Properties

Label 3060.2.w.b.2177.1
Level $3060$
Weight $2$
Character 3060.2177
Analytic conductor $24.434$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3060,2,Mod(953,3060)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3060.953"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3060, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 3, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3060.w (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.4342230185\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 2177.1
Root \(0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 3060.2177
Dual form 3060.2.w.b.953.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.12132 + 0.707107i) q^{5} +(2.00000 + 2.00000i) q^{7} +2.82843i q^{11} +(3.00000 - 3.00000i) q^{13} +(-0.707107 + 0.707107i) q^{17} -4.00000i q^{19} +(4.00000 - 3.00000i) q^{25} +7.07107 q^{29} +(-5.65685 - 2.82843i) q^{35} +(1.00000 + 1.00000i) q^{37} +7.07107i q^{41} +(4.00000 - 4.00000i) q^{43} +(-2.82843 + 2.82843i) q^{47} +1.00000i q^{49} +(7.07107 + 7.07107i) q^{53} +(-2.00000 - 6.00000i) q^{55} +2.82843 q^{59} -8.00000 q^{61} +(-4.24264 + 8.48528i) q^{65} +(4.00000 + 4.00000i) q^{67} -11.3137i q^{71} +(-5.00000 + 5.00000i) q^{73} +(-5.65685 + 5.65685i) q^{77} +16.0000i q^{79} +(-2.82843 - 2.82843i) q^{83} +(1.00000 - 2.00000i) q^{85} -9.89949 q^{89} +12.0000 q^{91} +(2.82843 + 8.48528i) q^{95} +(7.00000 + 7.00000i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{7} + 12 q^{13} + 16 q^{25} + 4 q^{37} + 16 q^{43} - 8 q^{55} - 32 q^{61} + 16 q^{67} - 20 q^{73} + 4 q^{85} + 48 q^{91} + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3060\mathbb{Z}\right)^\times\).

\(n\) \(1261\) \(1361\) \(1531\) \(1837\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.12132 + 0.707107i −0.948683 + 0.316228i
\(6\) 0 0
\(7\) 2.00000 + 2.00000i 0.755929 + 0.755929i 0.975579 0.219650i \(-0.0704915\pi\)
−0.219650 + 0.975579i \(0.570491\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.82843i 0.852803i 0.904534 + 0.426401i \(0.140219\pi\)
−0.904534 + 0.426401i \(0.859781\pi\)
\(12\) 0 0
\(13\) 3.00000 3.00000i 0.832050 0.832050i −0.155747 0.987797i \(-0.549778\pi\)
0.987797 + 0.155747i \(0.0497784\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.707107 + 0.707107i −0.171499 + 0.171499i
\(18\) 0 0
\(19\) 4.00000i 0.917663i −0.888523 0.458831i \(-0.848268\pi\)
0.888523 0.458831i \(-0.151732\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(24\) 0 0
\(25\) 4.00000 3.00000i 0.800000 0.600000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 7.07107 1.31306 0.656532 0.754298i \(-0.272023\pi\)
0.656532 + 0.754298i \(0.272023\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −5.65685 2.82843i −0.956183 0.478091i
\(36\) 0 0
\(37\) 1.00000 + 1.00000i 0.164399 + 0.164399i 0.784512 0.620113i \(-0.212913\pi\)
−0.620113 + 0.784512i \(0.712913\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.07107i 1.10432i 0.833740 + 0.552158i \(0.186195\pi\)
−0.833740 + 0.552158i \(0.813805\pi\)
\(42\) 0 0
\(43\) 4.00000 4.00000i 0.609994 0.609994i −0.332950 0.942944i \(-0.608044\pi\)
0.942944 + 0.332950i \(0.108044\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.82843 + 2.82843i −0.412568 + 0.412568i −0.882632 0.470064i \(-0.844231\pi\)
0.470064 + 0.882632i \(0.344231\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.07107 + 7.07107i 0.971286 + 0.971286i 0.999599 0.0283132i \(-0.00901359\pi\)
−0.0283132 + 0.999599i \(0.509014\pi\)
\(54\) 0 0
\(55\) −2.00000 6.00000i −0.269680 0.809040i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.82843 0.368230 0.184115 0.982905i \(-0.441058\pi\)
0.184115 + 0.982905i \(0.441058\pi\)
\(60\) 0 0
\(61\) −8.00000 −1.02430 −0.512148 0.858898i \(-0.671150\pi\)
−0.512148 + 0.858898i \(0.671150\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −4.24264 + 8.48528i −0.526235 + 1.05247i
\(66\) 0 0
\(67\) 4.00000 + 4.00000i 0.488678 + 0.488678i 0.907889 0.419211i \(-0.137693\pi\)
−0.419211 + 0.907889i \(0.637693\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 11.3137i 1.34269i −0.741145 0.671345i \(-0.765717\pi\)
0.741145 0.671345i \(-0.234283\pi\)
\(72\) 0 0
