(486\) 0 0
\(487\) 21.8762 + 21.8762i 0.991305 + 0.991305i 0.999963 0.00865751i \(-0.00275581\pi\)
−0.00865751 + 0.999963i \(0.502756\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 15.0767i 0.680402i 0.940353 + 0.340201i \(0.110495\pi\)
−0.940353 + 0.340201i \(0.889505\pi\)
\(492\) 0 0
\(493\) 2.84510 2.84510i 0.128137 0.128137i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −0.652506 + 0.652506i −0.0292689 + 0.0292689i
\(498\) 0 0
\(499\) 7.69432i 0.344445i 0.985058 + 0.172222i \(0.0550948\pi\)
−0.985058 + 0.172222i \(0.944905\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −3.92845 3.92845i −0.175161 0.175161i 0.614082 0.789243i \(-0.289527\pi\)
−0.789243 + 0.614082i \(0.789527\pi\)
\(504\) 0 0
\(505\) −2.19946 + 0.0296931i −0.0978748 + 0.00132133i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −2.31527 −0.102623 −0.0513113 0.998683i \(-0.516340\pi\)
−0.0513113 + 0.998683i \(0.516340\pi\)
\(510\) 0 0
\(511\) 0.763301 0.0337664
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 16.4948 + 16.0554i 0.726849 + 0.707485i
\(516\) 0 0
\(517\) 2.28367 + 2.28367i 0.100436 + 0.100436i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 29.8493i 1.30772i 0.756616 + 0.653860i \(0.226851\pi\)
−0.756616 + 0.653860i \(0.773149\pi\)
\(522\) 0 0
\(523\) 24.5256 24.5256i 1.07243 1.07243i 0.0752669 0.997163i \(-0.476019\pi\)
0.997163 0.0752669i \(-0.0239809\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.16735 + 2.16735i −0.0944112 + 0.0944112i
\(528\) 0 0
\(529\) 6.04625i 0.262880i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.51764 + 1.51764i 0.0657361 + 0.0657361i
\(534\) 0 0
\(535\) 25.7699 + 25.0834i 1.11413 + 1.08445i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −27.6965 −1.19297
\(540\) 0 0
\(541\) −33.6913 −1.44850 −0.724251 0.689537i \(-0.757814\pi\)
−0.724251 + 0.689537i \(0.757814\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 16.8538 0.227529i 0.721936 0.00974627i
\(546\) 0 0
\(547\) 8.39757 + 8.39757i 0.359054 + 0.359054i 0.863464 0.504410i \(-0.168290\pi\)
−0.504410 + 0.863464i \(0.668290\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 13.2882i 0.566098i
\(552\) 0 0
\(553\) −1.12595 + 1.12595i −0.0478804 + 0.0478804i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −12.7597 + 12.7597i −0.540644 + 0.540644i −0.923718 0.383074i \(-0.874866\pi\)
0.383074 + 0.923718i \(0.374866\pi\)
\(558\) 0 0
\(559\) 11.8498i 0.501193i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −4.71370 4.71370i −0.198659 0.198659i 0.600766 0.799425i \(-0.294862\pi\)
−0.799425 + 0.600766i \(0.794862\pi\)
\(564\) 0 0
\(565\) −30.0792 + 30.9024i −1.26544 + 1.30007i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3.17937 0.133286 0.0666432 0.997777i \(-0.478771\pi\)
0.0666432 + 0.997777i \(0.478771\pi\)
\(570\) 0 0
\(571\) 0.0596794 0.00249750 0.00124875 0.999999i \(-0.499603\pi\)
0.00124875 + 0.999999i \(0.499603\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −14.9452 14.1592i −0.623259 0.590481i
\(576\) 0 0
\(577\) 20.4269 + 20.4269i 0.850385 + 0.850385i 0.990180 0.139796i \(-0.0446446\pi\)
−0.139796 + 0.990180i \(0.544645\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 1.53577i 0.0637145i
\(582\) 0 0
\(583\) −32.0996 + 32.0996i −1.32943 + 1.32943i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −3.80824 + 3.80824i −0.157183 + 0.157183i −0.781317 0.624134i \(-0.785452\pi\)
0.624134 + 0.781317i \(0.285452\pi\)
\(588\) 0 0
