Properties

Label 3060.2.a.r.1.3
Level $3060$
Weight $2$
Character 3060.1
Self dual yes
Analytic conductor $24.434$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3060,2,Mod(1,3060)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3060, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3060.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3060.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,-3,0,-2,0,0,0,2,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.4342230185\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1016.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 6x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.85577\) of defining polynomial
Character \(\chi\) \(=\) 3060.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{5} +3.15544 q^{7} -0.556108 q^{11} -5.71155 q^{13} -1.00000 q^{17} +3.15544 q^{19} +7.71155 q^{23} +1.00000 q^{25} -6.55611 q^{29} +9.71155 q^{31} -3.15544 q^{35} +0.844563 q^{37} -7.75476 q^{41} +10.3109 q^{43} -8.86698 q^{47} +2.95678 q^{49} +8.86698 q^{53} +0.556108 q^{55} +10.0224 q^{59} +8.59933 q^{61} +5.71155 q^{65} +0.288455 q^{67} -0.267653 q^{73} -1.75476 q^{77} +3.11222 q^{79} +8.31087 q^{83} +1.00000 q^{85} +10.0224 q^{89} -18.0224 q^{91} -3.15544 q^{95} +9.11222 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{5} - 2 q^{7} + 2 q^{11} - 2 q^{13} - 3 q^{17} - 2 q^{19} + 8 q^{23} + 3 q^{25} - 16 q^{29} + 14 q^{31} + 2 q^{35} + 14 q^{37} - 4 q^{41} + 8 q^{43} + 13 q^{49} - 2 q^{55} - 8 q^{59} + 18 q^{61}+ \cdots + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 3.15544 1.19264 0.596321 0.802746i \(-0.296628\pi\)
0.596321 + 0.802746i \(0.296628\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.556108 −0.167673 −0.0838365 0.996480i \(-0.526717\pi\)
−0.0838365 + 0.996480i \(0.526717\pi\)
\(12\) 0 0
\(13\) −5.71155 −1.58410 −0.792049 0.610458i \(-0.790985\pi\)
−0.792049 + 0.610458i \(0.790985\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 3.15544 0.723907 0.361953 0.932196i \(-0.382110\pi\)
0.361953 + 0.932196i \(0.382110\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 7.71155 1.60797 0.803984 0.594651i \(-0.202710\pi\)
0.803984 + 0.594651i \(0.202710\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −6.55611 −1.21744 −0.608719 0.793386i \(-0.708316\pi\)
−0.608719 + 0.793386i \(0.708316\pi\)
\(30\) 0 0
\(31\) 9.71155 1.74424 0.872122 0.489288i \(-0.162743\pi\)
0.872122 + 0.489288i \(0.162743\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.15544 −0.533366
\(36\) 0 0
\(37\) 0.844563 0.138845 0.0694227 0.997587i \(-0.477884\pi\)
0.0694227 + 0.997587i \(0.477884\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −7.75476 −1.21109 −0.605545 0.795811i \(-0.707045\pi\)
−0.605545 + 0.795811i \(0.707045\pi\)
\(42\) 0 0
\(43\) 10.3109 1.57239 0.786197 0.617976i \(-0.212047\pi\)
0.786197 + 0.617976i \(0.212047\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −8.86698 −1.29338 −0.646691 0.762752i \(-0.723848\pi\)
−0.646691 + 0.762752i \(0.723848\pi\)
\(48\) 0 0
\(49\) 2.95678 0.422397
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8.86698 1.21797 0.608987 0.793180i \(-0.291576\pi\)
0.608987 + 0.793180i \(0.291576\pi\)
\(54\) 0 0
\(55\) 0.556108 0.0749856
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 10.0224 1.30481 0.652404 0.757871i \(-0.273761\pi\)
0.652404 + 0.757871i \(0.273761\pi\)
\(60\) 0 0
\(61\) 8.59933 1.10103 0.550516 0.834825i \(-0.314431\pi\)
0.550516 + 0.834825i \(0.314431\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 5.71155 0.708430
\(66\) 0 0
\(67\) 0.288455 0.0352404 0.0176202 0.999845i \(-0.494391\pi\)
0.0176202 + 0.999845i \(0.494391\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −0.267653 −0.0313265 −0.0156632 0.999877i \(-0.504986\pi\)
