Properties

Label 3060.2.w.d.2177.3
Level $3060$
Weight $2$
Character 3060.2177
Analytic conductor $24.434$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3060,2,Mod(953,3060)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3060.953"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3060, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 3, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3060.w (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.4342230185\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 2177.3
Root \(0.258819 - 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 3060.2177
Dual form 3060.2.w.d.953.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.41421 - 1.73205i) q^{5} +(1.22474 + 1.22474i) q^{7} -3.14626i q^{11} +(-2.00000 + 2.00000i) q^{13} +(-0.707107 + 0.707107i) q^{17} +1.00000i q^{19} +(-5.97469 - 5.97469i) q^{23} +(-1.00000 - 4.89898i) q^{25} +5.97469 q^{29} +5.34847 q^{31} +(3.85337 - 0.389270i) q^{35} +(-3.22474 - 3.22474i) q^{37} -5.97469i q^{41} +(2.44949 - 2.44949i) q^{43} +(4.48905 - 4.48905i) q^{47} -4.00000i q^{49} +(-2.43916 - 2.43916i) q^{53} +(-5.44949 - 4.44949i) q^{55} +5.51399 q^{59} -3.34847 q^{61} +(0.635674 + 6.29253i) q^{65} +(-4.44949 - 4.44949i) q^{67} +0.635674i q^{71} +(-2.32577 + 2.32577i) q^{73} +(3.85337 - 3.85337i) q^{77} +7.55051i q^{79} +(6.92820 + 6.92820i) q^{83} +(0.224745 + 2.22474i) q^{85} -0.142865 q^{89} -4.89898 q^{91} +(1.73205 + 1.41421i) q^{95} +(-4.89898 - 4.89898i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 16 q^{13} - 8 q^{25} - 16 q^{31} - 16 q^{37} - 24 q^{55} + 32 q^{61} - 16 q^{67} - 48 q^{73} - 8 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3060\mathbb{Z}\right)^\times\).

\(n\) \(1261\) \(1361\) \(1531\) \(1837\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.41421 1.73205i 0.632456 0.774597i
\(6\) 0 0
\(7\) 1.22474 + 1.22474i 0.462910 + 0.462910i 0.899608 0.436698i \(-0.143852\pi\)
−0.436698 + 0.899608i \(0.643852\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.14626i 0.948634i −0.880354 0.474317i \(-0.842695\pi\)
0.880354 0.474317i \(-0.157305\pi\)
\(12\) 0 0
\(13\) −2.00000 + 2.00000i −0.554700 + 0.554700i −0.927794 0.373094i \(-0.878297\pi\)
0.373094 + 0.927794i \(0.378297\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.707107 + 0.707107i −0.171499 + 0.171499i
\(18\) 0 0
\(19\) 1.00000i 0.229416i 0.993399 + 0.114708i \(0.0365932\pi\)
−0.993399 + 0.114708i \(0.963407\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.97469 5.97469i −1.24581 1.24581i −0.957553 0.288256i \(-0.906925\pi\)
−0.288256 0.957553i \(-0.593075\pi\)
\(24\) 0 0
\(25\) −1.00000 4.89898i −0.200000 0.979796i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 5.97469 1.10947 0.554736 0.832026i \(-0.312819\pi\)
0.554736 + 0.832026i \(0.312819\pi\)
\(30\) 0 0
\(31\) 5.34847 0.960613 0.480307 0.877101i \(-0.340525\pi\)
0.480307 + 0.877101i \(0.340525\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.85337 0.389270i 0.651339 0.0657986i
\(36\) 0 0
\(37\) −3.22474 3.22474i −0.530145 0.530145i 0.390471 0.920615i \(-0.372312\pi\)
−0.920615 + 0.390471i \(0.872312\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.97469i 0.933090i −0.884497 0.466545i \(-0.845499\pi\)
0.884497 0.466545i \(-0.154501\pi\)
\(42\) 0 0
\(43\) 2.44949 2.44949i 0.373544 0.373544i −0.495222 0.868766i \(-0.664913\pi\)
0.868766 + 0.495222i \(0.164913\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.48905 4.48905i 0.654795 0.654795i −0.299349 0.954144i \(-0.596770\pi\)
0.954144 + 0.299349i \(0.0967695\pi\)
\(48\) 0 0
\(49\) 4.00000i 0.571429i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −2.43916 2.43916i −0.335044 0.335044i 0.519454 0.854498i \(-0.326135\pi\)
−0.854498 + 0.519454i \(0.826135\pi\)
\(54\) 0 0
\(55\) −5.44949 4.44949i −0.734809 0.599969i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.51399 0.717860 0.358930 0.933364i \(-0.383142\pi\)
0.358930 + 0.933364i \(0.383142\pi\)
\(60\) 0 0
\(61\) −3.34847 −0.428728 −0.214364 0.976754i \(-0.568768\pi\)
−0.214364 + 0.976754i \(0.568768\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.635674 + 6.29253i 0.0788457 + 0.780492i
\(66\) 0 0
\(67\) −4.44949 4.44949i −0.543592 0.543592i 0.380988 0.924580i \(-0.375584\pi\)
−0.924580 + 0.380988i \(0.875584\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0.635674i 0.0754407i 0.999288 + 0.0377203i \(0.0120096\pi\)
−0.999288 + 0.0377203i \(0.987990\pi\)
\(72\) 0 0
\(73\) −2.32577 + 2.32577i −0.272210 + 0.272210i −0.829989 0.557779i \(-0.811654\pi\)
