Properties

Label 3060.2.w.f.2177.12
Level $3060$
Weight $2$
Character 3060.2177
Analytic conductor $24.434$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3060,2,Mod(953,3060)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3060.953"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3060, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 3, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3060.w (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.4342230185\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 2177.12
Character \(\chi\) \(=\) 3060.2177
Dual form 3060.2.w.f.953.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.05353 + 0.884870i) q^{5} +(0.130751 + 0.130751i) q^{7} +1.92102i q^{11} +(4.58124 - 4.58124i) q^{13} +(0.707107 - 0.707107i) q^{17} +4.85426i q^{19} +(-1.87618 - 1.87618i) q^{23} +(3.43401 + 3.63422i) q^{25} +2.18605 q^{29} +5.07036 q^{31} +(0.152805 + 0.384200i) q^{35} +(-2.23510 - 2.23510i) q^{37} +0.0637839i q^{41} +(-0.0618727 + 0.0618727i) q^{43} +(-1.55630 + 1.55630i) q^{47} -6.96581i q^{49} +(3.22520 + 3.22520i) q^{53} +(-1.69986 + 3.94489i) q^{55} +8.32179 q^{59} +1.32701 q^{61} +(13.4615 - 5.35393i) q^{65} +(-6.19130 - 6.19130i) q^{67} +9.55399i q^{71} +(4.57376 - 4.57376i) q^{73} +(-0.251177 + 0.251177i) q^{77} +7.02471i q^{79} +(0.282320 + 0.282320i) q^{83} +(2.07777 - 0.826371i) q^{85} +1.50076 q^{89} +1.19801 q^{91} +(-4.29539 + 9.96839i) q^{95} +(-6.73088 - 6.73088i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 8 q^{13} + 16 q^{25} - 24 q^{31} - 4 q^{37} + 36 q^{43} + 40 q^{55} - 40 q^{61} + 64 q^{67} + 28 q^{73} - 4 q^{85} - 120 q^{91} + 44 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3060\mathbb{Z}\right)^\times\).

\(n\) \(1261\) \(1361\) \(1531\) \(1837\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.05353 + 0.884870i 0.918369 + 0.395726i
\(6\) 0 0
\(7\) 0.130751 + 0.130751i 0.0494194 + 0.0494194i 0.731385 0.681965i \(-0.238874\pi\)
−0.681965 + 0.731385i \(0.738874\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.92102i 0.579211i 0.957146 + 0.289605i \(0.0935240\pi\)
−0.957146 + 0.289605i \(0.906476\pi\)
\(12\) 0 0
\(13\) 4.58124 4.58124i 1.27061 1.27061i 0.324836 0.945770i \(-0.394691\pi\)
0.945770 0.324836i \(-0.105309\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.707107 0.707107i 0.171499 0.171499i
\(18\) 0 0
\(19\) 4.85426i 1.11364i 0.830632 + 0.556822i \(0.187979\pi\)
−0.830632 + 0.556822i \(0.812021\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.87618 1.87618i −0.391211 0.391211i 0.483908 0.875119i \(-0.339217\pi\)
−0.875119 + 0.483908i \(0.839217\pi\)
\(24\) 0 0
\(25\) 3.43401 + 3.63422i 0.686802 + 0.726844i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.18605 0.405938 0.202969 0.979185i \(-0.434941\pi\)
0.202969 + 0.979185i \(0.434941\pi\)
\(30\) 0 0
\(31\) 5.07036 0.910663 0.455331 0.890322i \(-0.349521\pi\)
0.455331 + 0.890322i \(0.349521\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.152805 + 0.384200i 0.0258287 + 0.0649417i
\(36\) 0 0
\(37\) −2.23510 2.23510i −0.367448 0.367448i 0.499098 0.866546i \(-0.333665\pi\)
−0.866546 + 0.499098i \(0.833665\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.0637839i 0.00996137i 0.999988 + 0.00498069i \(0.00158541\pi\)
−0.999988 + 0.00498069i \(0.998415\pi\)
\(42\) 0 0
\(43\) −0.0618727 + 0.0618727i −0.00943549 + 0.00943549i −0.711809 0.702373i \(-0.752124\pi\)
0.702373 + 0.711809i \(0.252124\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.55630 + 1.55630i −0.227009 + 0.227009i −0.811442 0.584433i \(-0.801317\pi\)
0.584433 + 0.811442i \(0.301317\pi\)
\(48\) 0 0
\(49\) 6.96581i 0.995115i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.22520 + 3.22520i 0.443015 + 0.443015i 0.893024 0.450009i \(-0.148579\pi\)
−0.450009 + 0.893024i \(0.648579\pi\)
\(54\) 0 0
\(55\) −1.69986 + 3.94489i −0.229209 + 0.531929i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 8.32179 1.08340 0.541702 0.840570i \(-0.317780\pi\)
0.541702 + 0.840570i \(0.317780\pi\)
\(60\) 0 0
\(61\) 1.32701 0.169906 0.0849529 0.996385i \(-0.472926\pi\)
0.0849529 + 0.996385i \(0.472926\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 13.4615 5.35393i 1.66970 0.664073i
\(66\) 0 0
\(67\) −6.19130 6.19130i −0.756388 0.756388i 0.219275 0.975663i \(-0.429631\pi\)
−0.975663 + 0.219275i \(0.929631\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 9.55399i 1.13385i 0.823769 + 0.566925i \(0.191867\pi\)
−0.823769 + 0.566925i \(0.808133\pi\)
\(72\) 0 0
\(73\) 4.57376 4.57376i 0.535318 0.535318i −0.386832 0.922150i \(-0.626431\pi\)