−0.0156632 + 0.999877i \(0.504986\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.75476 −0.199974
\(78\) 0 0
\(79\) 3.11222 0.350152 0.175076 0.984555i \(-0.443983\pi\)
0.175076 + 0.984555i \(0.443983\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 8.31087 0.912237 0.456118 0.889919i \(-0.349239\pi\)
0.456118 + 0.889919i \(0.349239\pi\)
\(84\) 0 0
\(85\) 1.00000 0.108465
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 10.0224 1.06237 0.531187 0.847255i \(-0.321746\pi\)
0.531187 + 0.847255i \(0.321746\pi\)
\(90\) 0 0
\(91\) −18.0224 −1.88926
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.15544 −0.323741
\(96\) 0 0
\(97\) 9.11222 0.925205 0.462603 0.886566i \(-0.346916\pi\)
0.462603 + 0.886566i \(0.346916\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −3.42309 −0.340610 −0.170305 0.985391i \(-0.554475\pi\)
−0.170305 + 0.985391i \(0.554475\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −17.7340 −1.71441 −0.857203 0.514978i \(-0.827800\pi\)
−0.857203 + 0.514978i \(0.827800\pi\)
\(108\) 0 0
\(109\) −0.310873 −0.0297763 −0.0148881 0.999889i \(-0.504739\pi\)
−0.0148881 + 0.999889i \(0.504739\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.599328 −0.0563801 −0.0281900 0.999603i \(-0.508974\pi\)
−0.0281900 + 0.999603i \(0.508974\pi\)
\(114\) 0 0
\(115\) −7.71155 −0.719105
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.15544 −0.289258
\(120\) 0 0
\(121\) −10.6907 −0.971886
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 1.48711 0.131960 0.0659799 0.997821i \(-0.478983\pi\)
0.0659799 + 0.997821i \(0.478983\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1.19866 0.104727 0.0523635 0.998628i \(-0.483325\pi\)
0.0523635 + 0.998628i \(0.483325\pi\)
\(132\) 0 0
\(133\) 9.95678 0.863362
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.55611 0.560126 0.280063 0.959982i \(-0.409645\pi\)
0.280063 + 0.959982i \(0.409645\pi\)
\(138\) 0 0
\(139\) −1.42309 −0.120705 −0.0603525 0.998177i \(-0.519222\pi\)
−0.0603525 + 0.998177i \(0.519222\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.17624 0.265610
\(144\) 0 0
\(145\) 6.55611 0.544455
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −20.8238 −1.70595 −0.852975 0.521953i \(-0.825204\pi\)
−0.852975 + 0.521953i \(0.825204\pi\)
\(150\) 0 0
\(151\) 18.5785 1.51190 0.755950 0.654630i \(-0.227176\pi\)
0.755950 + 0.654630i \(0.227176\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −9.71155 −0.780050
\(156\) 0 0
\(157\) 0.801344 0.0639542 0.0319771 0.999489i \(-0.489820\pi\)
0.0319771 + 0.999489i \(0.489820\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 24.3333 1.91773
\(162\) 0 0
\(163\) −11.1554 −0.873761 −0.436881 0.899519i \(-0.643917\pi\)
−0.436881 + 0.899519i \(0.643917\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 15.4231 1.19347 0.596737 0.802437i \(-0.296463\pi\)
0.596737 + 0.802437i \(0.296463\pi\)
\(168\) 0 0
\(169\) 19.6217 1.50937
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 13.7980 1.04904 0.524521 0.851398i \(-0.324245\pi\)
0.524521 + 0.851398i \(0.324245\pi\)
\(174\) 0 0
\(175\) 3.15544 0.238529
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3.42309 0.255854 0.127927 0.991784i \(-0.459168\pi\)
0.127927 + 0.991784i \(0.459168\pi\)
\(180\) 0 0
\(181\) −4.59933 −0.341865 −0.170933 0.985283i \(-0.554678\pi\)
−0.170933 + 0.985283i \(0.554678\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.844563 −0.0620935
\(186\) 0 0
\(187\) 0.556108 0.0406667
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 23.1346 1.67396 0.836982 0.547231i \(-0.184318\pi\)
0.836982 + 0.547231i \(0.184318\pi\)
\(192\) 0 0
\(193\) 25.7340 1.85237 0.926186 0.377068i \(-0.123068\pi\)