\(73\) −5.00000 + 5.00000i −0.585206 + 0.585206i −0.936329 0.351123i \(-0.885800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −5.65685 + 5.65685i −0.644658 + 0.644658i
\(78\) 0 0
\(79\) 16.0000i 1.80014i 0.435745 + 0.900070i \(0.356485\pi\)
−0.435745 + 0.900070i \(0.643515\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −2.82843 2.82843i −0.310460 0.310460i 0.534628 0.845088i \(-0.320452\pi\)
−0.845088 + 0.534628i \(0.820452\pi\)
\(84\) 0 0
\(85\) 1.00000 2.00000i 0.108465 0.216930i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −9.89949 −1.04934 −0.524672 0.851304i \(-0.675812\pi\)
−0.524672 + 0.851304i \(0.675812\pi\)
\(90\) 0 0
\(91\) 12.0000 1.25794
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.82843 + 8.48528i 0.290191 + 0.870572i
\(96\) 0 0
\(97\) 7.00000 + 7.00000i 0.710742 + 0.710742i 0.966691 0.255948i \(-0.0823876\pi\)
−0.255948 + 0.966691i \(0.582388\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 9.89949i 0.985037i 0.870302 + 0.492518i \(0.163924\pi\)
−0.870302 + 0.492518i \(0.836076\pi\)
\(102\) 0 0
\(103\) 2.00000 2.00000i 0.197066 0.197066i −0.601675 0.798741i \(-0.705500\pi\)
0.798741 + 0.601675i \(0.205500\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.82843 2.82843i 0.273434 0.273434i −0.557047 0.830481i \(-0.688066\pi\)
0.830481 + 0.557047i \(0.188066\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2.82843 2.82843i −0.266076 0.266076i 0.561441 0.827517i \(-0.310247\pi\)
−0.827517 + 0.561441i \(0.810247\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2.82843 −0.259281
\(120\) 0 0
\(121\) 3.00000 0.272727
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −6.36396 + 9.19239i −0.569210 + 0.822192i
\(126\) 0 0
\(127\) −6.00000 6.00000i −0.532414 0.532414i 0.388876 0.921290i \(-0.372863\pi\)
−0.921290 + 0.388876i \(0.872863\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 14.1421i 1.23560i 0.786334 + 0.617802i \(0.211977\pi\)
−0.786334 + 0.617802i \(0.788023\pi\)
\(132\) 0 0
\(133\) 8.00000 8.00000i 0.693688 0.693688i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.48528 8.48528i 0.724947 0.724947i −0.244662 0.969608i \(-0.578677\pi\)
0.969608 + 0.244662i \(0.0786770\pi\)
\(138\) 0 0
\(139\) 16.0000i 1.35710i 0.734553 + 0.678551i \(0.237392\pi\)
−0.734553 + 0.678551i \(0.762608\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 8.48528 + 8.48528i 0.709575 + 0.709575i
\(144\) 0 0
\(145\) −15.0000 + 5.00000i −1.24568 + 0.415227i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 12.7279 1.04271 0.521356 0.853339i \(-0.325426\pi\)
0.521356 + 0.853339i \(0.325426\pi\)
\(150\) 0 0
\(151\) 20.0000 1.62758 0.813788 0.581161i \(-0.197401\pi\)
0.813788 + 0.581161i \(0.197401\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 15.0000 + 15.0000i 1.19713 + 1.19713i 0.975022 + 0.222108i \(0.0712939\pi\)
0.222108 + 0.975022i \(0.428706\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −12.0000 + 12.0000i −0.939913 + 0.939913i −0.998294 0.0583818i \(-0.981406\pi\)
0.0583818 + 0.998294i \(0.481406\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −11.3137 + 11.3137i −0.875481 + 0.875481i −0.993063 0.117582i \(-0.962486\pi\)
0.117582 + 0.993063i \(0.462486\pi\)
\(168\) 0 0
\(169\) 5.00000i 0.384615i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 14.1421 + 14.1421i 1.07521 + 1.07521i 0.996932 + 0.0782748i \(0.0249412\pi\)
0.0782748 + 0.996932i \(0.475059\pi\)
\(174\) 0 0
\(175\) 14.0000 + 2.00000i 1.05830 + 0.151186i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 2.82843 0.211407 0.105703 0.994398i \(-0.466291\pi\)
0.105703 + 0.994398i \(0.466291\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2.82843 1.41421i −0.207950 0.103975i
\(186\) 0 0
\(187\) −2.00000 2.00000i −0.146254 0.146254i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 11.3137i 0.818631i −0.912393 0.409316i \(-0.865768\pi\)
0.912393 0.409316i \(-0.134232\pi\)
\(192\) 0 0
\(193\) 13.0000 13.0000i 0.935760 0.935760i −0.0622972 0.998058i \(-0.519843\pi\)
0.998058 + 0.0622972i \(0.0198427\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −8.48528 + 8.48528i −0.604551 + 0.604551i −0.941517 0.336966i \(-0.890599\pi\)
0.336966 + 0.941517i \(0.390599\pi\)
\(198\) 0 0