0.922150 + 0.386832i \(0.126431\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.251177 + 0.251177i −0.0286242 + 0.0286242i
\(78\) 0 0
\(79\) 7.02471i 0.790342i 0.918608 + 0.395171i \(0.129315\pi\)
−0.918608 + 0.395171i \(0.870685\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0.282320 + 0.282320i 0.0309886 + 0.0309886i 0.722431 0.691443i \(-0.243025\pi\)
−0.691443 + 0.722431i \(0.743025\pi\)
\(84\) 0 0
\(85\) 2.07777 0.826371i 0.225365 0.0896325i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.50076 0.159080 0.0795401 0.996832i \(-0.474655\pi\)
0.0795401 + 0.996832i \(0.474655\pi\)
\(90\) 0 0
\(91\) 1.19801 0.125585
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −4.29539 + 9.96839i −0.440697 + 1.02274i
\(96\) 0 0
\(97\) −6.73088 6.73088i −0.683417 0.683417i 0.277351 0.960769i \(-0.410543\pi\)
−0.960769 + 0.277351i \(0.910543\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 9.69256i 0.964446i 0.876048 + 0.482223i \(0.160171\pi\)
−0.876048 + 0.482223i \(0.839829\pi\)
\(102\) 0 0
\(103\) 6.58985 6.58985i 0.649317 0.649317i −0.303511 0.952828i \(-0.598159\pi\)
0.952828 + 0.303511i \(0.0981588\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −7.00885 + 7.00885i −0.677571 + 0.677571i −0.959450 0.281879i \(-0.909042\pi\)
0.281879 + 0.959450i \(0.409042\pi\)
\(108\) 0 0
\(109\) 5.35304i 0.512728i −0.966580 0.256364i \(-0.917475\pi\)
0.966580 0.256364i \(-0.0825246\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.16703 + 1.16703i 0.109785 + 0.109785i 0.759865 0.650080i \(-0.225265\pi\)
−0.650080 + 0.759865i \(0.725265\pi\)
\(114\) 0 0
\(115\) −2.19263 5.51298i −0.204464 0.514088i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.184910 0.0169507
\(120\) 0 0
\(121\) 7.30967 0.664515
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 3.83605 + 10.5017i 0.343107 + 0.939296i
\(126\) 0 0
\(127\) 14.9837 + 14.9837i 1.32959 + 1.32959i 0.905728 + 0.423859i \(0.139325\pi\)
0.423859 + 0.905728i \(0.360675\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 10.2813i 0.898283i 0.893461 + 0.449141i \(0.148270\pi\)
−0.893461 + 0.449141i \(0.851730\pi\)
\(132\) 0 0
\(133\) −0.634701 + 0.634701i −0.0550355 + 0.0550355i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.19705 + 4.19705i −0.358578 + 0.358578i −0.863289 0.504710i \(-0.831599\pi\)
0.504710 + 0.863289i \(0.331599\pi\)
\(138\) 0 0
\(139\) 12.2971i 1.04302i −0.853244 0.521511i \(-0.825368\pi\)
0.853244 0.521511i \(-0.174632\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 8.80067 + 8.80067i 0.735949 + 0.735949i
\(144\) 0 0
\(145\) 4.48912 + 1.93437i 0.372801 + 0.160640i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −18.0446 −1.47827 −0.739135 0.673557i \(-0.764765\pi\)
−0.739135 + 0.673557i \(0.764765\pi\)
\(150\) 0 0
\(151\) 1.29172 0.105119 0.0525593 0.998618i \(-0.483262\pi\)
0.0525593 + 0.998618i \(0.483262\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 10.4122 + 4.48660i 0.836324 + 0.360373i
\(156\) 0 0
\(157\) 8.52405 + 8.52405i 0.680293 + 0.680293i 0.960066 0.279773i \(-0.0902592\pi\)
−0.279773 + 0.960066i \(0.590259\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.490627i 0.0386668i
\(162\) 0 0
\(163\) 3.13148 3.13148i 0.245276 0.245276i −0.573752 0.819029i \(-0.694513\pi\)
0.819029 + 0.573752i \(0.194513\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.81766 4.81766i 0.372802 0.372802i −0.495695 0.868497i \(-0.665087\pi\)
0.868497 + 0.495695i \(0.165087\pi\)
\(168\) 0 0
\(169\) 28.9754i 2.22888i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 9.14933 + 9.14933i 0.695611 + 0.695611i 0.963461 0.267850i \(-0.0863132\pi\)
−0.267850 + 0.963461i \(0.586313\pi\)
\(174\) 0 0
\(175\) −0.0261777 + 0.924181i −0.00197885 + 0.0698615i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 10.7852 0.806126 0.403063 0.915172i \(-0.367946\pi\)
0.403063 + 0.915172i \(0.367946\pi\)
\(180\) 0 0
\(181\) −17.2396 −1.28141 −0.640706 0.767787i \(-0.721358\pi\)
−0.640706 + 0.767787i \(0.721358\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2.61208 6.56762i −0.192044 0.482861i
\(186\) 0 0
\(187\) 1.35837 + 1.35837i 0.0993338 + 0.0993338i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 11.1687i 0.808137i 0.914729 + 0.404068i \(0.132404\pi\)
−0.914729 + 0.404068i \(0.867596\pi\)
\(192\) 0 0
\(193\) 0.594617 0.594617i 0.0428015 0.0428015i −0.685382 0.728184i \(-0.740365\pi\)
0.728184 + 0.685382i \(0.240365\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3.34066 3.34066i 0.238012 0.238012i −0.578014 0.816027i \(-0.696172\pi\)
0.816027 + 0.578014i \(0.196172\pi\)