0.926186 + 0.377068i \(0.123068\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −26.0448 −1.85562 −0.927809 0.373056i \(-0.878310\pi\)
−0.927809 + 0.373056i \(0.878310\pi\)
\(198\) 0 0
\(199\) 3.19866 0.226747 0.113373 0.993552i \(-0.463834\pi\)
0.113373 + 0.993552i \(0.463834\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −20.6874 −1.45197
\(204\) 0 0
\(205\) 7.75476 0.541616
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.75476 −0.121380
\(210\) 0 0
\(211\) 3.11222 0.214254 0.107127 0.994245i \(-0.465835\pi\)
0.107127 + 0.994245i \(0.465835\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −10.3109 −0.703196
\(216\) 0 0
\(217\) 30.6442 2.08026
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 5.71155 0.384200
\(222\) 0 0
\(223\) 8.00000 0.535720 0.267860 0.963458i \(-0.413684\pi\)
0.267860 + 0.963458i \(0.413684\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 23.1346 1.53550 0.767750 0.640750i \(-0.221376\pi\)
0.767750 + 0.640750i \(0.221376\pi\)
\(228\) 0 0
\(229\) 5.73235 0.378804 0.189402 0.981900i \(-0.439345\pi\)
0.189402 + 0.981900i \(0.439345\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −16.0224 −1.04966 −0.524832 0.851206i \(-0.675872\pi\)
−0.524832 + 0.851206i \(0.675872\pi\)
\(234\) 0 0
\(235\) 8.86698 0.578418
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1.97758 −0.127919 −0.0639596 0.997952i \(-0.520373\pi\)
−0.0639596 + 0.997952i \(0.520373\pi\)
\(240\) 0 0
\(241\) 25.2211 1.62463 0.812316 0.583217i \(-0.198206\pi\)
0.812316 + 0.583217i \(0.198206\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2.95678 −0.188902
\(246\) 0 0
\(247\) −18.0224 −1.14674
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 24.2469 1.53045 0.765224 0.643764i \(-0.222628\pi\)
0.765224 + 0.643764i \(0.222628\pi\)
\(252\) 0 0
\(253\) −4.28845 −0.269613
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 14.0448 0.876093 0.438046 0.898952i \(-0.355671\pi\)
0.438046 + 0.898952i \(0.355671\pi\)
\(258\) 0 0
\(259\) 2.66497 0.165593
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 23.0914 1.42388 0.711939 0.702241i \(-0.247817\pi\)
0.711939 + 0.702241i \(0.247817\pi\)
\(264\) 0 0
\(265\) −8.86698 −0.544694
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −20.8670 −1.27228 −0.636141 0.771573i \(-0.719470\pi\)
−0.636141 + 0.771573i \(0.719470\pi\)
\(270\) 0 0
\(271\) 10.2244 0.621090 0.310545 0.950559i \(-0.399488\pi\)
0.310545 + 0.950559i \(0.399488\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.556108 −0.0335346
\(276\) 0 0
\(277\) 10.3109 0.619520 0.309760 0.950815i \(-0.399751\pi\)
0.309760 + 0.950815i \(0.399751\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −33.2435 −1.98314 −0.991570 0.129570i \(-0.958640\pi\)
−0.991570 + 0.129570i \(0.958640\pi\)
\(282\) 0 0
\(283\) −11.2419 −0.668260 −0.334130 0.942527i \(-0.608442\pi\)
−0.334130 + 0.942527i \(0.608442\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −24.4697 −1.44440
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 18.6425 1.08911 0.544555 0.838725i \(-0.316699\pi\)
0.544555 + 0.838725i \(0.316699\pi\)
\(294\) 0 0
\(295\) −10.0224 −0.583528
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −44.0448 −2.54718
\(300\) 0 0
\(301\) 32.5353 1.87530
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −8.59933 −0.492396
\(306\) 0 0
\(307\) −34.8462 −1.98878 −0.994388 0.105792i \(-0.966262\pi\)
−0.994388 + 0.105792i \(0.966262\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 11.4439 0.648924 0.324462 0.945899i \(-0.394817\pi\)
0.324462 + 0.945899i \(0.394817\pi\)
\(312\) 0 0
\(313\) 18.5785 1.05012 0.525060 0.851065i \(-0.324043\pi\)
0.525060 + 0.851065i \(0.324043\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 25.7115 1.44410 0.722052 0.691839i \(-0.243199\pi\)
0.722052 + 0.691839i \(0.243199\pi\)
\(318\) 0 0