0.557779 + 0.829989i \(0.311654\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.85337 3.85337i 0.439132 0.439132i
\(78\) 0 0
\(79\) 7.55051i 0.849499i 0.905311 + 0.424749i \(0.139638\pi\)
−0.905311 + 0.424749i \(0.860362\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.92820 + 6.92820i 0.760469 + 0.760469i 0.976407 0.215938i \(-0.0692809\pi\)
−0.215938 + 0.976407i \(0.569281\pi\)
\(84\) 0 0
\(85\) 0.224745 + 2.22474i 0.0243770 + 0.241307i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −0.142865 −0.0151436 −0.00757181 0.999971i \(-0.502410\pi\)
−0.00757181 + 0.999971i \(0.502410\pi\)
\(90\) 0 0
\(91\) −4.89898 −0.513553
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.73205 + 1.41421i 0.177705 + 0.145095i
\(96\) 0 0
\(97\) −4.89898 4.89898i −0.497416 0.497416i 0.413217 0.910633i \(-0.364405\pi\)
−0.910633 + 0.413217i \(0.864405\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.55708i 0.154935i −0.996995 0.0774675i \(-0.975317\pi\)
0.996995 0.0774675i \(-0.0246834\pi\)
\(102\) 0 0
\(103\) 5.44949 5.44949i 0.536954 0.536954i −0.385679 0.922633i \(-0.626033\pi\)
0.922633 + 0.385679i \(0.126033\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.61037 6.61037i 0.639048 0.639048i −0.311272 0.950321i \(-0.600755\pi\)
0.950321 + 0.311272i \(0.100755\pi\)
\(108\) 0 0
\(109\) 3.10102i 0.297024i 0.988911 + 0.148512i \(0.0474483\pi\)
−0.988911 + 0.148512i \(0.952552\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.61037 6.61037i −0.621851 0.621851i 0.324154 0.946004i \(-0.394921\pi\)
−0.946004 + 0.324154i \(0.894921\pi\)
\(114\) 0 0
\(115\) −18.7980 + 1.89898i −1.75292 + 0.177081i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.73205 −0.158777
\(120\) 0 0
\(121\) 1.10102 0.100093
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −9.89949 5.19615i −0.885438 0.464758i
\(126\) 0 0
\(127\) −4.10102 4.10102i −0.363907 0.363907i 0.501342 0.865249i \(-0.332840\pi\)
−0.865249 + 0.501342i \(0.832840\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.56388i 0.660859i 0.943831 + 0.330430i \(0.107194\pi\)
−0.943831 + 0.330430i \(0.892806\pi\)
\(132\) 0 0
\(133\) −1.22474 + 1.22474i −0.106199 + 0.106199i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.53893 6.53893i 0.558659 0.558659i −0.370267 0.928925i \(-0.620734\pi\)
0.928925 + 0.370267i \(0.120734\pi\)
\(138\) 0 0
\(139\) 2.44949i 0.207763i −0.994590 0.103882i \(-0.966874\pi\)
0.994590 0.103882i \(-0.0331263\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 6.29253 + 6.29253i 0.526208 + 0.526208i
\(144\) 0 0
\(145\) 8.44949 10.3485i 0.701692 0.859394i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1.41421 −0.115857 −0.0579284 0.998321i \(-0.518450\pi\)
−0.0579284 + 0.998321i \(0.518450\pi\)
\(150\) 0 0
\(151\) −1.89898 −0.154537 −0.0772684 0.997010i \(-0.524620\pi\)
−0.0772684 + 0.997010i \(0.524620\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 7.56388 9.26382i 0.607545 0.744088i
\(156\) 0 0
\(157\) −11.8990 11.8990i −0.949642 0.949642i 0.0491495 0.998791i \(-0.484349\pi\)
−0.998791 + 0.0491495i \(0.984349\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 14.6349i 1.15340i
\(162\) 0 0
\(163\) −4.32577 + 4.32577i −0.338820 + 0.338820i −0.855923 0.517103i \(-0.827010\pi\)
0.517103 + 0.855923i \(0.327010\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4.73545 + 4.73545i −0.366440 + 0.366440i −0.866177 0.499737i \(-0.833430\pi\)
0.499737 + 0.866177i \(0.333430\pi\)
\(168\) 0 0
\(169\) 5.00000i 0.384615i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4.87832 + 4.87832i 0.370891 + 0.370891i 0.867802 0.496910i \(-0.165532\pi\)
−0.496910 + 0.867802i \(0.665532\pi\)
\(174\) 0 0
\(175\) 4.77526 7.22474i 0.360975 0.546139i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 22.3417 1.66990 0.834948 0.550329i \(-0.185498\pi\)
0.834948 + 0.550329i \(0.185498\pi\)
\(180\) 0 0
\(181\) −6.89898 −0.512797 −0.256399 0.966571i \(-0.582536\pi\)
−0.256399 + 0.966571i \(0.582536\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −10.1459 + 1.02494i −0.745941 + 0.0753554i
\(186\) 0 0
\(187\) 2.22474 + 2.22474i 0.162689 + 0.162689i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 11.8065i 0.854290i −0.904183 0.427145i \(-0.859519\pi\)
0.904183 0.427145i \(-0.140481\pi\)
\(192\) 0 0
\(193\) −3.55051 + 3.55051i −0.255571 + 0.255571i −0.823250 0.567679i \(-0.807842\pi\)
0.567679 + 0.823250i \(0.307842\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 19.1954 19.1954i 1.36762 1.36762i 0.503793 0.863825i \(-0.331938\pi\)
0.863825 0.503793i \(-0.168062\pi\)
\(198\) 0 0