\(199\) 4.00000i 0.283552i 0.989899 + 0.141776i \(0.0452813\pi\)
−0.989899 + 0.141776i \(0.954719\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 14.1421 + 14.1421i 0.992583 + 0.992583i
\(204\) 0 0
\(205\) −5.00000 15.0000i −0.349215 1.04765i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 11.3137 0.782586
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −5.65685 + 11.3137i −0.385794 + 0.771589i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 4.24264i 0.285391i
\(222\) 0 0
\(223\) −2.00000 + 2.00000i −0.133930 + 0.133930i −0.770894 0.636964i \(-0.780190\pi\)
0.636964 + 0.770894i \(0.280190\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(228\) 0 0
\(229\) 10.0000i 0.660819i −0.943838 0.330409i \(-0.892813\pi\)
0.943838 0.330409i \(-0.107187\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −4.24264 4.24264i −0.277945 0.277945i 0.554343 0.832288i \(-0.312969\pi\)
−0.832288 + 0.554343i \(0.812969\pi\)
\(234\) 0 0
\(235\) 4.00000 8.00000i 0.260931 0.521862i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −11.3137 −0.731823 −0.365911 0.930650i \(-0.619243\pi\)
−0.365911 + 0.930650i \(0.619243\pi\)
\(240\) 0 0
\(241\) 26.0000 1.67481 0.837404 0.546585i \(-0.184072\pi\)
0.837404 + 0.546585i \(0.184072\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −0.707107 2.12132i −0.0451754 0.135526i
\(246\) 0 0
\(247\) −12.0000 12.0000i −0.763542 0.763542i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2.82843i 0.178529i −0.996008 0.0892644i \(-0.971548\pi\)
0.996008 0.0892644i \(-0.0284516\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −8.48528 + 8.48528i −0.529297 + 0.529297i −0.920363 0.391066i \(-0.872107\pi\)
0.391066 + 0.920363i \(0.372107\pi\)
\(258\) 0 0
\(259\) 4.00000i 0.248548i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −16.9706 16.9706i −1.04645 1.04645i −0.998867 0.0475824i \(-0.984848\pi\)
−0.0475824 0.998867i \(-0.515152\pi\)
\(264\) 0 0
\(265\) −20.0000 10.0000i −1.22859 0.614295i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 21.2132 1.29339 0.646696 0.762748i \(-0.276150\pi\)
0.646696 + 0.762748i \(0.276150\pi\)
\(270\) 0 0
\(271\) 20.0000 1.21491 0.607457 0.794353i \(-0.292190\pi\)
0.607457 + 0.794353i \(0.292190\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 8.48528 + 11.3137i 0.511682 + 0.682242i
\(276\) 0 0
\(277\) −21.0000 21.0000i −1.26177 1.26177i −0.950236 0.311532i \(-0.899158\pi\)
−0.311532 0.950236i \(-0.600842\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.41421i 0.0843649i −0.999110 0.0421825i \(-0.986569\pi\)
0.999110 0.0421825i \(-0.0134311\pi\)
\(282\) 0 0
\(283\) −12.0000 + 12.0000i −0.713326 + 0.713326i −0.967230 0.253904i \(-0.918285\pi\)
0.253904 + 0.967230i \(0.418285\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −14.1421 + 14.1421i −0.834784 + 0.834784i
\(288\) 0 0
\(289\) 1.00000i 0.0588235i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2.82843 + 2.82843i 0.165238 + 0.165238i 0.784883 0.619644i \(-0.212723\pi\)
−0.619644 + 0.784883i \(0.712723\pi\)
\(294\) 0 0
\(295\) −6.00000 + 2.00000i −0.349334 + 0.116445i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 16.0000 0.922225
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 16.9706 5.65685i 0.971732 0.323911i
\(306\) 0 0
\(307\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 11.3137i 0.641542i −0.947157 0.320771i \(-0.896058\pi\)
0.947157 0.320771i \(-0.103942\pi\)
\(312\) 0 0
\(313\) −9.00000 + 9.00000i −0.508710 + 0.508710i −0.914130 0.405420i \(-0.867125\pi\)
0.405420 + 0.914130i \(0.367125\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4.24264 4.24264i 0.238290 0.238290i −0.577851 0.816142i \(-0.696109\pi\)
0.816142 + 0.577851i \(0.196109\pi\)
\(318\) 0 0
\(319\) 20.0000i 1.11979i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.82843 + 2.82843i 0.157378 + 0.157378i
\(324\) 0 0
\(325\) 3.00000 21.0000i 0.166410 1.16487i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −11.3137 −0.623745
\(330\) 0 0
\(331\) 28.0000 1.53902 0.769510 0.638635i \(-0.220501\pi\)
0.769510 + 0.638635i \(0.220501\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −11.3137 5.65685i −0.618134 0.309067i
\(336\) 0 0