\(319\) 3.64591 0.204132
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −3.15544 −0.175573
\(324\) 0 0
\(325\) −5.71155 −0.316820
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −27.9792 −1.54254
\(330\) 0 0
\(331\) −27.6907 −1.52202 −0.761010 0.648740i \(-0.775296\pi\)
−0.761010 + 0.648740i \(0.775296\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −0.288455 −0.0157600
\(336\) 0 0
\(337\) −15.6907 −0.854729 −0.427365 0.904079i \(-0.640558\pi\)
−0.427365 + 0.904079i \(0.640558\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −5.40067 −0.292463
\(342\) 0 0
\(343\) −12.7581 −0.688874
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −5.48711 −0.294564 −0.147282 0.989095i \(-0.547052\pi\)
−0.147282 + 0.989095i \(0.547052\pi\)
\(348\) 0 0
\(349\) −26.3125 −1.40848 −0.704238 0.709964i \(-0.748711\pi\)
−0.704238 + 0.709964i \(0.748711\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 5.53033 0.294350 0.147175 0.989110i \(-0.452982\pi\)
0.147175 + 0.989110i \(0.452982\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −18.5993 −0.981635 −0.490817 0.871262i \(-0.663302\pi\)
−0.490817 + 0.871262i \(0.663302\pi\)
\(360\) 0 0
\(361\) −9.04322 −0.475959
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0.267653 0.0140096
\(366\) 0 0
\(367\) −5.19866 −0.271368 −0.135684 0.990752i \(-0.543323\pi\)
−0.135684 + 0.990752i \(0.543323\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 27.9792 1.45261
\(372\) 0 0
\(373\) −19.1571 −0.991915 −0.495957 0.868347i \(-0.665183\pi\)
−0.495957 + 0.868347i \(0.665183\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 37.4455 1.92854
\(378\) 0 0
\(379\) −25.4231 −1.30590 −0.652948 0.757403i \(-0.726468\pi\)
−0.652948 + 0.757403i \(0.726468\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 2.02080 0.103258 0.0516291 0.998666i \(-0.483559\pi\)
0.0516291 + 0.998666i \(0.483559\pi\)
\(384\) 0 0
\(385\) 1.75476 0.0894311
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 21.1571 1.07271 0.536353 0.843994i \(-0.319802\pi\)
0.536353 + 0.843994i \(0.319802\pi\)
\(390\) 0 0
\(391\) −7.71155 −0.389990
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −3.11222 −0.156593
\(396\) 0 0
\(397\) 33.9152 1.70215 0.851077 0.525041i \(-0.175950\pi\)
0.851077 + 0.525041i \(0.175950\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −13.4887 −0.673595 −0.336797 0.941577i \(-0.609344\pi\)
−0.336797 + 0.941577i \(0.609344\pi\)
\(402\) 0 0
\(403\) −55.4679 −2.76305
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −0.469669 −0.0232806
\(408\) 0 0
\(409\) −0.533690 −0.0263893 −0.0131946 0.999913i \(-0.504200\pi\)
−0.0131946 + 0.999913i \(0.504200\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 31.6251 1.55617
\(414\) 0 0
\(415\) −8.31087 −0.407965
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −14.8670 −0.726300 −0.363150 0.931731i \(-0.618299\pi\)
−0.363150 + 0.931731i \(0.618299\pi\)
\(420\) 0 0
\(421\) −25.2003 −1.22819 −0.614093 0.789234i \(-0.710478\pi\)
−0.614093 + 0.789234i \(0.710478\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1.00000 −0.0485071
\(426\) 0 0
\(427\) 27.1346 1.31314
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −5.09142 −0.245245 −0.122622 0.992453i \(-0.539130\pi\)
−0.122622 + 0.992453i \(0.539130\pi\)
\(432\) 0 0
\(433\) 18.5353 0.890750 0.445375 0.895344i \(-0.353070\pi\)
0.445375 + 0.895344i \(0.353070\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 24.3333 1.16402
\(438\) 0 0
\(439\) −21.2211 −1.01283 −0.506413 0.862291i \(-0.669029\pi\)
−0.506413 + 0.862291i \(0.669029\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −7.11222 −0.337912 −0.168956 0.985624i \(-0.554040\pi\)
−0.168956 + 0.985624i \(0.554040\pi\)
\(444\) 0 0
\(445\) −10.0224 −0.475108