\(198\) 0 0
\(199\) 12.6261i 0.895043i −0.894273 0.447521i \(-0.852307\pi\)
0.894273 0.447521i \(-0.147693\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.285828 + 0.285828i 0.0200612 + 0.0200612i
\(204\) 0 0
\(205\) −0.0564404 + 0.130982i −0.00394197 + 0.00914821i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −9.32515 −0.645034
\(210\) 0 0
\(211\) −14.7883 −1.01807 −0.509034 0.860747i \(-0.669997\pi\)
−0.509034 + 0.860747i \(0.669997\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.181807 + 0.0723084i −0.0123991 + 0.00493139i
\(216\) 0 0
\(217\) 0.662956 + 0.662956i 0.0450044 + 0.0450044i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 6.47885i 0.435814i
\(222\) 0 0
\(223\) 3.10164 3.10164i 0.207701 0.207701i −0.595588 0.803290i \(-0.703081\pi\)
0.803290 + 0.595588i \(0.203081\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 12.2619 12.2619i 0.813851 0.813851i −0.171358 0.985209i \(-0.554815\pi\)
0.985209 + 0.171358i \(0.0548154\pi\)
\(228\) 0 0
\(229\) 6.41680i 0.424034i 0.977266 + 0.212017i \(0.0680032\pi\)
−0.977266 + 0.212017i \(0.931997\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2.94134 2.94134i −0.192694 0.192694i 0.604165 0.796859i \(-0.293507\pi\)
−0.796859 + 0.604165i \(0.793507\pi\)
\(234\) 0 0
\(235\) −4.57303 + 1.81879i −0.298312 + 0.118645i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −5.77199 −0.373359 −0.186679 0.982421i \(-0.559773\pi\)
−0.186679 + 0.982421i \(0.559773\pi\)
\(240\) 0 0
\(241\) −19.1919 −1.23626 −0.618131 0.786075i \(-0.712110\pi\)
−0.618131 + 0.786075i \(0.712110\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 6.16383 14.3045i 0.393793 0.913883i
\(246\) 0 0
\(247\) 22.2385 + 22.2385i 1.41500 + 1.41500i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4.98760i 0.314815i 0.987534 + 0.157407i \(0.0503136\pi\)
−0.987534 + 0.157407i \(0.949686\pi\)
\(252\) 0 0
\(253\) 3.60419 3.60419i 0.226594 0.226594i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 17.4010 17.4010i 1.08544 1.08544i 0.0894506 0.995991i \(-0.471489\pi\)
0.995991 0.0894506i \(-0.0285111\pi\)
\(258\) 0 0
\(259\) 0.584484i 0.0363181i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 7.59811 + 7.59811i 0.468519 + 0.468519i 0.901435 0.432915i \(-0.142515\pi\)
−0.432915 + 0.901435i \(0.642515\pi\)
\(264\) 0 0
\(265\) 3.76917 + 9.47693i 0.231539 + 0.582163i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 28.1423 1.71587 0.857934 0.513759i \(-0.171748\pi\)
0.857934 + 0.513759i \(0.171748\pi\)
\(270\) 0 0
\(271\) −4.07728 −0.247677 −0.123839 0.992302i \(-0.539521\pi\)
−0.123839 + 0.992302i \(0.539521\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −6.98143 + 6.59682i −0.420996 + 0.397803i
\(276\) 0 0
\(277\) −10.6683 10.6683i −0.640997 0.640997i 0.309804 0.950801i \(-0.399737\pi\)
−0.950801 + 0.309804i \(0.899737\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 12.7632i 0.761389i 0.924701 + 0.380695i \(0.124315\pi\)
−0.924701 + 0.380695i \(0.875685\pi\)
\(282\) 0 0
\(283\) 6.99277 6.99277i 0.415677 0.415677i −0.468034 0.883711i \(-0.655037\pi\)
0.883711 + 0.468034i \(0.155037\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −0.00833983 + 0.00833983i −0.000492285 + 0.000492285i
\(288\) 0 0
\(289\) 1.00000i 0.0588235i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −16.2879 16.2879i −0.951548 0.951548i 0.0473316 0.998879i \(-0.484928\pi\)
−0.998879 + 0.0473316i \(0.984928\pi\)
\(294\) 0 0
\(295\) 17.0891 + 7.36370i 0.994965 + 0.428731i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −17.1905 −0.994150
\(300\) 0 0
\(301\) −0.0161799 −0.000932592
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.72506 + 1.17423i 0.156036 + 0.0672361i
\(306\) 0 0
\(307\) 18.8850 + 18.8850i 1.07782 + 1.07782i 0.996704 + 0.0811189i \(0.0258494\pi\)
0.0811189 + 0.996704i \(0.474151\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 20.3205i 1.15227i 0.817355 + 0.576135i \(0.195440\pi\)
−0.817355 + 0.576135i \(0.804560\pi\)
\(312\) 0 0
\(313\) 8.60033 8.60033i 0.486119 0.486119i −0.420960 0.907079i \(-0.638307\pi\)
0.907079 + 0.420960i \(0.138307\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −5.57134 + 5.57134i −0.312918 + 0.312918i −0.846039 0.533121i \(-0.821019\pi\)
0.533121 + 0.846039i \(0.321019\pi\)
\(318\) 0 0
\(319\) 4.19945i 0.235124i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 3.43248 + 3.43248i 0.190988 + 0.190988i
\(324\) 0 0
\(325\) 32.3812 + 0.917210i 1.79619 + 0.0508776i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −0.406976 −0.0224373
\(330\) 0 0
\(331\) −5.16271 −0.283768 −0.141884 0.989883i \(-0.545316\pi\)