\(337\) 9.00000 + 9.00000i 0.490261 + 0.490261i 0.908388 0.418127i \(-0.137313\pi\)
−0.418127 + 0.908388i \(0.637313\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 12.0000 12.0000i 0.647939 0.647939i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −22.6274 + 22.6274i −1.21470 + 1.21470i −0.245241 + 0.969462i \(0.578867\pi\)
−0.969462 + 0.245241i \(0.921133\pi\)
\(348\) 0 0
\(349\) 16.0000i 0.856460i −0.903670 0.428230i \(-0.859137\pi\)
0.903670 0.428230i \(-0.140863\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −9.89949 9.89949i −0.526897 0.526897i 0.392749 0.919646i \(-0.371524\pi\)
−0.919646 + 0.392749i \(0.871524\pi\)
\(354\) 0 0
\(355\) 8.00000 + 24.0000i 0.424596 + 1.27379i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −22.6274 −1.19423 −0.597115 0.802156i \(-0.703686\pi\)
−0.597115 + 0.802156i \(0.703686\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 7.07107 14.1421i 0.370117 0.740233i
\(366\) 0 0
\(367\) −18.0000 18.0000i −0.939592 0.939592i 0.0586842 0.998277i \(-0.481309\pi\)
−0.998277 + 0.0586842i \(0.981309\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 28.2843i 1.46845i
\(372\) 0 0
\(373\) −21.0000 + 21.0000i −1.08734 + 1.08734i −0.0915371 + 0.995802i \(0.529178\pi\)
−0.995802 + 0.0915371i \(0.970822\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 21.2132 21.2132i 1.09254 1.09254i
\(378\) 0 0
\(379\) 16.0000i 0.821865i 0.911666 + 0.410932i \(0.134797\pi\)
−0.911666 + 0.410932i \(0.865203\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −8.48528 8.48528i −0.433578 0.433578i 0.456266 0.889843i \(-0.349187\pi\)
−0.889843 + 0.456266i \(0.849187\pi\)
\(384\) 0 0
\(385\) 8.00000 16.0000i 0.407718 0.815436i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1.41421 −0.0717035 −0.0358517 0.999357i \(-0.511414\pi\)
−0.0358517 + 0.999357i \(0.511414\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −11.3137 33.9411i −0.569254 1.70776i
\(396\) 0 0
\(397\) −5.00000 5.00000i −0.250943 0.250943i 0.570414 0.821357i \(-0.306783\pi\)
−0.821357 + 0.570414i \(0.806783\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 26.8701i 1.34183i −0.741536 0.670913i \(-0.765902\pi\)
0.741536 0.670913i \(-0.234098\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −2.82843 + 2.82843i −0.140200 + 0.140200i
\(408\) 0 0
\(409\) 8.00000i 0.395575i 0.980245 + 0.197787i \(0.0633755\pi\)
−0.980245 + 0.197787i \(0.936624\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 5.65685 + 5.65685i 0.278356 + 0.278356i
\(414\) 0 0
\(415\) 8.00000 + 4.00000i 0.392705 + 0.196352i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −8.48528 −0.414533 −0.207267 0.978285i \(-0.566457\pi\)
−0.207267 + 0.978285i \(0.566457\pi\)
\(420\) 0 0
\(421\) −6.00000 −0.292422 −0.146211 0.989253i \(-0.546708\pi\)
−0.146211 + 0.989253i \(0.546708\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.707107 + 4.94975i −0.0342997 + 0.240098i
\(426\) 0 0
\(427\) −16.0000 16.0000i −0.774294 0.774294i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 33.9411i 1.63489i −0.576009 0.817443i \(-0.695391\pi\)
0.576009 0.817443i \(-0.304609\pi\)
\(432\) 0 0
\(433\) −9.00000 + 9.00000i −0.432512 + 0.432512i −0.889482 0.456970i \(-0.848935\pi\)
0.456970 + 0.889482i \(0.348935\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 4.00000i 0.190910i −0.995434 0.0954548i \(-0.969569\pi\)
0.995434 0.0954548i \(-0.0304305\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5.65685 5.65685i −0.268765 0.268765i 0.559837 0.828603i \(-0.310864\pi\)
−0.828603 + 0.559837i \(0.810864\pi\)
\(444\) 0 0
\(445\) 21.0000 7.00000i 0.995495 0.331832i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 26.8701 1.26808 0.634038 0.773302i \(-0.281396\pi\)
0.634038 + 0.773302i \(0.281396\pi\)
\(450\) 0 0
\(451\) −20.0000 −0.941763
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −25.4558 + 8.48528i −1.19339 + 0.397796i
\(456\) 0 0
\(457\) −17.0000 17.0000i −0.795226 0.795226i 0.187112 0.982339i \(-0.440087\pi\)
−0.982339 + 0.187112i \(0.940087\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 4.24264i 0.197599i −0.995107 0.0987997i \(-0.968500\pi\)
0.995107 0.0987997i \(-0.0315003\pi\)
\(462\) 0 0