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −8.39731 −0.396294 −0.198147 0.980172i \(-0.563492\pi\)
−0.198147 + 0.980172i \(0.563492\pi\)
\(450\) 0 0
\(451\) 4.31249 0.203067
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 18.0224 0.844904
\(456\) 0 0
\(457\) −35.4455 −1.65807 −0.829035 0.559196i \(-0.811110\pi\)
−0.829035 + 0.559196i \(0.811110\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −31.7115 −1.47695 −0.738477 0.674279i \(-0.764455\pi\)
−0.738477 + 0.674279i \(0.764455\pi\)
\(462\) 0 0
\(463\) −5.19866 −0.241602 −0.120801 0.992677i \(-0.538546\pi\)
−0.120801 + 0.992677i \(0.538546\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 7.84120 0.362848 0.181424 0.983405i \(-0.441929\pi\)
0.181424 + 0.983405i \(0.441929\pi\)
\(468\) 0 0
\(469\) 0.910201 0.0420292
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −5.73396 −0.263648
\(474\) 0 0
\(475\) 3.15544 0.144781
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −15.4231 −0.704699 −0.352349 0.935868i \(-0.614617\pi\)
−0.352349 + 0.935868i \(0.614617\pi\)
\(480\) 0 0
\(481\) −4.82376 −0.219945
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −9.11222 −0.413764
\(486\) 0 0
\(487\) 19.4679 0.882176 0.441088 0.897464i \(-0.354593\pi\)
0.441088 + 0.897464i \(0.354593\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 15.5095 0.699935 0.349968 0.936762i \(-0.386193\pi\)
0.349968 + 0.936762i \(0.386193\pi\)
\(492\) 0 0
\(493\) 6.55611 0.295272
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 28.5577 1.27842 0.639210 0.769033i \(-0.279262\pi\)
0.639210 + 0.769033i \(0.279262\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −16.7082 −0.744981 −0.372491 0.928036i \(-0.621496\pi\)
−0.372491 + 0.928036i \(0.621496\pi\)
\(504\) 0 0
\(505\) 3.42309 0.152326
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −12.3333 −0.546664 −0.273332 0.961920i \(-0.588126\pi\)
−0.273332 + 0.961920i \(0.588126\pi\)
\(510\) 0 0
\(511\) −0.844563 −0.0373613
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −8.00000 −0.352522
\(516\) 0 0
\(517\) 4.93100 0.216865
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −11.0914 −0.485924 −0.242962 0.970036i \(-0.578119\pi\)
−0.242962 + 0.970036i \(0.578119\pi\)
\(522\) 0 0
\(523\) 1.73396 0.0758209 0.0379105 0.999281i \(-0.487930\pi\)
0.0379105 + 0.999281i \(0.487930\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −9.71155 −0.423042
\(528\) 0 0
\(529\) 36.4679 1.58556
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 44.2917 1.91849
\(534\) 0 0
\(535\) 17.7340 0.766706
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −1.64429 −0.0708246
\(540\) 0 0
\(541\) −1.08980 −0.0468541 −0.0234271 0.999726i \(-0.507458\pi\)
−0.0234271 + 0.999726i \(0.507458\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0.310873 0.0133163
\(546\) 0 0
\(547\) 5.37987 0.230027 0.115013 0.993364i \(-0.463309\pi\)
0.115013 + 0.993364i \(0.463309\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −20.6874 −0.881312
\(552\) 0 0
\(553\) 9.82040 0.417606
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −7.19866 −0.305017 −0.152508 0.988302i \(-0.548735\pi\)
−0.152508 + 0.988302i \(0.548735\pi\)
\(558\) 0 0
\(559\) −58.8910 −2.49082
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −27.7132 −1.16797 −0.583985 0.811764i \(-0.698507\pi\)
−0.583985 + 0.811764i \(0.698507\pi\)
\(564\) 0 0
\(565\) 0.599328 0.0252139
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −17.7340 −0.743446 −0.371723 0.928344i \(-0.621233\pi\)
−0.371723 + 0.928344i \(0.621233\pi\)
\(570\) 0 0
\(571\) −26.2885 −1.10014 −0.550069 0.835119i \(-0.685399\pi\)
−0.550069 + 0.835119i \(0.685399\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 7.71155 0.321594
\(576\) 0 0
\(577\) −30.0448 −1.25078 −0.625391 0.780311i \(-0.715061\pi\)