−0.141884 + 0.989883i \(0.545316\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −7.23556 18.1926i −0.395321 0.993965i
\(336\) 0 0
\(337\) 5.63119 + 5.63119i 0.306750 + 0.306750i 0.843648 0.536897i \(-0.180404\pi\)
−0.536897 + 0.843648i \(0.680404\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 9.74028i 0.527466i
\(342\) 0 0
\(343\) 1.82605 1.82605i 0.0985973 0.0985973i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −6.86564 + 6.86564i −0.368567 + 0.368567i −0.866954 0.498388i \(-0.833926\pi\)
0.498388 + 0.866954i \(0.333926\pi\)
\(348\) 0 0
\(349\) 11.3458i 0.607326i −0.952780 0.303663i \(-0.901790\pi\)
0.952780 0.303663i \(-0.0982096\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 17.6986 + 17.6986i 0.942000 + 0.942000i 0.998408 0.0564076i \(-0.0179646\pi\)
−0.0564076 + 0.998408i \(0.517965\pi\)
\(354\) 0 0
\(355\) −8.45404 + 19.6195i −0.448694 + 1.04129i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −6.97599 −0.368178 −0.184089 0.982910i \(-0.558934\pi\)
−0.184089 + 0.982910i \(0.558934\pi\)
\(360\) 0 0
\(361\) −4.56382 −0.240201
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 13.4395 5.34519i 0.703458 0.279780i
\(366\) 0 0
\(367\) 6.51370 + 6.51370i 0.340013 + 0.340013i 0.856372 0.516359i \(-0.172713\pi\)
−0.516359 + 0.856372i \(0.672713\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0.843397i 0.0437870i
\(372\) 0 0
\(373\) −6.49881 + 6.49881i −0.336496 + 0.336496i −0.855047 0.518551i \(-0.826472\pi\)
0.518551 + 0.855047i \(0.326472\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 10.0148 10.0148i 0.515788 0.515788i
\(378\) 0 0
\(379\) 15.2605i 0.783878i 0.919991 + 0.391939i \(0.128196\pi\)
−0.919991 + 0.391939i \(0.871804\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −26.5979 26.5979i −1.35909 1.35909i −0.875039 0.484053i \(-0.839164\pi\)
−0.484053 0.875039i \(-0.660836\pi\)
\(384\) 0 0
\(385\) −0.738058 + 0.293541i −0.0376149 + 0.0149602i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0.385928 0.0195673 0.00978365 0.999952i \(-0.496886\pi\)
0.00978365 + 0.999952i \(0.496886\pi\)
\(390\) 0 0
\(391\) −2.65332 −0.134184
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −6.21596 + 14.4255i −0.312759 + 0.725826i
\(396\) 0 0
\(397\) −17.4628 17.4628i −0.876435 0.876435i 0.116729 0.993164i \(-0.462759\pi\)
−0.993164 + 0.116729i \(0.962759\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4.38328i 0.218891i 0.993993 + 0.109445i \(0.0349075\pi\)
−0.993993 + 0.109445i \(0.965093\pi\)
\(402\) 0 0
\(403\) 23.2285 23.2285i 1.15709 1.15709i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 4.29368 4.29368i 0.212830 0.212830i
\(408\) 0 0
\(409\) 14.4117i 0.712615i 0.934369 + 0.356307i \(0.115964\pi\)
−0.934369 + 0.356307i \(0.884036\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1.08809 + 1.08809i 0.0535412 + 0.0535412i
\(414\) 0 0
\(415\) 0.329937 + 0.829569i 0.0161960 + 0.0407219i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −37.9153 −1.85228 −0.926141 0.377178i \(-0.876894\pi\)
−0.926141 + 0.377178i \(0.876894\pi\)
\(420\) 0 0
\(421\) −24.5715 −1.19754 −0.598771 0.800920i \(-0.704344\pi\)
−0.598771 + 0.800920i \(0.704344\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 4.99800 + 0.141570i 0.242438 + 0.00686715i
\(426\) 0 0
\(427\) 0.173508 + 0.173508i 0.00839664 + 0.00839664i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 28.1976i 1.35823i −0.734032 0.679115i \(-0.762364\pi\)
0.734032 0.679115i \(-0.237636\pi\)
\(432\) 0 0
\(433\) 6.75767 6.75767i 0.324753 0.324753i −0.525834 0.850587i \(-0.676247\pi\)
0.850587 + 0.525834i \(0.176247\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 9.10747 9.10747i 0.435670 0.435670i
\(438\) 0 0
\(439\) 34.9645i 1.66876i −0.551188 0.834381i \(-0.685825\pi\)
0.551188 0.834381i \(-0.314175\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −17.1657 17.1657i −0.815569 0.815569i 0.169894 0.985462i \(-0.445658\pi\)
−0.985462 + 0.169894i \(0.945658\pi\)
\(444\) 0 0
\(445\) 3.08186 + 1.32798i 0.146094 + 0.0629521i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 10.5014 0.495591 0.247795 0.968812i \(-0.420294\pi\)
0.247795 + 0.968812i \(0.420294\pi\)
\(450\) 0 0
\(451\) −0.122530 −0.00576973
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2.46015 + 1.06008i 0.115333 + 0.0496973i
\(456\) 0 0
\(457\) 5.51700 + 5.51700i 0.258074 + 0.258074i 0.824271 0.566196i \(-0.191586\pi\)
−0.566196 + 0.824271i \(0.691586\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 26.9321i 1.25435i −0.778877 0.627177i \(-0.784210\pi\)