\(463\) −18.0000 + 18.0000i −0.836531 + 0.836531i −0.988401 0.151870i \(-0.951471\pi\)
0.151870 + 0.988401i \(0.451471\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8.48528 8.48528i 0.392652 0.392652i −0.482980 0.875632i \(-0.660445\pi\)
0.875632 + 0.482980i \(0.160445\pi\)
\(468\) 0 0
\(469\) 16.0000i 0.738811i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 11.3137 + 11.3137i 0.520205 + 0.520205i
\(474\) 0 0
\(475\) −12.0000 16.0000i −0.550598 0.734130i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 11.3137 0.516937 0.258468 0.966020i \(-0.416782\pi\)
0.258468 + 0.966020i \(0.416782\pi\)
\(480\) 0 0
\(481\) 6.00000 0.273576
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −19.7990 9.89949i −0.899026 0.449513i
\(486\) 0 0
\(487\) −2.00000 2.00000i −0.0906287 0.0906287i 0.660339 0.750968i \(-0.270413\pi\)
−0.750968 + 0.660339i \(0.770413\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 42.4264i 1.91468i −0.288969 0.957338i \(-0.593312\pi\)
0.288969 0.957338i \(-0.406688\pi\)
\(492\) 0 0
\(493\) −5.00000 + 5.00000i −0.225189 + 0.225189i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 22.6274 22.6274i 1.01498 1.01498i
\(498\) 0 0
\(499\) 44.0000i 1.96971i 0.173379 + 0.984855i \(0.444532\pi\)
−0.173379 + 0.984855i \(0.555468\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 8.48528 + 8.48528i 0.378340 + 0.378340i 0.870503 0.492163i \(-0.163794\pi\)
−0.492163 + 0.870503i \(0.663794\pi\)
\(504\) 0 0
\(505\) −7.00000 21.0000i −0.311496 0.934488i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −1.41421 −0.0626839 −0.0313420 0.999509i \(-0.509978\pi\)
−0.0313420 + 0.999509i \(0.509978\pi\)
\(510\) 0 0
\(511\) −20.0000 −0.884748
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −2.82843 + 5.65685i −0.124635 + 0.249271i
\(516\) 0 0
\(517\) −8.00000 8.00000i −0.351840 0.351840i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 24.0416i 1.05328i −0.850087 0.526641i \(-0.823451\pi\)
0.850087 0.526641i \(-0.176549\pi\)
\(522\) 0 0
\(523\) −20.0000 + 20.0000i −0.874539 + 0.874539i −0.992963 0.118424i \(-0.962216\pi\)
0.118424 + 0.992963i \(0.462216\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 23.0000i 1.00000i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 21.2132 + 21.2132i 0.918846 + 0.918846i
\(534\) 0 0
\(535\) −4.00000 + 8.00000i −0.172935 + 0.345870i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2.82843 −0.121829
\(540\) 0 0
\(541\) 32.0000 1.37579 0.687894 0.725811i \(-0.258536\pi\)
0.687894 + 0.725811i \(0.258536\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 20.0000 + 20.0000i 0.855138 + 0.855138i 0.990761 0.135622i \(-0.0433034\pi\)
−0.135622 + 0.990761i \(0.543303\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 28.2843i 1.20495i
\(552\) 0 0
\(553\) −32.0000 + 32.0000i −1.36078 + 1.36078i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 32.5269 32.5269i 1.37821 1.37821i 0.530566 0.847644i \(-0.321980\pi\)
0.847644 0.530566i \(-0.178020\pi\)
\(558\) 0 0
\(559\) 24.0000i 1.01509i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 16.9706 + 16.9706i 0.715224 + 0.715224i 0.967623 0.252399i \(-0.0812196\pi\)
−0.252399 + 0.967623i \(0.581220\pi\)
\(564\) 0 0
\(565\) 8.00000 + 4.00000i 0.336563 + 0.168281i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 18.3848 0.770730 0.385365 0.922764i \(-0.374076\pi\)
0.385365 + 0.922764i \(0.374076\pi\)
\(570\) 0 0
\(571\) −28.0000 −1.17176 −0.585882 0.810397i \(-0.699252\pi\)
−0.585882 + 0.810397i \(0.699252\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 15.0000 + 15.0000i 0.624458 + 0.624458i 0.946668 0.322210i \(-0.104426\pi\)
−0.322210 + 0.946668i \(0.604426\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 11.3137i 0.469372i
\(582\) 0 0
\(583\) −20.0000 + 20.0000i −0.828315 + 0.828315i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −25.4558 + 25.4558i −1.05068 + 1.05068i −0.0520296 + 0.998646i \(0.516569\pi\)
−0.998646 + 0.0520296i \(0.983431\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 25.4558 + 25.4558i 1.04535 + 1.04535i 0.998922 + 0.0464244i \(0.0147827\pi\)
0.0464244 + 0.998922i \(0.485217\pi\)
\(594\) 0 0