−0.625391 + 0.780311i \(0.715061\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 26.2244 1.08797
\(582\) 0 0
\(583\) −4.93100 −0.204221
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 11.0914 0.457792 0.228896 0.973451i \(-0.426488\pi\)
0.228896 + 0.973451i \(0.426488\pi\)
\(588\) 0 0
\(589\) 30.6442 1.26267
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 24.2036 0.993924 0.496962 0.867772i \(-0.334449\pi\)
0.496962 + 0.867772i \(0.334449\pi\)
\(594\) 0 0
\(595\) 3.15544 0.129360
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −16.6217 −0.679146 −0.339573 0.940580i \(-0.610283\pi\)
−0.339573 + 0.940580i \(0.610283\pi\)
\(600\) 0 0
\(601\) −38.7822 −1.58196 −0.790979 0.611844i \(-0.790428\pi\)
−0.790979 + 0.611844i \(0.790428\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 10.6907 0.434641
\(606\) 0 0
\(607\) −14.4921 −0.588216 −0.294108 0.955772i \(-0.595022\pi\)
−0.294108 + 0.955772i \(0.595022\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 50.6442 2.04884
\(612\) 0 0
\(613\) −43.2435 −1.74659 −0.873294 0.487193i \(-0.838021\pi\)
−0.873294 + 0.487193i \(0.838021\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 33.8428 1.36246 0.681230 0.732069i \(-0.261445\pi\)
0.681230 + 0.732069i \(0.261445\pi\)
\(618\) 0 0
\(619\) −42.1313 −1.69340 −0.846699 0.532071i \(-0.821414\pi\)
−0.846699 + 0.532071i \(0.821414\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 31.6251 1.26703
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −0.844563 −0.0336749
\(630\) 0 0
\(631\) −25.4663 −1.01380 −0.506899 0.862006i \(-0.669208\pi\)
−0.506899 + 0.862006i \(0.669208\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −1.48711 −0.0590142
\(636\) 0 0
\(637\) −16.8878 −0.669118
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −36.2901 −1.43337 −0.716686 0.697396i \(-0.754342\pi\)
−0.716686 + 0.697396i \(0.754342\pi\)
\(642\) 0 0
\(643\) 32.9758 1.30044 0.650220 0.759746i \(-0.274677\pi\)
0.650220 + 0.759746i \(0.274677\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 27.1571 1.06765 0.533827 0.845594i \(-0.320753\pi\)
0.533827 + 0.845594i \(0.320753\pi\)
\(648\) 0 0
\(649\) −5.57355 −0.218781
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 33.5095 1.31133 0.655665 0.755052i \(-0.272389\pi\)
0.655665 + 0.755052i \(0.272389\pi\)
\(654\) 0 0
\(655\) −1.19866 −0.0468354
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −39.5095 −1.53907 −0.769536 0.638603i \(-0.779513\pi\)
−0.769536 + 0.638603i \(0.779513\pi\)
\(660\) 0 0
\(661\) 43.4247 1.68903 0.844513 0.535536i \(-0.179890\pi\)
0.844513 + 0.535536i \(0.179890\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −9.95678 −0.386107
\(666\) 0 0
\(667\) −50.5577 −1.95760
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −4.78216 −0.184613
\(672\) 0 0
\(673\) 36.7082 1.41500 0.707498 0.706715i \(-0.249824\pi\)
0.707498 + 0.706715i \(0.249824\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −34.0897 −1.31017 −0.655086 0.755554i \(-0.727368\pi\)
−0.655086 + 0.755554i \(0.727368\pi\)
\(678\) 0 0
\(679\) 28.7530 1.10344
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 50.3109 1.92509 0.962546 0.271118i \(-0.0873935\pi\)
0.962546 + 0.271118i \(0.0873935\pi\)
\(684\) 0 0
\(685\) −6.55611 −0.250496
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −50.6442 −1.92939
\(690\) 0 0
\(691\) −47.6924 −1.81430 −0.907151 0.420804i \(-0.861748\pi\)
−0.907151 + 0.420804i \(0.861748\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.42309 0.0539809
\(696\) 0 0
\(697\) 7.75476 0.293733
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 24.1604 0.912526 0.456263 0.889845i \(-0.349188\pi\)
0.456263 + 0.889845i \(0.349188\pi\)
\(702\) 0 0
\(703\) 2.66497 0.100511