\(589\) 10.1228i 0.417102i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −13.2206 13.2206i −0.542906 0.542906i 0.381474 0.924380i \(-0.375417\pi\)
−0.924380 + 0.381474i \(0.875417\pi\)
\(594\) 0 0
\(595\) −0.00325020 0.240752i −0.000133245 0.00986987i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −11.3034 −0.461844 −0.230922 0.972972i \(-0.574174\pi\)
−0.230922 + 0.972972i \(0.574174\pi\)
\(600\) 0 0
\(601\) −45.2400 −1.84538 −0.922688 0.385547i \(-0.874013\pi\)
−0.922688 + 0.385547i \(0.874013\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −0.142079 10.5242i −0.00577634 0.427871i
\(606\) 0 0
\(607\) 13.9256 + 13.9256i 0.565224 + 0.565224i 0.930787 0.365562i \(-0.119123\pi\)
−0.365562 + 0.930787i \(0.619123\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0.937456i 0.0379254i
\(612\) 0 0
\(613\) 26.8856 26.8856i 1.08590 1.08590i 0.0899532 0.995946i \(-0.471328\pi\)
0.995946 0.0899532i \(-0.0286718\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −7.13493 + 7.13493i −0.287242 + 0.287242i −0.835989 0.548747i \(-0.815105\pi\)
0.548747 + 0.835989i \(0.315105\pi\)
\(618\) 0 0
\(619\) 7.03028i 0.282571i 0.989969 + 0.141285i \(0.0451235\pi\)
−0.989969 + 0.141285i \(0.954876\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −1.35790 1.35790i −0.0544033 0.0544033i
\(624\) 0 0
\(625\) 24.9636 1.34928i 0.998542 0.0539712i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −5.79786 −0.231176
\(630\) 0 0
\(631\) 40.3490 1.60627 0.803134 0.595798i \(-0.203164\pi\)
0.803134 + 0.595798i \(0.203164\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −14.2157 + 14.6048i −0.564134 + 0.579574i
\(636\) 0 0
\(637\) −5.68475 5.68475i −0.225238 0.225238i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 20.9516i 0.827537i −0.910382 0.413769i \(-0.864212\pi\)
0.910382 0.413769i \(-0.135788\pi\)
\(642\) 0 0
\(643\) −5.86016 + 5.86016i −0.231102 + 0.231102i −0.813153 0.582050i \(-0.802251\pi\)
0.582050 + 0.813153i \(0.302251\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −27.9506 + 27.9506i −1.09885 + 1.09885i −0.104308 + 0.994545i \(0.533263\pi\)
−0.994545 + 0.104308i \(0.966737\pi\)
\(648\) 0 0
\(649\) 5.57070i 0.218669i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −23.4270 23.4270i −0.916768 0.916768i 0.0800244 0.996793i \(-0.474500\pi\)
−0.996793 + 0.0800244i \(0.974500\pi\)
\(654\) 0 0
\(655\) −19.1814 + 0.258953i −0.749480 + 0.0101181i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0.224465 0.00874390 0.00437195 0.999990i \(-0.498608\pi\)
0.00437195 + 0.999990i \(0.498608\pi\)
\(660\) 0 0
\(661\) −26.7542 −1.04062 −0.520309 0.853978i \(-0.674183\pi\)
−0.520309 + 0.853978i \(0.674183\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.569816 0.554635i −0.0220965 0.0215078i
\(666\) 0 0
\(667\) 11.7147 + 11.7147i 0.453594 + 0.453594i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 45.1630i 1.74350i
\(672\) 0 0
\(673\) 20.4784 20.4784i 0.789384 0.789384i −0.192009 0.981393i \(-0.561500\pi\)
0.981393 + 0.192009i \(0.0615004\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −3.41567 + 3.41567i −0.131275 + 0.131275i −0.769691 0.638416i \(-0.779590\pi\)
0.638416 + 0.769691i \(0.279590\pi\)
\(678\) 0 0
\(679\) 0.314826i 0.0120819i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 22.9464 + 22.9464i 0.878018 + 0.878018i 0.993329 0.115311i \(-0.0367866\pi\)
−0.115311 + 0.993329i \(0.536787\pi\)
\(684\) 0 0
\(685\) 26.5048 + 25.7987i 1.01269 + 0.985716i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −13.1770 −0.502004
\(690\) 0 0
\(691\) −37.5965 −1.43024 −0.715120 0.699002i \(-0.753628\pi\)