0.778877 0.627177i \(-0.215790\pi\)
\(462\) 0 0
\(463\) −29.4341 + 29.4341i −1.36792 + 1.36792i −0.504521 + 0.863399i \(0.668331\pi\)
−0.863399 + 0.504521i \(0.831669\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −23.2994 + 23.2994i −1.07817 + 1.07817i −0.0814935 + 0.996674i \(0.525969\pi\)
−0.996674 + 0.0814935i \(0.974031\pi\)
\(468\) 0 0
\(469\) 1.61904i 0.0747604i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −0.118859 0.118859i −0.00546514 0.00546514i
\(474\) 0 0
\(475\) −17.6415 + 16.6696i −0.809445 + 0.764853i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −10.3713 −0.473877 −0.236938 0.971525i \(-0.576144\pi\)
−0.236938 + 0.971525i \(0.576144\pi\)
\(480\) 0 0
\(481\) −20.4790 −0.933763
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −7.86615 19.7781i −0.357183 0.898075i
\(486\) 0 0
\(487\) −7.06812 7.06812i −0.320287 0.320287i 0.528590 0.848877i \(-0.322721\pi\)
−0.848877 + 0.528590i \(0.822721\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 10.8915i 0.491527i 0.969330 + 0.245763i \(0.0790386\pi\)
−0.969330 + 0.245763i \(0.920961\pi\)
\(492\) 0 0
\(493\) 1.54577 1.54577i 0.0696179 0.0696179i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.24920 + 1.24920i −0.0560342 + 0.0560342i
\(498\) 0 0
\(499\) 14.1598i 0.633880i 0.948446 + 0.316940i \(0.102655\pi\)
−0.948446 + 0.316940i \(0.897345\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −31.1703 31.1703i −1.38982 1.38982i −0.825685 0.564131i \(-0.809211\pi\)
−0.564131 0.825685i \(-0.690789\pi\)
\(504\) 0 0
\(505\) −8.57666 + 19.9040i −0.381656 + 0.885717i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 39.5322 1.75223 0.876116 0.482100i \(-0.160126\pi\)
0.876116 + 0.482100i \(0.160126\pi\)
\(510\) 0 0
\(511\) 1.19605 0.0529101
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 19.3636 7.70133i 0.853264 0.339361i
\(516\) 0 0
\(517\) −2.98968 2.98968i −0.131486 0.131486i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 6.57493i 0.288053i −0.989574 0.144027i \(-0.953995\pi\)
0.989574 0.144027i \(-0.0460051\pi\)
\(522\) 0 0
\(523\) 10.7967 10.7967i 0.472106 0.472106i −0.430490 0.902596i \(-0.641659\pi\)
0.902596 + 0.430490i \(0.141659\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.58528 3.58528i 0.156177 0.156177i
\(528\) 0 0
\(529\) 15.9599i 0.693908i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0.292209 + 0.292209i 0.0126570 + 0.0126570i
\(534\) 0 0
\(535\) −20.5948 + 8.19099i −0.890392 + 0.354128i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 13.3815 0.576381
\(540\) 0 0
\(541\) −40.9112 −1.75891 −0.879454 0.475984i \(-0.842092\pi\)
−0.879454 + 0.475984i \(0.842092\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 4.73674 10.9927i 0.202900 0.470873i
\(546\) 0 0
\(547\) −30.9996 30.9996i −1.32545 1.32545i −0.909293 0.416156i \(-0.863377\pi\)
−0.416156 0.909293i \(-0.636623\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 10.6116i 0.452071i
\(552\) 0 0
\(553\) −0.918491 + 0.918491i −0.0390582 + 0.0390582i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 24.1937 24.1937i 1.02512 1.02512i 0.0254453 0.999676i \(-0.491900\pi\)
0.999676 0.0254453i \(-0.00810035\pi\)
\(558\) 0 0
\(559\) 0.566907i 0.0239776i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −16.2297 16.2297i −0.683999 0.683999i 0.276900 0.960899i \(-0.410693\pi\)
−0.960899 + 0.276900i \(0.910693\pi\)
\(564\) 0 0
\(565\) 1.36387 + 3.42920i 0.0573783 + 0.144268i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −32.9088 −1.37961 −0.689804 0.723996i \(-0.742303\pi\)
−0.689804 + 0.723996i \(0.742303\pi\)
\(570\) 0 0
\(571\) 15.1322 0.633262 0.316631 0.948549i \(-0.397448\pi\)
0.316631 + 0.948549i \(0.397448\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.375631 13.2613i 0.0156649 0.553034i
\(576\) 0 0
\(577\) −4.28605 4.28605i −0.178431 0.178431i 0.612241 0.790671i \(-0.290268\pi\)
−0.790671 + 0.612241i \(0.790268\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0.0738273i 0.00306287i
\(582\) 0 0
\(583\) −6.19568 + 6.19568i −0.256599 + 0.256599i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −33.5989 + 33.5989i −1.38677 + 1.38677i −0.554769 + 0.832005i \(0.687193\pi\)
−0.832005 + 0.554769i \(0.812807\pi\)
\(588\) 0 0
\(589\) 24.6128i 1.01415i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −21.1407 21.1407i −0.868146 0.868146i 0.124121 0.992267i \(-0.460389\pi\)
−0.992267 + 0.124121i \(0.960389\pi\)
\(594\) 0 0
\(595\) 0.379720 + 0.163622i 0.0155670 + 0.00670783i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −37.1224 −1.51678 −0.758391 0.651800i \(-0.774014\pi\)