\(199\) 24.6969i 1.75072i 0.483472 + 0.875360i \(0.339375\pi\)
−0.483472 + 0.875360i \(0.660625\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 7.31747 + 7.31747i 0.513586 + 0.513586i
\(204\) 0 0
\(205\) −10.3485 8.44949i −0.722768 0.590138i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 3.14626 0.217632
\(210\) 0 0
\(211\) 5.34847 0.368204 0.184102 0.982907i \(-0.441062\pi\)
0.184102 + 0.982907i \(0.441062\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.778539 7.70674i −0.0530959 0.525595i
\(216\) 0 0
\(217\) 6.55051 + 6.55051i 0.444678 + 0.444678i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2.82843i 0.190261i
\(222\) 0 0
\(223\) −5.44949 + 5.44949i −0.364925 + 0.364925i −0.865622 0.500698i \(-0.833077\pi\)
0.500698 + 0.865622i \(0.333077\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4.87832 + 4.87832i −0.323785 + 0.323785i −0.850217 0.526432i \(-0.823529\pi\)
0.526432 + 0.850217i \(0.323529\pi\)
\(228\) 0 0
\(229\) 25.6969i 1.69810i −0.528311 0.849051i \(-0.677175\pi\)
0.528311 0.849051i \(-0.322825\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3.32124 + 3.32124i 0.217581 + 0.217581i 0.807478 0.589897i \(-0.200832\pi\)
−0.589897 + 0.807478i \(0.700832\pi\)
\(234\) 0 0
\(235\) −1.42679 14.1237i −0.0930732 0.921330i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 12.5851 0.814060 0.407030 0.913415i \(-0.366564\pi\)
0.407030 + 0.913415i \(0.366564\pi\)
\(240\) 0 0
\(241\) −10.8990 −0.702065 −0.351032 0.936363i \(-0.614169\pi\)
−0.351032 + 0.936363i \(0.614169\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −6.92820 5.65685i −0.442627 0.361403i
\(246\) 0 0
\(247\) −2.00000 2.00000i −0.127257 0.127257i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 7.21393i 0.455339i −0.973738 0.227670i \(-0.926889\pi\)
0.973738 0.227670i \(-0.0731106\pi\)
\(252\) 0 0
\(253\) −18.7980 + 18.7980i −1.18182 + 1.18182i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −11.1708 + 11.1708i −0.696818 + 0.696818i −0.963723 0.266905i \(-0.913999\pi\)
0.266905 + 0.963723i \(0.413999\pi\)
\(258\) 0 0
\(259\) 7.89898i 0.490819i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3.99624 + 3.99624i 0.246418 + 0.246418i 0.819499 0.573081i \(-0.194252\pi\)
−0.573081 + 0.819499i \(0.694252\pi\)
\(264\) 0 0
\(265\) −7.67423 + 0.775255i −0.471424 + 0.0476235i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −27.6807 −1.68772 −0.843861 0.536562i \(-0.819723\pi\)
−0.843861 + 0.536562i \(0.819723\pi\)
\(270\) 0 0
\(271\) 31.3939 1.90704 0.953521 0.301326i \(-0.0974293\pi\)
0.953521 + 0.301326i \(0.0974293\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −15.4135 + 3.14626i −0.929468 + 0.189727i
\(276\) 0 0
\(277\) −11.3485 11.3485i −0.681863 0.681863i 0.278556 0.960420i \(-0.410144\pi\)
−0.960420 + 0.278556i \(0.910144\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 30.6841i 1.83046i −0.402932 0.915230i \(-0.632009\pi\)
0.402932 0.915230i \(-0.367991\pi\)
\(282\) 0 0
\(283\) 5.67423 5.67423i 0.337298 0.337298i −0.518051 0.855350i \(-0.673342\pi\)
0.855350 + 0.518051i \(0.173342\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7.31747 7.31747i 0.431937 0.431937i
\(288\) 0 0
\(289\) 1.00000i 0.0588235i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −12.0529 12.0529i −0.704139 0.704139i 0.261157 0.965296i \(-0.415896\pi\)
−0.965296 + 0.261157i \(0.915896\pi\)
\(294\) 0 0
\(295\) 7.79796 9.55051i 0.454015 0.556052i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 23.8988 1.38210
\(300\) 0 0
\(301\) 6.00000 0.345834
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −4.73545 + 5.79972i −0.271151 + 0.332091i
\(306\) 0 0
\(307\) −13.7980 13.7980i −0.787491 0.787491i 0.193591 0.981082i \(-0.437986\pi\)
−0.981082 + 0.193591i \(0.937986\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 3.14626i 0.178408i −0.996013 0.0892041i \(-0.971568\pi\)
0.996013 0.0892041i \(-0.0284324\pi\)
\(312\) 0 0
\(313\) −4.77526 + 4.77526i −0.269913 + 0.269913i −0.829065 0.559152i \(-0.811127\pi\)
0.559152 + 0.829065i \(0.311127\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −7.21393 + 7.21393i −0.405175 + 0.405175i −0.880052 0.474877i \(-0.842492\pi\)
0.474877 + 0.880052i \(0.342492\pi\)
\(318\) 0 0
\(319\) 18.7980i 1.05248i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −0.707107 0.707107i −0.0393445 0.0393445i
\(324\) 0 0
\(325\) 11.7980 + 7.79796i 0.654433 + 0.432553i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 10.9959 0.606222
\(330\) 0 0
\(331\) −0.797959 −0.0438598 −0.0219299 0.999760i \(-0.506981\pi\)