−0.715120 + 0.699002i \(0.753628\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −41.5264 + 0.560614i −1.57519 + 0.0212653i
\(696\) 0 0
\(697\) 1.31922 + 1.31922i 0.0499692 + 0.0499692i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 8.99719i 0.339819i −0.985460 0.169910i \(-0.945652\pi\)
0.985460 0.169910i \(-0.0543476\pi\)
\(702\) 0 0
\(703\) −13.5397 + 13.5397i −0.510658 + 0.510658i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0.0748998 0.0748998i 0.00281690 0.00281690i
\(708\) 0 0
\(709\) 3.01276i 0.113147i −0.998398 0.0565734i \(-0.981983\pi\)
0.998398 0.0565734i \(-0.0180175\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −8.92405 8.92405i −0.334208 0.334208i
\(714\) 0 0
\(715\) 7.11087 7.30550i 0.265932 0.273210i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 36.1265 1.34729 0.673646 0.739054i \(-0.264727\pi\)
0.673646 + 0.739054i \(0.264727\pi\)
\(720\) 0 0
\(721\) −1.10845 −0.0412810
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −20.1105 + 0.543091i −0.746887 + 0.0201699i
\(726\) 0 0
\(727\) −19.0586 19.0586i −0.706845 0.706845i 0.259025 0.965871i \(-0.416599\pi\)
−0.965871 + 0.259025i \(0.916599\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 10.3006i 0.380981i
\(732\) 0 0
\(733\) 32.0899 32.0899i 1.18527 1.18527i 0.206908 0.978360i \(-0.433660\pi\)
0.978360 0.206908i \(-0.0663402\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 6.08737 6.08737i 0.224231 0.224231i
\(738\) 0 0
\(739\) 6.47723i 0.238269i −0.992878 0.119134i \(-0.961988\pi\)
0.992878 0.119134i \(-0.0380119\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −15.2112 15.2112i −0.558043 0.558043i 0.370707 0.928750i \(-0.379116\pi\)
−0.928750 + 0.370707i \(0.879116\pi\)
\(744\) 0 0
\(745\) 0.380910 + 28.2152i 0.0139555 + 1.03372i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1.73174 −0.0632764
\(750\) 0 0
\(751\) 7.67420 0.280036 0.140018 0.990149i \(-0.455284\pi\)
0.140018 + 0.990149i \(0.455284\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0.0137387 + 1.01766i 0.000500001 + 0.0370366i
\(756\) 0 0
\(757\) 27.4806 + 27.4806i 0.998801 + 0.998801i 0.999999 0.00119835i \(-0.000381446\pi\)
−0.00119835 + 0.999999i \(0.500381\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 9.27086i 0.336068i 0.985781 + 0.168034i \(0.0537419\pi\)
−0.985781 + 0.168034i \(0.946258\pi\)
\(762\) 0 0
\(763\) −0.573933 + 0.573933i −0.0207778 + 0.0207778i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.14340 + 1.14340i −0.0412856 + 0.0412856i
\(768\) 0 0
\(769\) 31.2228i 1.12592i 0.826483 + 0.562961i \(0.190338\pi\)
−0.826483 + 0.562961i \(0.809662\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 23.6922 + 23.6922i 0.852150 + 0.852150i 0.990398 0.138247i \(-0.0441469\pi\)
−0.138247 + 0.990398i \(0.544147\pi\)
\(774\) 0 0
\(775\) 15.3199 0.413718i 0.550307 0.0148612i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 6.16154 0.220760
\(780\) 0 0
\(781\) −33.9642 −1.21534
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 29.3663 30.1700i 1.04813 1.07681i
\(786\) 0 0
\(787\) −4.26096 4.26096i −0.151887 0.151887i 0.627073 0.778960i \(-0.284253\pi\)
−0.778960 + 0.627073i \(0.784253\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 2.07665i 0.0738371i
\(792\) 0 0
\(793\) −9.26979 + 9.26979i −0.329180 + 0.329180i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 17.9022 17.9022i 0.634127 0.634127i −0.314973 0.949101i \(-0.601996\pi\)
0.949101 + 0.314973i \(0.101996\pi\)
\(798\) 0 0