−0.758391 + 0.651800i \(0.774014\pi\)
\(600\) 0 0
\(601\) −40.9887 −1.67196 −0.835981 0.548758i \(-0.815101\pi\)
−0.835981 + 0.548758i \(0.815101\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 15.0107 + 6.46810i 0.610270 + 0.262966i
\(606\) 0 0
\(607\) 27.8738 + 27.8738i 1.13136 + 1.13136i 0.989951 + 0.141412i \(0.0451643\pi\)
0.141412 + 0.989951i \(0.454836\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 14.2595i 0.576879i
\(612\) 0 0
\(613\) −11.5237 + 11.5237i −0.465439 + 0.465439i −0.900433 0.434994i \(-0.856750\pi\)
0.434994 + 0.900433i \(0.356750\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −6.78036 + 6.78036i −0.272967 + 0.272967i −0.830293 0.557327i \(-0.811827\pi\)
0.557327 + 0.830293i \(0.311827\pi\)
\(618\) 0 0
\(619\) 20.3290i 0.817093i −0.912737 0.408547i \(-0.866036\pi\)
0.912737 0.408547i \(-0.133964\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0.196226 + 0.196226i 0.00786164 + 0.00786164i
\(624\) 0 0
\(625\) −1.41513 + 24.9599i −0.0566053 + 0.998397i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −3.16091 −0.126034
\(630\) 0 0
\(631\) −11.2748 −0.448844 −0.224422 0.974492i \(-0.572049\pi\)
−0.224422 + 0.974492i \(0.572049\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 17.5109 + 44.0281i 0.694899 + 1.74720i
\(636\) 0 0
\(637\) −31.9120 31.9120i −1.26440 1.26440i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 2.17279i 0.0858202i −0.999079 0.0429101i \(-0.986337\pi\)
0.999079 0.0429101i \(-0.0136629\pi\)
\(642\) 0 0
\(643\) 11.9797 11.9797i 0.472435 0.472435i −0.430267 0.902702i \(-0.641581\pi\)
0.902702 + 0.430267i \(0.141581\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 9.97383 9.97383i 0.392112 0.392112i −0.483328 0.875439i \(-0.660572\pi\)
0.875439 + 0.483328i \(0.160572\pi\)
\(648\) 0 0
\(649\) 15.9864i 0.627520i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −27.0978 27.0978i −1.06042 1.06042i −0.998053 0.0623662i \(-0.980135\pi\)
−0.0623662 0.998053i \(-0.519865\pi\)
\(654\) 0 0
\(655\) −9.09762 + 21.1130i −0.355474 + 0.824955i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −33.5888 −1.30843 −0.654217 0.756307i \(-0.727002\pi\)
−0.654217 + 0.756307i \(0.727002\pi\)
\(660\) 0 0
\(661\) 35.4249 1.37787 0.688934 0.724824i \(-0.258079\pi\)
0.688934 + 0.724824i \(0.258079\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.86501 + 0.741753i −0.0723219 + 0.0287639i
\(666\) 0 0
\(667\) −4.10142 4.10142i −0.158808 0.158808i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 2.54921i 0.0984113i
\(672\) 0 0
\(673\) 0.143629 0.143629i 0.00553649 0.00553649i −0.704333 0.709870i \(-0.748754\pi\)
0.709870 + 0.704333i \(0.248754\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −20.5972 + 20.5972i −0.791614 + 0.791614i −0.981757 0.190142i \(-0.939105\pi\)
0.190142 + 0.981757i \(0.439105\pi\)
\(678\) 0 0
\(679\) 1.76014i 0.0675481i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 7.59093 + 7.59093i 0.290459 + 0.290459i 0.837261 0.546803i \(-0.184155\pi\)
−0.546803 + 0.837261i \(0.684155\pi\)
\(684\) 0 0
\(685\) −12.3326 + 4.90495i −0.471206 + 0.187409i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 29.5508 1.12579
\(690\) 0 0
\(691\) −20.8881 −0.794620 −0.397310 0.917684i \(-0.630056\pi\)
−0.397310 + 0.917684i \(0.630056\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 10.8813 25.2524i 0.412751 0.957879i
\(696\) 0 0
\(697\) 0.0451020 + 0.0451020i 0.00170836 + 0.00170836i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 51.4969i 1.94501i 0.232882 + 0.972505i \(0.425184\pi\)
−0.232882 + 0.972505i \(0.574816\pi\)
\(702\) 0 0
\(703\) 10.8497 10.8497i 0.409206 0.409206i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.26732 + 1.26732i −0.0476623 + 0.0476623i
\(708\) 0 0
\(709\) 22.4477i 0.843040i 0.906819 + 0.421520i \(0.138503\pi\)
−0.906819 + 0.421520i \(0.861497\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −9.51291 9.51291i −0.356261 0.356261i
\(714\) 0 0
\(715\) 10.2850 + 25.8599i 0.384638 + 0.967106i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −46.4554 −1.73250 −0.866248 0.499615i \(-0.833475\pi\)
−0.866248 + 0.499615i \(0.833475\pi\)
\(720\) 0 0
\(721\) 1.72326 0.0641777
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 7.50691 + 7.94457i 0.278799 + 0.295054i
\(726\) 0 0
\(727\) 27.4296 + 27.4296i 1.01731 + 1.01731i 0.999848 + 0.0174613i \(0.00555838\pi\)
0.0174613 + 0.999848i \(0.494442\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0.0875012i 0.00323635i
\(732\) 0 0
\(733\) 34.1523 34.1523i 1.26145 1.26145i 0.311053 0.950393i \(-0.399318\pi\)