−0.0219299 + 0.999760i \(0.506981\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −13.9993 + 1.41421i −0.764862 + 0.0772667i
\(336\) 0 0
\(337\) 22.3712 + 22.3712i 1.21864 + 1.21864i 0.968110 + 0.250525i \(0.0806034\pi\)
0.250525 + 0.968110i \(0.419397\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 16.8277i 0.911271i
\(342\) 0 0
\(343\) 13.4722 13.4722i 0.727430 0.727430i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −20.9275 + 20.9275i −1.12345 + 1.12345i −0.132226 + 0.991220i \(0.542212\pi\)
−0.991220 + 0.132226i \(0.957788\pi\)
\(348\) 0 0
\(349\) 25.8990i 1.38634i 0.720774 + 0.693170i \(0.243787\pi\)
−0.720774 + 0.693170i \(0.756213\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 16.4384 + 16.4384i 0.874929 + 0.874929i 0.993005 0.118075i \(-0.0376724\pi\)
−0.118075 + 0.993005i \(0.537672\pi\)
\(354\) 0 0
\(355\) 1.10102 + 0.898979i 0.0584361 + 0.0477129i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 29.5556 1.55989 0.779943 0.625851i \(-0.215248\pi\)
0.779943 + 0.625851i \(0.215248\pi\)
\(360\) 0 0
\(361\) 18.0000 0.947368
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0.739215 + 7.31747i 0.0386923 + 0.383014i
\(366\) 0 0
\(367\) 22.0000 + 22.0000i 1.14839 + 1.14839i 0.986869 + 0.161521i \(0.0516401\pi\)
0.161521 + 0.986869i \(0.448360\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 5.97469i 0.310191i
\(372\) 0 0
\(373\) −12.5505 + 12.5505i −0.649841 + 0.649841i −0.952954 0.303114i \(-0.901974\pi\)
0.303114 + 0.952954i \(0.401974\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −11.9494 + 11.9494i −0.615425 + 0.615425i
\(378\) 0 0
\(379\) 16.2474i 0.834575i −0.908774 0.417288i \(-0.862981\pi\)
0.908774 0.417288i \(-0.137019\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 3.21770 + 3.21770i 0.164417 + 0.164417i 0.784520 0.620103i \(-0.212909\pi\)
−0.620103 + 0.784520i \(0.712909\pi\)
\(384\) 0 0
\(385\) −1.22474 12.1237i −0.0624188 0.617882i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −27.5057 −1.39460 −0.697298 0.716781i \(-0.745615\pi\)
−0.697298 + 0.716781i \(0.745615\pi\)
\(390\) 0 0
\(391\) 8.44949 0.427309
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 13.0779 + 10.6780i 0.658019 + 0.537270i
\(396\) 0 0
\(397\) 18.3712 + 18.3712i 0.922023 + 0.922023i 0.997172 0.0751495i \(-0.0239434\pi\)
−0.0751495 + 0.997172i \(0.523943\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 31.1448i 1.55530i −0.628699 0.777649i \(-0.716412\pi\)
0.628699 0.777649i \(-0.283588\pi\)
\(402\) 0 0
\(403\) −10.6969 + 10.6969i −0.532852 + 0.532852i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −10.1459 + 10.1459i −0.502914 + 0.502914i
\(408\) 0 0
\(409\) 33.6969i 1.66621i 0.553118 + 0.833103i \(0.313438\pi\)
−0.553118 + 0.833103i \(0.686562\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 6.75323 + 6.75323i 0.332305 + 0.332305i
\(414\) 0 0
\(415\) 21.7980 2.20204i 1.07002 0.108094i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 16.0171 0.782484 0.391242 0.920288i \(-0.372046\pi\)
0.391242 + 0.920288i \(0.372046\pi\)
\(420\) 0 0
\(421\) 29.0000 1.41337 0.706687 0.707527i \(-0.250189\pi\)
0.706687 + 0.707527i \(0.250189\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 4.17121 + 2.75699i 0.202333 + 0.133734i
\(426\) 0 0
\(427\) −4.10102 4.10102i −0.198462 0.198462i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 33.9732i 1.63643i 0.574910 + 0.818217i \(0.305037\pi\)
−0.574910 + 0.818217i \(0.694963\pi\)
\(432\) 0 0
\(433\) −4.34847 + 4.34847i −0.208974 + 0.208974i −0.803831 0.594857i \(-0.797209\pi\)
0.594857 + 0.803831i \(0.297209\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5.97469 5.97469i 0.285808 0.285808i
\(438\) 0 0
\(439\) 17.5505i 0.837640i 0.908069 + 0.418820i \(0.137556\pi\)
−0.908069 + 0.418820i \(0.862444\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −3.46410 3.46410i −0.164584 0.164584i 0.620010 0.784594i \(-0.287129\pi\)
−0.784594 + 0.620010i \(0.787129\pi\)
\(444\) 0 0
\(445\) −0.202041 + 0.247449i −0.00957766 + 0.0117302i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 3.46410 0.163481 0.0817405 0.996654i \(-0.473952\pi\)
0.0817405 + 0.996654i \(0.473952\pi\)
\(450\) 0 0
\(451\) −18.7980 −0.885161
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −6.92820 + 8.48528i −0.324799 + 0.397796i
\(456\) 0 0
\(457\) −3.89898 3.89898i −0.182387 0.182387i 0.610008 0.792395i \(-0.291166\pi\)
−0.792395 + 0.610008i \(0.791166\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 22.8345i 1.06351i 0.846899 + 0.531754i \(0.178467\pi\)
−0.846899 + 0.531754i \(0.821533\pi\)
\(462\) 0 0