\(595\) 6.00000 2.00000i 0.245976 0.0819920i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 5.65685 0.231133 0.115566 0.993300i \(-0.463132\pi\)
0.115566 + 0.993300i \(0.463132\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −6.36396 + 2.12132i −0.258732 + 0.0862439i
\(606\) 0 0
\(607\) −30.0000 30.0000i −1.21766 1.21766i −0.968448 0.249214i \(-0.919828\pi\)
−0.249214 0.968448i \(-0.580172\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 16.9706i 0.686555i
\(612\) 0 0
\(613\) −19.0000 + 19.0000i −0.767403 + 0.767403i −0.977649 0.210246i \(-0.932574\pi\)
0.210246 + 0.977649i \(0.432574\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −4.24264 + 4.24264i −0.170802 + 0.170802i −0.787332 0.616530i \(-0.788538\pi\)
0.616530 + 0.787332i \(0.288538\pi\)
\(618\) 0 0
\(619\) 32.0000i 1.28619i −0.765787 0.643094i \(-0.777650\pi\)
0.765787 0.643094i \(-0.222350\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −19.7990 19.7990i −0.793230 0.793230i
\(624\) 0 0
\(625\) 7.00000 24.0000i 0.280000 0.960000i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1.41421 −0.0563884
\(630\) 0 0
\(631\) −8.00000 −0.318475 −0.159237 0.987240i \(-0.550904\pi\)
−0.159237 + 0.987240i \(0.550904\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 16.9706 + 8.48528i 0.673456 + 0.336728i
\(636\) 0 0
\(637\) 3.00000 + 3.00000i 0.118864 + 0.118864i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 12.7279i 0.502723i 0.967893 + 0.251361i \(0.0808782\pi\)
−0.967893 + 0.251361i \(0.919122\pi\)
\(642\) 0 0
\(643\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −2.82843 + 2.82843i −0.111197 + 0.111197i −0.760516 0.649319i \(-0.775054\pi\)
0.649319 + 0.760516i \(0.275054\pi\)
\(648\) 0 0
\(649\) 8.00000i 0.314027i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 4.24264 + 4.24264i 0.166027 + 0.166027i 0.785231 0.619203i \(-0.212544\pi\)
−0.619203 + 0.785231i \(0.712544\pi\)
\(654\) 0 0
\(655\) −10.0000 30.0000i −0.390732 1.17220i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −14.1421 −0.550899 −0.275450 0.961315i \(-0.588827\pi\)
−0.275450 + 0.961315i \(0.588827\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −11.3137 + 22.6274i −0.438727 + 0.877454i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 22.6274i 0.873522i
\(672\) 0 0
\(673\) 21.0000 21.0000i 0.809491 0.809491i −0.175066 0.984557i \(-0.556014\pi\)
0.984557 + 0.175066i \(0.0560139\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 12.7279 12.7279i 0.489174 0.489174i −0.418872 0.908045i \(-0.637574\pi\)
0.908045 + 0.418872i \(0.137574\pi\)
\(678\) 0 0
\(679\) 28.0000i 1.07454i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −2.82843 2.82843i −0.108227 0.108227i 0.650920 0.759147i \(-0.274383\pi\)
−0.759147 + 0.650920i \(0.774383\pi\)
\(684\) 0 0
\(685\) −12.0000 + 24.0000i −0.458496 + 0.916993i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 42.4264 1.61632
\(690\) 0 0
\(691\) 12.0000 0.456502 0.228251 0.973602i \(-0.426699\pi\)
0.228251 + 0.973602i \(0.426699\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −11.3137 33.9411i −0.429153 1.28746i
\(696\) 0 0
\(697\) −5.00000 5.00000i −0.189389 0.189389i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 24.0416i 0.908040i −0.890992 0.454020i \(-0.849989\pi\)
0.890992 0.454020i \(-0.150011\pi\)
\(702\) 0 0
\(703\) 4.00000 4.00000i 0.150863 0.150863i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −19.7990 + 19.7990i −0.744618 + 0.744618i
\(708\) 0 0
\(709\) 38.0000i 1.42712i −0.700594 0.713560i \(-0.747082\pi\)
0.700594 0.713560i \(-0.252918\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −24.0000 12.0000i −0.897549 0.448775i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 11.3137 0.421930 0.210965 0.977494i \(-0.432339\pi\)
0.210965 + 0.977494i \(0.432339\pi\)
\(720\) 0 0
\(721\) 8.00000 0.297936
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 28.2843 21.2132i 1.05045 0.787839i
\(726\) 0 0
\(727\) −18.0000 18.0000i −0.667583 0.667583i 0.289573 0.957156i \(-0.406487\pi\)
−0.957156 + 0.289573i \(0.906487\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 5.65685i 0.209226i
\(732\) 0 0
\(733\) 3.00000 3.00000i 0.110808 0.110808i −0.649529 0.760337i \(-0.725034\pi\)