0.950393 0.311053i \(-0.100682\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 11.8936 11.8936i 0.438108 0.438108i
\(738\) 0 0
\(739\) 25.0012i 0.919684i −0.888001 0.459842i \(-0.847906\pi\)
0.888001 0.459842i \(-0.152094\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −9.44863 9.44863i −0.346637 0.346637i 0.512219 0.858855i \(-0.328824\pi\)
−0.858855 + 0.512219i \(0.828824\pi\)
\(744\) 0 0
\(745\) −37.0552 15.9671i −1.35760 0.584990i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1.83283 −0.0669702
\(750\) 0 0
\(751\) −35.6958 −1.30256 −0.651280 0.758838i \(-0.725768\pi\)
−0.651280 + 0.758838i \(0.725768\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 2.65259 + 1.14300i 0.0965377 + 0.0415982i
\(756\) 0 0
\(757\) 6.96239 + 6.96239i 0.253052 + 0.253052i 0.822221 0.569169i \(-0.192735\pi\)
−0.569169 + 0.822221i \(0.692735\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 41.7707i 1.51419i −0.653306 0.757094i \(-0.726618\pi\)
0.653306 0.757094i \(-0.273382\pi\)
\(762\) 0 0
\(763\) 0.699917 0.699917i 0.0253387 0.0253387i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 38.1241 38.1241i 1.37658 1.37658i
\(768\) 0 0
\(769\) 30.6035i 1.10359i −0.833980 0.551795i \(-0.813943\pi\)
0.833980 0.551795i \(-0.186057\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −31.8815 31.8815i −1.14670 1.14670i −0.987198 0.159500i \(-0.949012\pi\)
−0.159500 0.987198i \(-0.550988\pi\)
\(774\) 0 0
\(775\) 17.4117 + 18.4268i 0.625445 + 0.661910i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.309624 −0.0110934
\(780\) 0 0
\(781\) −18.3534 −0.656738
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 9.96176 + 25.0471i 0.355550 + 0.893969i
\(786\) 0 0
\(787\) 21.4363 + 21.4363i 0.764122 + 0.764122i 0.977065 0.212943i \(-0.0683048\pi\)
−0.212943 + 0.977065i \(0.568305\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0.305181i 0.0108510i
\(792\) 0 0
\(793\) 6.07933 6.07933i 0.215883 0.215883i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 4.33182 4.33182i 0.153441 0.153441i −0.626212 0.779653i \(-0.715396\pi\)
0.779653 + 0.626212i \(0.215396\pi\)
\(798\) 0 0
\(799\) 2.20094i 0.0778635i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 8.78630 + 8.78630i 0.310062 + 0.310062i
\(804\) 0 0
\(805\) 0.434141 1.00752i 0.0153014 0.0355104i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1.02188 −0.0359272 −0.0179636 0.999839i \(-0.505718\pi\)
−0.0179636 + 0.999839i \(0.505718\pi\)
\(810\) 0 0
\(811\) 54.2466 1.90486 0.952428 0.304762i \(-0.0985771\pi\)
0.952428 + 0.304762i \(0.0985771\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 9.20155 3.65965i 0.322316 0.128192i
\(816\) 0 0
\(817\) −0.300346 0.300346i −0.0105078 0.0105078i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 51.2683i 1.78928i −0.446792 0.894638i \(-0.647434\pi\)
0.446792 0.894638i \(-0.352566\pi\)
\(822\) 0 0
\(823\) −26.5591 + 26.5591i −0.925792 + 0.925792i −0.997431 0.0716383i \(-0.977177\pi\)
0.0716383 + 0.997431i \(0.477177\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −13.8434 + 13.8434i −0.481381 + 0.481381i −0.905572 0.424192i \(-0.860558\pi\)
0.424192 + 0.905572i \(0.360558\pi\)
\(828\) 0 0
\(829\) 34.5011i 1.19827i 0.800647 + 0.599136i \(0.204489\pi\)
−0.800647 + 0.599136i \(0.795511\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −4.92557 4.92557i −0.170661 0.170661i
\(834\) 0 0
\(835\) 14.1562 5.63024i 0.489897 0.194842i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −52.9597 −1.82837 −0.914185 0.405297i \(-0.867168\pi\)
−0.914185 + 0.405297i \(0.867168\pi\)
\(840\) 0 0
\(841\) −24.2212 −0.835214
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 25.6395 59.5021i 0.882025 2.04693i
\(846\) 0 0
\(847\) 0.955749 + 0.955749i 0.0328399 + 0.0328399i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 8.38690i 0.287499i
\(852\) 0 0
\(853\) −7.66228 + 7.66228i −0.262351 + 0.262351i −0.826009 0.563657i \(-0.809394\pi\)
0.563657 + 0.826009i \(0.309394\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 25.3854 25.3854i 0.867147 0.867147i −0.125008 0.992156i \(-0.539896\pi\)
0.992156 + 0.125008i \(0.0398957\pi\)
\(858\) 0 0
\(859\) 31.3361i 1.06917i −0.845114 0.534586i \(-0.820467\pi\)
0.845114 0.534586i \(-0.179533\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −8.15463 8.15463i −0.277587 0.277587i 0.554558 0.832145i \(-0.312887\pi\)
−0.832145 + 0.554558i \(0.812887\pi\)
\(864\) 0 0
\(865\) 10.6925 + 26.8844i 0.363556 + 0.914098i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −13.4946 −0.457775
\(870\) 0 0
\(871\) −56.7276 −1.92214