\(463\) −1.10102 + 1.10102i −0.0511688 + 0.0511688i −0.732228 0.681059i \(-0.761520\pi\)
0.681059 + 0.732228i \(0.261520\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −8.58882 + 8.58882i −0.397443 + 0.397443i −0.877330 0.479887i \(-0.840678\pi\)
0.479887 + 0.877330i \(0.340678\pi\)
\(468\) 0 0
\(469\) 10.8990i 0.503268i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −7.70674 7.70674i −0.354356 0.354356i
\(474\) 0 0
\(475\) 4.89898 1.00000i 0.224781 0.0458831i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −6.00680 −0.274458 −0.137229 0.990539i \(-0.543820\pi\)
−0.137229 + 0.990539i \(0.543820\pi\)
\(480\) 0 0
\(481\) 12.8990 0.588143
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −15.4135 + 1.55708i −0.699890 + 0.0707033i
\(486\) 0 0
\(487\) −25.7980 25.7980i −1.16902 1.16902i −0.982440 0.186577i \(-0.940261\pi\)
−0.186577 0.982440i \(-0.559739\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 26.0915i 1.17749i −0.808317 0.588747i \(-0.799621\pi\)
0.808317 0.588747i \(-0.200379\pi\)
\(492\) 0 0
\(493\) −4.22474 + 4.22474i −0.190273 + 0.190273i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −0.778539 + 0.778539i −0.0349223 + 0.0349223i
\(498\) 0 0
\(499\) 23.5959i 1.05630i −0.849152 0.528149i \(-0.822886\pi\)
0.849152 0.528149i \(-0.177114\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 12.2672 + 12.2672i 0.546968 + 0.546968i 0.925563 0.378594i \(-0.123592\pi\)
−0.378594 + 0.925563i \(0.623592\pi\)
\(504\) 0 0
\(505\) −2.69694 2.20204i −0.120012 0.0979895i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −40.9335 −1.81435 −0.907174 0.420756i \(-0.861765\pi\)
−0.907174 + 0.420756i \(0.861765\pi\)
\(510\) 0 0
\(511\) −5.69694 −0.252018
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1.73205 17.1455i −0.0763233 0.755523i
\(516\) 0 0
\(517\) −14.1237 14.1237i −0.621161 0.621161i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 15.0956i 0.661352i 0.943744 + 0.330676i \(0.107277\pi\)
−0.943744 + 0.330676i \(0.892723\pi\)
\(522\) 0 0
\(523\) 8.44949 8.44949i 0.369470 0.369470i −0.497814 0.867284i \(-0.665864\pi\)
0.867284 + 0.497814i \(0.165864\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.78194 + 3.78194i −0.164744 + 0.164744i
\(528\) 0 0
\(529\) 48.3939i 2.10408i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 11.9494 + 11.9494i 0.517585 + 0.517585i
\(534\) 0 0
\(535\) −2.10102 20.7980i −0.0908350 0.899174i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −12.5851 −0.542077
\(540\) 0 0
\(541\) 20.4495 0.879192 0.439596 0.898196i \(-0.355122\pi\)
0.439596 + 0.898196i \(0.355122\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5.37113 + 4.38551i 0.230074 + 0.187854i
\(546\) 0 0
\(547\) −26.1237 26.1237i −1.11697 1.11697i −0.992184 0.124786i \(-0.960176\pi\)
−0.124786 0.992184i \(-0.539824\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 5.97469i 0.254530i
\(552\) 0 0
\(553\) −9.24745 + 9.24745i −0.393242 + 0.393242i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 4.24264 4.24264i 0.179766 0.179766i −0.611488 0.791254i \(-0.709429\pi\)
0.791254 + 0.611488i \(0.209429\pi\)
\(558\) 0 0
\(559\) 9.79796i 0.414410i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 15.5170 + 15.5170i 0.653965 + 0.653965i 0.953945 0.299981i \(-0.0969802\pi\)
−0.299981 + 0.953945i \(0.596980\pi\)
\(564\) 0 0
\(565\) −20.7980 + 2.10102i −0.874977 + 0.0883906i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −24.5344 −1.02854 −0.514269 0.857629i \(-0.671937\pi\)
−0.514269 + 0.857629i \(0.671937\pi\)
\(570\) 0 0
\(571\) 42.6969 1.78681 0.893406 0.449251i \(-0.148309\pi\)
0.893406 + 0.449251i \(0.148309\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −23.2952 + 35.2446i −0.971477 + 1.46980i
\(576\) 0 0
\(577\) 1.89898 + 1.89898i 0.0790556 + 0.0790556i 0.745529 0.666473i \(-0.232197\pi\)
−0.666473 + 0.745529i \(0.732197\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 16.9706i 0.704058i
\(582\) 0 0
\(583\) −7.67423 + 7.67423i −0.317834 + 0.317834i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −11.5601 + 11.5601i −0.477137 + 0.477137i −0.904215 0.427078i \(-0.859543\pi\)
0.427078 + 0.904215i \(0.359543\pi\)
\(588\) 0 0
\(589\) 5.34847i 0.220380i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 32.7733 + 32.7733i 1.34584 + 1.34584i 0.890128 + 0.455711i \(0.150615\pi\)
0.455711 + 0.890128i \(0.349385\pi\)
\(594\) 0 0
\(595\) −2.44949 + 3.00000i −0.100419 + 0.122988i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −6.78534 −0.277241 −0.138621 0.990346i \(-0.544267\pi\)
−0.138621 + 0.990346i \(0.544267\pi\)