0.760337 + 0.649529i \(0.225034\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −11.3137 + 11.3137i −0.416746 + 0.416746i
\(738\) 0 0
\(739\) 52.0000i 1.91285i 0.291977 + 0.956425i \(0.405687\pi\)
−0.291977 + 0.956425i \(0.594313\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −19.7990 19.7990i −0.726354 0.726354i 0.243537 0.969892i \(-0.421692\pi\)
−0.969892 + 0.243537i \(0.921692\pi\)
\(744\) 0 0
\(745\) −27.0000 + 9.00000i −0.989203 + 0.329734i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 11.3137 0.413394
\(750\) 0 0
\(751\) −24.0000 −0.875772 −0.437886 0.899030i \(-0.644273\pi\)
−0.437886 + 0.899030i \(0.644273\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −42.4264 + 14.1421i −1.54406 + 0.514685i
\(756\) 0 0
\(757\) 33.0000 + 33.0000i 1.19941 + 1.19941i 0.974345 + 0.225061i \(0.0722580\pi\)
0.225061 + 0.974345i \(0.427742\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 7.07107i 0.256326i −0.991753 0.128163i \(-0.959092\pi\)
0.991753 0.128163i \(-0.0409081\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 8.48528 8.48528i 0.306386 0.306386i
\(768\) 0 0
\(769\) 24.0000i 0.865462i 0.901523 + 0.432731i \(0.142450\pi\)
−0.901523 + 0.432731i \(0.857550\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 21.2132 + 21.2132i 0.762986 + 0.762986i 0.976861 0.213875i \(-0.0686086\pi\)
−0.213875 + 0.976861i \(0.568609\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 28.2843 1.01339
\(780\) 0 0
\(781\) 32.0000 1.14505
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −42.4264 21.2132i −1.51426 0.757132i
\(786\) 0 0
\(787\) 28.0000 + 28.0000i 0.998092 + 0.998092i 0.999998 0.00190598i \(-0.000606691\pi\)
−0.00190598 + 0.999998i \(0.500607\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 11.3137i 0.402269i
\(792\) 0 0
\(793\) −24.0000 + 24.0000i −0.852265 + 0.852265i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −2.82843 + 2.82843i −0.100188 + 0.100188i −0.755424 0.655236i \(-0.772569\pi\)
0.655236 + 0.755424i \(0.272569\pi\)
\(798\) 0 0
\(799\) 4.00000i 0.141510i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −14.1421 14.1421i −0.499065 0.499065i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −52.3259 −1.83968 −0.919840 0.392293i \(-0.871682\pi\)
−0.919840 + 0.392293i \(0.871682\pi\)
\(810\) 0 0
\(811\) 8.00000 0.280918 0.140459 0.990086i \(-0.455142\pi\)
0.140459 + 0.990086i \(0.455142\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 16.9706 33.9411i 0.594453 1.18891i
\(816\) 0 0
\(817\) −16.0000 16.0000i −0.559769 0.559769i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 55.1543i 1.92490i −0.271460 0.962450i \(-0.587507\pi\)
0.271460 0.962450i \(-0.412493\pi\)
\(822\) 0 0
\(823\) −6.00000 + 6.00000i −0.209147 + 0.209147i −0.803905 0.594758i \(-0.797248\pi\)
0.594758 + 0.803905i \(0.297248\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 33.9411 33.9411i 1.18025 1.18025i 0.200569 0.979680i \(-0.435721\pi\)
0.979680 0.200569i \(-0.0642791\pi\)
\(828\) 0 0
\(829\) 40.0000i 1.38926i −0.719368 0.694629i \(-0.755569\pi\)
0.719368 0.694629i \(-0.244431\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −0.707107 0.707107i −0.0244998 0.0244998i
\(834\) 0 0
\(835\) 16.0000 32.0000i 0.553703 1.10741i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 28.2843 0.976481 0.488241 0.872709i \(-0.337639\pi\)
0.488241 + 0.872709i \(0.337639\pi\)
\(840\) 0 0
\(841\) 21.0000 0.724138
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 3.53553 + 10.6066i 0.121626 + 0.364878i
\(846\) 0 0
\(847\) 6.00000 + 6.00000i 0.206162 + 0.206162i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −1.00000 + 1.00000i −0.0342393 + 0.0342393i −0.724019 0.689780i \(-0.757707\pi\)
0.689780 + 0.724019i \(0.257707\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 15.5563 15.5563i 0.531395 0.531395i −0.389593 0.920987i \(-0.627384\pi\)
0.920987 + 0.389593i \(0.127384\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 16.9706 + 16.9706i 0.577685 + 0.577685i 0.934265 0.356580i \(-0.116057\pi\)
−0.356580 + 0.934265i \(0.616057\pi\)
\(864\) 0 0
\(865\) −40.0000 20.0000i −1.36004 0.680020i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −45.2548 −1.53517
\(870\) 0 0
\(871\) 24.0000 0.813209