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −10.8013 −0.406226
\(708\) 0 0
\(709\) −12.3109 −0.462345 −0.231172 0.972913i \(-0.574256\pi\)
−0.231172 + 0.972913i \(0.574256\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 74.8910 2.80469
\(714\) 0 0
\(715\) −3.17624 −0.118785
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −2.86698 −0.106920 −0.0534602 0.998570i \(-0.517025\pi\)
−0.0534602 + 0.998570i \(0.517025\pi\)
\(720\) 0 0
\(721\) 25.2435 0.940117
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −6.55611 −0.243488
\(726\) 0 0
\(727\) −0.576910 −0.0213964 −0.0106982 0.999943i \(-0.503405\pi\)
−0.0106982 + 0.999943i \(0.503405\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −10.3109 −0.381361
\(732\) 0 0
\(733\) −3.48711 −0.128799 −0.0643997 0.997924i \(-0.520513\pi\)
−0.0643997 + 0.997924i \(0.520513\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −0.160412 −0.00590886
\(738\) 0 0
\(739\) −24.5769 −0.904076 −0.452038 0.891999i \(-0.649303\pi\)
−0.452038 + 0.891999i \(0.649303\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 26.8910 0.986536 0.493268 0.869877i \(-0.335802\pi\)
0.493268 + 0.869877i \(0.335802\pi\)
\(744\) 0 0
\(745\) 20.8238 0.762924
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −55.9584 −2.04468
\(750\) 0 0
\(751\) −13.7564 −0.501977 −0.250989 0.967990i \(-0.580756\pi\)
−0.250989 + 0.967990i \(0.580756\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −18.5785 −0.676142
\(756\) 0 0
\(757\) −46.4937 −1.68984 −0.844921 0.534891i \(-0.820353\pi\)
−0.844921 + 0.534891i \(0.820353\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 44.2917 1.60557 0.802786 0.596267i \(-0.203350\pi\)
0.802786 + 0.596267i \(0.203350\pi\)
\(762\) 0 0
\(763\) −0.980941 −0.0355124
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −57.2435 −2.06694
\(768\) 0 0
\(769\) −0.620130 −0.0223625 −0.0111812 0.999937i \(-0.503559\pi\)
−0.0111812 + 0.999937i \(0.503559\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −25.4887 −0.916766 −0.458383 0.888755i \(-0.651571\pi\)
−0.458383 + 0.888755i \(0.651571\pi\)
\(774\) 0 0
\(775\) 9.71155 0.348849
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −24.4697 −0.876717
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −0.801344 −0.0286012
\(786\) 0 0
\(787\) 30.0465 1.07104 0.535520 0.844522i \(-0.320116\pi\)
0.535520 + 0.844522i \(0.320116\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −1.89114 −0.0672413
\(792\) 0 0
\(793\) −49.1155 −1.74414
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −24.2901 −0.860398 −0.430199 0.902734i \(-0.641557\pi\)
−0.430199 + 0.902734i \(0.641557\pi\)
\(798\) 0 0
\(799\) 8.86698 0.313691
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0.148844 0.00525260
\(804\) 0 0
\(805\) −24.3333 −0.857636
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1.37825 −0.0484568 −0.0242284 0.999706i \(-0.507713\pi\)
−0.0242284 + 0.999706i \(0.507713\pi\)
\(810\) 0 0
\(811\) 14.2469 0.500275 0.250137 0.968210i \(-0.419524\pi\)
0.250137 + 0.968210i \(0.419524\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 11.1554 0.390758
\(816\) 0 0
\(817\) 32.5353 1.13827
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −12.8462 −0.448335 −0.224167 0.974551i \(-0.571966\pi\)
−0.224167 + 0.974551i \(0.571966\pi\)
\(822\) 0 0
\(823\) 1.01744 0.0354658 0.0177329 0.999843i \(-0.494355\pi\)
0.0177329 + 0.999843i \(0.494355\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 6.51289 0.226475 0.113238 0.993568i \(-0.463878\pi\)
0.113238 + 0.993568i \(0.463878\pi\)
\(828\) 0 0
\(829\) −18.3541 −0.637464 −0.318732 0.947845i \(-0.603257\pi\)
−0.318732 + 0.947845i \(0.603257\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −2.95678 −0.102446
\(834\) 0 0