\(799\) 0.814896i 0.0288290i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 19.8657 + 19.8657i 0.701044 + 0.701044i
\(804\) 0 0
\(805\) 0.991295 0.0133827i 0.0349386 0.000471677i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −15.8032 −0.555610 −0.277805 0.960637i \(-0.589607\pi\)
−0.277805 + 0.960637i \(0.589607\pi\)
\(810\) 0 0
\(811\) 18.0904 0.635241 0.317621 0.948218i \(-0.397116\pi\)
0.317621 + 0.948218i \(0.397116\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 14.4883 + 14.1023i 0.507501 + 0.493981i
\(816\) 0 0
\(817\) −24.0549 24.0549i −0.841574 0.841574i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 39.2029i 1.36819i 0.729392 + 0.684096i \(0.239803\pi\)
−0.729392 + 0.684096i \(0.760197\pi\)
\(822\) 0 0
\(823\) 23.3634 23.3634i 0.814396 0.814396i −0.170894 0.985289i \(-0.554665\pi\)
0.985289 + 0.170894i \(0.0546655\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 7.92686 7.92686i 0.275644 0.275644i −0.555723 0.831367i \(-0.687559\pi\)
0.831367 + 0.555723i \(0.187559\pi\)
\(828\) 0 0
\(829\) 47.8230i 1.66096i 0.557047 + 0.830481i \(0.311934\pi\)
−0.557047 + 0.830481i \(0.688066\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −4.94155 4.94155i −0.171215 0.171215i
\(834\) 0 0
\(835\) 12.3741 + 12.0444i 0.428222 + 0.416814i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −49.9531 −1.72457 −0.862287 0.506420i \(-0.830969\pi\)
−0.862287 + 0.506420i \(0.830969\pi\)
\(840\) 0 0
\(841\) −12.8108 −0.441753
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −26.1073 + 0.352453i −0.898117 + 0.0121247i
\(846\) 0 0
\(847\) 0.358389 + 0.358389i 0.0123144 + 0.0123144i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 23.8726i 0.818343i
\(852\) 0 0
\(853\) −19.7094 + 19.7094i −0.674837 + 0.674837i −0.958827 0.283990i \(-0.908342\pi\)
0.283990 + 0.958827i \(0.408342\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −28.0114 + 28.0114i −0.956852 + 0.956852i −0.999107 0.0422549i \(-0.986546\pi\)
0.0422549 + 0.999107i \(0.486546\pi\)
\(858\) 0 0
\(859\) 24.1559i 0.824189i −0.911141 0.412094i \(-0.864797\pi\)
0.911141 0.412094i \(-0.135203\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −5.40501 5.40501i −0.183989 0.183989i 0.609103 0.793091i \(-0.291530\pi\)
−0.793091 + 0.609103i \(0.791530\pi\)
\(864\) 0 0
\(865\) 13.4000 13.7668i 0.455615 0.468085i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −58.6081 −1.98815
\(870\) 0 0
\(871\) 2.49889 0.0846716
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −0.816101 + 0.885032i −0.0275893 + 0.0299195i
\(876\) 0 0
\(877\) 19.3090 + 19.3090i 0.652020 + 0.652020i 0.953479 0.301459i \(-0.0974736\pi\)
−0.301459 + 0.953479i \(0.597474\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 35.1337i 1.18368i 0.806054 + 0.591842i \(0.201599\pi\)
−0.806054 + 0.591842i \(0.798401\pi\)
\(882\) 0 0
\(883\) −25.9751 + 25.9751i −0.874131 + 0.874131i −0.992920 0.118788i \(-0.962099\pi\)
0.118788 + 0.992920i \(0.462099\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −8.62683 + 8.62683i −0.289661 + 0.289661i −0.836946 0.547285i \(-0.815661\pi\)
0.547285 + 0.836946i \(0.315661\pi\)
\(888\) 0 0
\(889\) 0.981446i 0.0329166i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.90302 + 1.90302i 0.0636821 + 0.0636821i
\(894\) 0 0
\(895\) 0.358826 + 26.5793i 0.0119942 + 0.888449i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −12.3326 −0.411317
\(900\) 0 0
\(901\) −11.4543 −0.381598
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0.0402370 + 2.98048i 0.00133752 + 0.0990745i