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −31.1127 + 5.65685i −1.05180 + 0.191237i
\(876\) 0 0
\(877\) −27.0000 27.0000i −0.911725 0.911725i 0.0846827 0.996408i \(-0.473012\pi\)
−0.996408 + 0.0846827i \(0.973012\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 24.0416i 0.809983i −0.914320 0.404992i \(-0.867274\pi\)
0.914320 0.404992i \(-0.132726\pi\)
\(882\) 0 0
\(883\) 24.0000 24.0000i 0.807664 0.807664i −0.176616 0.984280i \(-0.556515\pi\)
0.984280 + 0.176616i \(0.0565149\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 5.65685 5.65685i 0.189939 0.189939i −0.605731 0.795670i \(-0.707119\pi\)
0.795670 + 0.605731i \(0.207119\pi\)
\(888\) 0 0
\(889\) 24.0000i 0.804934i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 11.3137 + 11.3137i 0.378599 + 0.378599i
\(894\) 0 0
\(895\) −6.00000 + 2.00000i −0.200558 + 0.0668526i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −10.0000 −0.333148
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −16.0000 16.0000i −0.531271 0.531271i 0.389679 0.920951i \(-0.372586\pi\)
−0.920951 + 0.389679i \(0.872586\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 22.6274i 0.749680i −0.927090 0.374840i \(-0.877698\pi\)
0.927090 0.374840i \(-0.122302\pi\)
\(912\) 0 0
\(913\) 8.00000 8.00000i 0.264761 0.264761i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −28.2843 + 28.2843i −0.934029 + 0.934029i
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −33.9411 33.9411i −1.11719 1.11719i
\(924\) 0 0
\(925\) 7.00000 + 1.00000i 0.230159 + 0.0328798i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −18.3848 −0.603185 −0.301592 0.953437i \(-0.597518\pi\)
−0.301592 + 0.953437i \(0.597518\pi\)
\(930\) 0 0
\(931\) 4.00000 0.131095
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 5.65685 + 2.82843i 0.184999 + 0.0924995i
\(936\) 0 0
\(937\) −35.0000 35.0000i −1.14340 1.14340i −0.987824 0.155576i \(-0.950277\pi\)
−0.155576 0.987824i \(-0.549723\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 57.9828i 1.89018i −0.326805 0.945092i \(-0.605972\pi\)
0.326805 0.945092i \(-0.394028\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −28.2843 + 28.2843i −0.919115 + 0.919115i −0.996965 0.0778498i \(-0.975195\pi\)
0.0778498 + 0.996965i \(0.475195\pi\)
\(948\) 0 0
\(949\) 30.0000i 0.973841i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −25.4558 25.4558i −0.824596 0.824596i 0.162168 0.986763i \(-0.448151\pi\)
−0.986763 + 0.162168i \(0.948151\pi\)
\(954\) 0 0
\(955\) 8.00000 + 24.0000i 0.258874 + 0.776622i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 33.9411 1.09602
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −18.3848 + 36.7696i −0.591827 + 1.18365i
\(966\) 0 0
\(967\) −30.0000 30.0000i −0.964735 0.964735i 0.0346641 0.999399i \(-0.488964\pi\)
−0.999399 + 0.0346641i \(0.988964\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 31.1127i 0.998454i 0.866471 + 0.499227i \(0.166383\pi\)
−0.866471 + 0.499227i \(0.833617\pi\)
\(972\) 0 0
\(973\) −32.0000 + 32.0000i −1.02587 + 1.02587i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 9.89949 9.89949i 0.316713 0.316713i −0.530790 0.847503i \(-0.678105\pi\)
0.847503 + 0.530790i \(0.178105\pi\)
\(978\) 0 0
\(979\) 28.0000i 0.894884i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −19.7990 19.7990i −0.631490 0.631490i 0.316952 0.948442i \(-0.397341\pi\)
−0.948442 + 0.316952i \(0.897341\pi\)
\(984\) 0 0
\(985\) 12.0000 24.0000i 0.382352 0.764704i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 36.0000 1.14358 0.571789 0.820401i \(-0.306250\pi\)
0.571789 + 0.820401i \(0.306250\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −2.82843 8.48528i −0.0896672 0.269002i
\(996\) 0 0
\(997\) −15.0000 15.0000i −0.475055 0.475055i 0.428491 0.903546i \(-0.359045\pi\)
−0.903546 + 0.428491i \(0.859045\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3060.2.w.b.2177.1 yes 4
3.2 odd 2 inner 3060.2.w.b.2177.2 yes 4
5.3 odd 4 inner 3060.2.w.b.953.2 yes 4
15.8 even 4 inner 3060.2.w.b.953.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3060.2.w.b.953.1 4 15.8 even 4 inner
3060.2.w.b.953.2 yes 4 5.3 odd 4 inner
3060.2.w.b.2177.1 yes 4 1.1 even 1 trivial
3060.2.w.b.2177.2 yes 4 3.2 odd 2 inner