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −0.871537 + 1.87467i −0.0294633 + 0.0633756i
\(876\) 0 0
\(877\) 17.0696 + 17.0696i 0.576399 + 0.576399i 0.933909 0.357510i \(-0.116374\pi\)
−0.357510 + 0.933909i \(0.616374\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 14.0462i 0.473230i 0.971604 + 0.236615i \(0.0760380\pi\)
−0.971604 + 0.236615i \(0.923962\pi\)
\(882\) 0 0
\(883\) −18.9044 + 18.9044i −0.636185 + 0.636185i −0.949612 0.313427i \(-0.898523\pi\)
0.313427 + 0.949612i \(0.398523\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 30.1353 30.1353i 1.01185 1.01185i 0.0119168 0.999929i \(-0.496207\pi\)
0.999929 0.0119168i \(-0.00379331\pi\)
\(888\) 0 0
\(889\) 3.91828i 0.131415i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −7.55467 7.55467i −0.252807 0.252807i
\(894\) 0 0
\(895\) 22.1478 + 9.54352i 0.740321 + 0.319005i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 11.0840 0.369673
\(900\) 0 0
\(901\) 4.56112 0.151953
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −35.4022 15.2548i −1.17681 0.507087i
\(906\) 0 0
\(907\) −25.8749 25.8749i −0.859162 0.859162i 0.132077 0.991239i \(-0.457835\pi\)
−0.991239 + 0.132077i \(0.957835\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 56.0681i 1.85762i −0.370556 0.928810i \(-0.620833\pi\)
0.370556 0.928810i \(-0.379167\pi\)
\(912\) 0 0
\(913\) −0.542343 + 0.542343i −0.0179489 + 0.0179489i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.34430 + 1.34430i −0.0443926 + 0.0443926i
\(918\) 0 0
\(919\) 35.5420i 1.17242i −0.810158 0.586212i \(-0.800619\pi\)
0.810158 0.586212i \(-0.199381\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 43.7691 + 43.7691i 1.44068 + 1.44068i
\(924\) 0 0
\(925\) 0.447489 15.7982i 0.0147134 0.519441i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −8.26157 −0.271053 −0.135527 0.990774i \(-0.543273\pi\)
−0.135527 + 0.990774i \(0.543273\pi\)
\(930\) 0 0
\(931\) 33.8138 1.10820
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1.58748 + 3.99144i 0.0519161 + 0.130534i
\(936\) 0 0
\(937\) 15.5291 + 15.5291i 0.507315 + 0.507315i 0.913701 0.406386i \(-0.133211\pi\)
−0.406386 + 0.913701i \(0.633211\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 40.9925i 1.33632i 0.744019 + 0.668158i \(0.232917\pi\)
−0.744019 + 0.668158i \(0.767083\pi\)
\(942\) 0 0
\(943\) 0.119670 0.119670i 0.00389700 0.00389700i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 12.3892 12.3892i 0.402594 0.402594i −0.476552 0.879146i \(-0.658114\pi\)
0.879146 + 0.476552i \(0.158114\pi\)
\(948\) 0 0
\(949\) 41.9069i 1.36036i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −8.40834 8.40834i −0.272373 0.272373i 0.557682 0.830055i \(-0.311691\pi\)
−0.830055 + 0.557682i \(0.811691\pi\)
\(954\) 0 0
\(955\) −9.88282 + 22.9353i −0.319801 + 0.742168i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1.09754 −0.0354414
\(960\) 0 0
\(961\) −5.29148 −0.170693
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1.74723 0.694909i 0.0562452 0.0223699i
\(966\) 0 0
\(967\) 19.7383 + 19.7383i 0.634741 + 0.634741i 0.949253 0.314512i \(-0.101841\pi\)
−0.314512 + 0.949253i \(0.601841\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 8.03812i 0.257955i −0.991647 0.128978i \(-0.958830\pi\)
0.991647 0.128978i \(-0.0411696\pi\)
\(972\) 0 0
\(973\) 1.60786 1.60786i 0.0515455 0.0515455i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −5.41768 + 5.41768i −0.173327 + 0.173327i −0.788439 0.615113i \(-0.789111\pi\)
0.615113 + 0.788439i \(0.289111\pi\)
\(978\) 0 0
\(979\) 2.88299i 0.0921409i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −6.52079 6.52079i −0.207981 0.207981i 0.595428 0.803409i \(-0.296983\pi\)
−0.803409 + 0.595428i \(0.796983\pi\)
\(984\) 0 0
\(985\) 9.81621 3.90411i 0.312770 0.124395i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0.232169 0.00738254
\(990\) 0 0
\(991\) −53.7026 −1.70592 −0.852959 0.521978i \(-0.825194\pi\)
−0.852959 + 0.521978i \(0.825194\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 11.1725 25.9282i 0.354191 0.821979i
\(996\) 0 0
\(997\) −9.73139 9.73139i −0.308196 0.308196i 0.536013 0.844209i \(-0.319930\pi\)
−0.844209 + 0.536013i \(0.819930\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3060.2.w.f.2177.12 yes 28
3.2 odd 2 inner 3060.2.w.f.2177.3 yes 28
5.3 odd 4 inner 3060.2.w.f.953.3 28
15.8 even 4 inner 3060.2.w.f.953.12 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3060.2.w.f.953.3 28 5.3 odd 4 inner
3060.2.w.f.953.12 yes 28 15.8 even 4 inner
3060.2.w.f.2177.3 yes 28 3.2 odd 2 inner
3060.2.w.f.2177.12 yes 28 1.1 even 1 trivial