\(906\) 0 0
\(907\) 36.3576 + 36.3576i 1.20723 + 1.20723i 0.971919 + 0.235314i \(0.0756117\pi\)
0.235314 + 0.971919i \(0.424388\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 2.32266i 0.0769530i 0.999260 + 0.0384765i \(0.0122505\pi\)
−0.999260 + 0.0384765i \(0.987750\pi\)
\(912\) 0 0
\(913\) 39.9699 39.9699i 1.32281 1.32281i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0.653198 0.653198i 0.0215705 0.0215705i
\(918\) 0 0
\(919\) 48.8677i 1.61200i −0.591918 0.805998i \(-0.701629\pi\)
0.591918 0.805998i \(-0.298371\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −6.97122 6.97122i −0.229460 0.229460i
\(924\) 0 0
\(925\) 21.0444 + 19.9377i 0.691936 + 0.655547i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −9.28766 −0.304718 −0.152359 0.988325i \(-0.548687\pi\)
−0.152359 + 0.988325i \(0.548687\pi\)
\(930\) 0 0
\(931\) −23.0799 −0.756413
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 6.18122 6.35040i 0.202148 0.207680i
\(936\) 0 0
\(937\) −33.4773 33.4773i −1.09366 1.09366i −0.995135 0.0985213i \(-0.968589\pi\)
−0.0985213 0.995135i \(-0.531411\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 50.6878i 1.65237i −0.563396 0.826187i \(-0.690505\pi\)
0.563396 0.826187i \(-0.309495\pi\)
\(942\) 0 0
\(943\) −5.43190 + 5.43190i −0.176887 + 0.176887i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −0.0477502 + 0.0477502i −0.00155167 + 0.00155167i −0.707882 0.706331i \(-0.750349\pi\)
0.706331 + 0.707882i \(0.250349\pi\)
\(948\) 0 0
\(949\) 8.15492i 0.264720i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −35.5661 35.5661i −1.15210 1.15210i −0.986131 0.165966i \(-0.946926\pi\)
−0.165966 0.986131i \(-0.553074\pi\)
\(954\) 0 0
\(955\) −46.1792 + 0.623428i −1.49432 + 0.0201737i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1.78112 −0.0575155
\(960\) 0 0
\(961\) −21.6052 −0.696942
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 12.3038 + 11.9760i 0.396074 + 0.385522i
\(966\) 0 0
\(967\) 30.6024 + 30.6024i 0.984108 + 0.984108i 0.999876 0.0157674i \(-0.00501913\pi\)
−0.0157674 + 0.999876i \(0.505019\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 6.46324i 0.207415i 0.994608 + 0.103708i \(0.0330706\pi\)
−0.994608 + 0.103708i \(0.966929\pi\)
\(972\) 0 0
\(973\) 1.41413 1.41413i 0.0453348 0.0453348i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 16.3015 16.3015i 0.521531 0.521531i −0.396503 0.918034i \(-0.629776\pi\)
0.918034 + 0.396503i \(0.129776\pi\)
\(978\) 0 0
\(979\) 70.6816i 2.25899i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −8.78487 8.78487i −0.280194 0.280194i 0.552992 0.833186i \(-0.313486\pi\)
−0.833186 + 0.552992i \(0.813486\pi\)
\(984\) 0 0
\(985\) −10.7562 10.4697i −0.342722 0.333592i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 42.4127 1.34864
\(990\) 0 0
\(991\) −32.2420 −1.02420 −0.512101 0.858925i \(-0.671133\pi\)
−0.512101 + 0.858925i \(0.671133\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 49.6707 0.670563i 1.57467 0.0212583i
\(996\) 0 0
\(997\) 3.17926 + 3.17926i 0.100688 + 0.100688i 0.755656 0.654968i \(-0.227318\pi\)
−0.654968 + 0.755656i \(0.727318\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3060.2.w.f.2177.8 yes 28
3.2 odd 2 inner 3060.2.w.f.2177.7 yes 28
5.3 odd 4 inner 3060.2.w.f.953.7 28
15.8 even 4 inner 3060.2.w.f.953.8 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3060.2.w.f.953.7 28 5.3 odd 4 inner
3060.2.w.f.953.8 yes 28 15.8 even 4 inner
3060.2.w.f.2177.7 yes 28 3.2 odd 2 inner
3060.2.w.f.2177.8 yes 28 1.1 even 1 trivial