\(600\) 0 0
\(601\) −2.24745 −0.0916753 −0.0458377 0.998949i \(-0.514596\pi\)
−0.0458377 + 0.998949i \(0.514596\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.55708 1.90702i 0.0633042 0.0775315i
\(606\) 0 0
\(607\) −3.87628 3.87628i −0.157333 0.157333i 0.624051 0.781384i \(-0.285486\pi\)
−0.781384 + 0.624051i \(0.785486\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 17.9562i 0.726429i
\(612\) 0 0
\(613\) −13.1464 + 13.1464i −0.530979 + 0.530979i −0.920864 0.389885i \(-0.872515\pi\)
0.389885 + 0.920864i \(0.372515\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −19.4812 + 19.4812i −0.784282 + 0.784282i −0.980550 0.196269i \(-0.937118\pi\)
0.196269 + 0.980550i \(0.437118\pi\)
\(618\) 0 0
\(619\) 40.9444i 1.64569i 0.568263 + 0.822847i \(0.307616\pi\)
−0.568263 + 0.822847i \(0.692384\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −0.174973 0.174973i −0.00701013 0.00701013i
\(624\) 0 0
\(625\) −23.0000 + 9.79796i −0.920000 + 0.391918i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 4.56048 0.181838
\(630\) 0 0
\(631\) 43.8990 1.74759 0.873795 0.486294i \(-0.161652\pi\)
0.873795 + 0.486294i \(0.161652\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −12.9029 + 1.30346i −0.512036 + 0.0517261i
\(636\) 0 0
\(637\) 8.00000 + 8.00000i 0.316972 + 0.316972i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 12.6172i 0.498348i 0.968459 + 0.249174i \(0.0801591\pi\)
−0.968459 + 0.249174i \(0.919841\pi\)
\(642\) 0 0
\(643\) −9.22474 + 9.22474i −0.363788 + 0.363788i −0.865206 0.501417i \(-0.832812\pi\)
0.501417 + 0.865206i \(0.332812\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.55708 1.55708i 0.0612151 0.0612151i −0.675837 0.737052i \(-0.736217\pi\)
0.737052 + 0.675837i \(0.236217\pi\)
\(648\) 0 0
\(649\) 17.3485i 0.680987i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −10.3923 10.3923i −0.406682 0.406682i 0.473898 0.880580i \(-0.342847\pi\)
−0.880580 + 0.473898i \(0.842847\pi\)
\(654\) 0 0
\(655\) 13.1010 + 10.6969i 0.511899 + 0.417964i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 19.0205 0.740932 0.370466 0.928846i \(-0.379198\pi\)
0.370466 + 0.928846i \(0.379198\pi\)
\(660\) 0 0
\(661\) 14.3031 0.556325 0.278162 0.960534i \(-0.410275\pi\)
0.278162 + 0.960534i \(0.410275\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.389270 + 3.85337i 0.0150952 + 0.149427i
\(666\) 0 0
\(667\) −35.6969 35.6969i −1.38219 1.38219i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 10.5352i 0.406706i
\(672\) 0 0
\(673\) −30.0454 + 30.0454i −1.15817 + 1.15817i −0.173295 + 0.984870i \(0.555442\pi\)
−0.984870 + 0.173295i \(0.944558\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −18.7347 + 18.7347i −0.720034 + 0.720034i −0.968612 0.248578i \(-0.920037\pi\)
0.248578 + 0.968612i \(0.420037\pi\)
\(678\) 0 0
\(679\) 12.0000i 0.460518i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −7.70674 7.70674i −0.294890 0.294890i 0.544118 0.839009i \(-0.316864\pi\)
−0.839009 + 0.544118i \(0.816864\pi\)
\(684\) 0 0
\(685\) −2.07832 20.5732i −0.0794084 0.786062i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 9.75663 0.371698
\(690\) 0 0
\(691\) 7.34847 0.279549 0.139774 0.990183i \(-0.455362\pi\)
0.139774 + 0.990183i \(0.455362\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.24264 3.46410i −0.160933 0.131401i
\(696\) 0 0
\(697\) 4.22474 + 4.22474i 0.160024 + 0.160024i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 22.8345i 0.862447i −0.902245 0.431224i \(-0.858082\pi\)
0.902245 0.431224i \(-0.141918\pi\)
\(702\) 0 0
\(703\) 3.22474 3.22474i 0.121624 0.121624i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.90702 1.90702i 0.0717210 0.0717210i
\(708\) 0 0
\(709\) 51.1464i 1.92084i 0.278548 + 0.960422i \(0.410147\pi\)
−0.278548 + 0.960422i \(0.589853\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −31.9555 31.9555i −1.19674 1.19674i
\(714\) 0 0
\(715\) 19.7980 2.00000i 0.740402 0.0747958i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −29.3020 −1.09278 −0.546390 0.837531i \(-0.683998\pi\)
−0.546390 + 0.837531i \(0.683998\pi\)
\(720\) 0 0
\(721\) 13.3485 0.497123
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −5.97469 29.2699i −0.221894 1.08706i
\(726\) 0 0
\(727\) 12.3485 + 12.3485i 0.457979 + 0.457979i 0.897992 0.440012i \(-0.145026\pi\)
−0.440012 + 0.897992i \(0.645026\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 3.46410i 0.128124i
\(732\) 0 0
\(733\) −19.9444 + 19.9444i −0.736663 + 0.736663i −0.971931 0.235268i \(-0.924403\pi\)
0.235268 + 0.971931i \(0.424403\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −13.9993 + 13.9993i −0.515670 + 0.515670i
\(738\) 0 0
\(739\) 35.7980i 1.31685i 0.752647 + 0.658425i \(0.228777\pi\)
−0.752647 + 0.658425i \(0.771223\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 11.7744 + 11.7744i 0.431961 + 0.431961i 0.889295 0.457334i \(-0.151196\pi\)
−0.457334 + 0.889295i \(0.651196\pi\)
\(744\) 0 0
\(745\) −2.00000 + 2.44949i −0.0732743 + 0.0897424i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 16.1920 0.591644
\(750\) 0 0
\(751\) 51.1918 1.86802 0.934008 0.357251i \(-0.116286\pi\)
0.934008 + 0.357251i \(0.116286\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −2.68556 + 3.28913i −0.0977376 + 0.119704i
\(756\) 0 0
\(757\) 3.00000 + 3.00000i 0.109037 + 0.109037i 0.759520 0.650484i \(-0.225434\pi\)
−0.650484 + 0.759520i \(0.725434\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 15.1278i 0.548381i −0.961675 0.274190i \(-0.911590\pi\)
0.961675 0.274190i \(-0.0884098\pi\)
\(762\) 0 0
\(763\) −3.79796 + 3.79796i −0.137495 + 0.137495i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −11.0280 + 11.0280i −0.398197 + 0.398197i
\(768\) 0 0
\(769\) 38.5959i 1.39180i −0.718137 0.695902i \(-0.755005\pi\)
0.718137 0.695902i \(-0.244995\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 6.82466 + 6.82466i 0.245466 + 0.245466i 0.819107 0.573641i \(-0.194469\pi\)
−0.573641 + 0.819107i \(0.694469\pi\)
\(774\) 0 0
\(775\) −5.34847 26.2020i −0.192123 0.941205i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 5.97469 0.214066
\(780\) 0 0
\(781\) 2.00000 0.0715656
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −37.4373 + 3.78194i −1.33620 + 0.134983i
\(786\) 0 0
\(787\) 16.3712 + 16.3712i 0.583569 + 0.583569i 0.935882 0.352313i \(-0.114605\pi\)
−0.352313 + 0.935882i \(0.614605\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 16.1920i 0.575722i
\(792\) 0 0
\(793\) 6.69694 6.69694i 0.237815 0.237815i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 15.9456 15.9456i 0.564823 0.564823i −0.365851 0.930674i \(-0.619222\pi\)
0.930674 + 0.365851i \(0.119222\pi\)
\(798\) 0 0
\(799\) 6.34847i 0.224593i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 7.31747 + 7.31747i 0.258228 + 0.258228i
\(804\) 0 0
\(805\) −25.3485 20.6969i −0.893416 0.729471i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −22.3417 −0.785492 −0.392746 0.919647i \(-0.628475\pi\)
−0.392746 + 0.919647i \(0.628475\pi\)
\(810\) 0 0
\(811\) 20.2474 0.710984 0.355492 0.934679i \(-0.384313\pi\)
0.355492 + 0.934679i \(0.384313\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1.37489 + 13.6100i 0.0481603 + 0.476738i
\(816\) 0 0
\(817\) 2.44949 + 2.44949i 0.0856968 + 0.0856968i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0.921404i 0.0321572i 0.999871 + 0.0160786i \(0.00511820\pi\)
−0.999871 + 0.0160786i \(0.994882\pi\)
\(822\) 0 0
\(823\) 24.6186 24.6186i 0.858151 0.858151i −0.132969 0.991120i \(-0.542451\pi\)
0.991120 + 0.132969i \(0.0424511\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −6.89610 + 6.89610i −0.239801 + 0.239801i −0.816768 0.576967i \(-0.804236\pi\)
0.576967 + 0.816768i \(0.304236\pi\)
\(828\) 0 0
\(829\) 12.5959i 0.437474i 0.975784 + 0.218737i \(0.0701937\pi\)
−0.975784 + 0.218737i \(0.929806\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 2.82843 + 2.82843i 0.0979992 + 0.0979992i
\(834\) 0 0
\(835\) 1.50510 + 14.8990i 0.0520862 + 0.515600i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 17.9241 0.618808 0.309404 0.950931i \(-0.399871\pi\)
0.309404 + 0.950931i \(0.399871\pi\)
\(840\) 0 0
\(841\) 6.69694 0.230929
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 8.66025 + 7.07107i 0.297922 + 0.243252i
\(846\) 0 0
\(847\) 1.34847 + 1.34847i 0.0463340 + 0.0463340i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 38.5337i 1.32092i
\(852\) 0 0
\(853\) 10.0454 10.0454i 0.343948 0.343948i −0.513901 0.857849i \(-0.671800\pi\)
0.857849 + 0.513901i \(0.171800\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −12.7279 + 12.7279i −0.434778 + 0.434778i −0.890250 0.455472i \(-0.849470\pi\)
0.455472 + 0.890250i \(0.349470\pi\)
\(858\) 0 0
\(859\) 21.2020i 0.723404i 0.932294 + 0.361702i \(0.117804\pi\)
−0.932294 + 0.361702i \(0.882196\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −26.1951 26.1951i −0.891690 0.891690i 0.102992 0.994682i \(-0.467158\pi\)
−0.994682 + 0.102992i \(0.967158\pi\)
\(864\) 0 0
\(865\) 15.3485 1.55051i 0.521864 0.0527189i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 23.7559 0.805864
\(870\) 0 0
\(871\) 17.7980 0.603061
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −5.76039 18.4883i −0.194737 0.625019i
\(876\) 0 0
\(877\) 22.5732 + 22.5732i 0.762243 + 0.762243i 0.976727 0.214484i \(-0.0688070\pi\)
−0.214484 + 0.976727i \(0.568807\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 7.81750i 0.263378i −0.991291 0.131689i \(-0.957960\pi\)
0.991291 0.131689i \(-0.0420401\pi\)
\(882\) 0 0
\(883\) 21.5959 21.5959i 0.726761 0.726761i −0.243213 0.969973i \(-0.578201\pi\)
0.969973 + 0.243213i \(0.0782012\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −38.8515 + 38.8515i −1.30451 + 1.30451i −0.379187 + 0.925320i \(0.623796\pi\)
−0.925320 + 0.379187i \(0.876204\pi\)
\(888\) 0 0
\(889\) 10.0454i 0.336912i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 4.48905 + 4.48905i 0.150220 + 0.150220i
\(894\) 0 0
\(895\) 31.5959 38.6969i 1.05614 1.29350i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 31.9555 1.06577
\(900\) 0 0
\(901\) 3.44949 0.114919
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −9.75663 + 11.9494i −0.324321 + 0.397211i
\(906\) 0 0
\(907\) 0.977296 + 0.977296i 0.0324506 + 0.0324506i 0.723146 0.690695i \(-0.242695\pi\)
−0.690695 + 0.723146i \(0.742695\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 10.4244i 0.345376i 0.984977 + 0.172688i \(0.0552453\pi\)
−0.984977 + 0.172688i \(0.944755\pi\)
\(912\) 0 0
\(913\) 21.7980 21.7980i 0.721407 0.721407i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −9.26382 + 9.26382i −0.305918 + 0.305918i
\(918\) 0 0
\(919\) 21.8990i 0.722381i 0.932492 + 0.361190i \(0.117630\pi\)
−0.932492 + 0.361190i \(0.882370\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −1.27135 1.27135i −0.0418470 0.0418470i
\(924\) 0 0
\(925\) −12.5732 + 19.0227i −0.413405 + 0.625463i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 32.7019 1.07291 0.536457 0.843928i \(-0.319762\pi\)
0.536457 + 0.843928i \(0.319762\pi\)
\(930\) 0 0
\(931\) 4.00000 0.131095
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 6.99964 0.707107i 0.228913 0.0231249i
\(936\) 0 0
\(937\) 28.4495 + 28.4495i 0.929404 + 0.929404i 0.997667 0.0682630i \(-0.0217457\pi\)
−0.0682630 + 0.997667i \(0.521746\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 38.7408i 1.26291i −0.775411 0.631457i \(-0.782457\pi\)
0.775411 0.631457i \(-0.217543\pi\)
\(942\) 0 0
\(943\) −35.6969 + 35.6969i −1.16245 + 1.16245i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 30.3663 30.3663i 0.986771 0.986771i −0.0131425 0.999914i \(-0.504184\pi\)
0.999914 + 0.0131425i \(0.00418352\pi\)
\(948\) 0 0
\(949\) 9.30306i 0.301990i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0.389270 + 0.389270i 0.0126097 + 0.0126097i 0.713384 0.700774i \(-0.247162\pi\)
−0.700774 + 0.713384i \(0.747162\pi\)
\(954\) 0 0
\(955\) −20.4495 16.6969i −0.661730 0.540300i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 16.0171 0.517218
\(960\) 0 0
\(961\) −2.39388 −0.0772218
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1.12848 + 11.1708i 0.0363272 + 0.359602i
\(966\) 0 0
\(967\) 21.3939 + 21.3939i 0.687981 + 0.687981i 0.961785 0.273805i \(-0.0882822\pi\)
−0.273805 + 0.961785i \(0.588282\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 17.8920i 0.574181i −0.957904 0.287090i \(-0.907312\pi\)
0.957904 0.287090i \(-0.0926880\pi\)
\(972\) 0 0
\(973\) 3.00000 3.00000i 0.0961756 0.0961756i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 25.0273 25.0273i 0.800693 0.800693i −0.182511 0.983204i \(-0.558423\pi\)
0.983204 + 0.182511i \(0.0584226\pi\)
\(978\) 0 0
\(979\) 0.449490i 0.0143658i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 35.6732 + 35.6732i 1.13780 + 1.13780i 0.988844 + 0.148953i \(0.0475904\pi\)
0.148953 + 0.988844i \(0.452410\pi\)
\(984\) 0 0
\(985\) −6.10102 60.3939i −0.194395 1.92431i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −29.2699 −0.930728
\(990\) 0 0
\(991\) −30.8990 −0.981538 −0.490769 0.871290i \(-0.663284\pi\)
−0.490769 + 0.871290i \(0.663284\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 42.7764 + 34.9267i 1.35610 + 1.10725i
\(996\) 0 0
\(997\) −1.47219 1.47219i −0.0466248 0.0466248i 0.683410 0.730035i \(-0.260496\pi\)
−0.730035 + 0.683410i \(0.760496\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3060.2.w.d.2177.3 yes 8
3.2 odd 2 inner 3060.2.w.d.2177.2 yes 8
5.3 odd 4 inner 3060.2.w.d.953.1 8
15.8 even 4 inner 3060.2.w.d.953.4 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3060.2.w.d.953.1 8 5.3 odd 4 inner
3060.2.w.d.953.4 yes 8 15.8 even 4 inner
3060.2.w.d.2177.2 yes 8 3.2 odd 2 inner
3060.2.w.d.2177.3 yes 8 1.1 even 1 trivial