\(835\) −15.4231 −0.533738
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 32.6009 1.12551 0.562755 0.826624i \(-0.309742\pi\)
0.562755 + 0.826624i \(0.309742\pi\)
\(840\) 0 0
\(841\) 13.9826 0.482157
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −19.6217 −0.675009
\(846\) 0 0
\(847\) −33.7340 −1.15911
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 6.51289 0.223259
\(852\) 0 0
\(853\) 14.7597 0.505364 0.252682 0.967549i \(-0.418687\pi\)
0.252682 + 0.967549i \(0.418687\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 14.5769 0.497938 0.248969 0.968511i \(-0.419908\pi\)
0.248969 + 0.968511i \(0.419908\pi\)
\(858\) 0 0
\(859\) −28.9758 −0.988643 −0.494321 0.869279i \(-0.664583\pi\)
−0.494321 + 0.869279i \(0.664583\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −9.97920 −0.339696 −0.169848 0.985470i \(-0.554328\pi\)
−0.169848 + 0.985470i \(0.554328\pi\)
\(864\) 0 0
\(865\) −13.7980 −0.469146
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1.73073 −0.0587110
\(870\) 0 0
\(871\) −1.64752 −0.0558242
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −3.15544 −0.106673
\(876\) 0 0
\(877\) −7.73235 −0.261103 −0.130551 0.991442i \(-0.541675\pi\)
−0.130551 + 0.991442i \(0.541675\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −40.8254 −1.37544 −0.687721 0.725975i \(-0.741389\pi\)
−0.687721 + 0.725975i \(0.741389\pi\)
\(882\) 0 0
\(883\) −29.6184 −0.996738 −0.498369 0.866965i \(-0.666068\pi\)
−0.498369 + 0.866965i \(0.666068\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 9.60269 0.322427 0.161213 0.986920i \(-0.448459\pi\)
0.161213 + 0.986920i \(0.448459\pi\)
\(888\) 0 0
\(889\) 4.69249 0.157381
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −27.9792 −0.936288
\(894\) 0 0
\(895\) −3.42309 −0.114421
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −63.6699 −2.12351
\(900\) 0 0
\(901\) −8.86698 −0.295402
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 4.59933 0.152887
\(906\) 0 0
\(907\) 7.77718 0.258237 0.129119 0.991629i \(-0.458785\pi\)
0.129119 + 0.991629i \(0.458785\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 51.5336 1.70738 0.853692 0.520779i \(-0.174358\pi\)
0.853692 + 0.520779i \(0.174358\pi\)
\(912\) 0 0
\(913\) −4.62175 −0.152957
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 3.78228 0.124902
\(918\) 0 0
\(919\) 39.8220 1.31361 0.656804 0.754062i \(-0.271908\pi\)
0.656804 + 0.754062i \(0.271908\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0.844563 0.0277691
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 39.7132 1.30295 0.651473 0.758672i \(-0.274151\pi\)
0.651473 + 0.758672i \(0.274151\pi\)
\(930\) 0 0
\(931\) 9.32993 0.305776
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −0.556108 −0.0181867
\(936\) 0 0
\(937\) −17.7980 −0.581435 −0.290717 0.956809i \(-0.593894\pi\)
−0.290717 + 0.956809i \(0.593894\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 6.17288 0.201230 0.100615 0.994925i \(-0.467919\pi\)
0.100615 + 0.994925i \(0.467919\pi\)
\(942\) 0 0
\(943\) −59.8012 −1.94740
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −6.35248 −0.206428 −0.103214 0.994659i \(-0.532913\pi\)
−0.103214 + 0.994659i \(0.532913\pi\)
\(948\) 0 0
\(949\) 1.52871 0.0496242
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −0.290072 −0.00939634 −0.00469817 0.999989i \(-0.501495\pi\)
−0.00469817 + 0.999989i \(0.501495\pi\)
\(954\) 0 0
\(955\) −23.1346 −0.748619
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 20.6874 0.668030
\(960\) 0 0
\(961\) 63.3141 2.04239
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −25.7340 −0.828406
\(966\) 0 0
\(967\) 35.1762 1.13119 0.565596 0.824683i \(-0.308646\pi\)
0.565596 + 0.824683i \(0.308646\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −18.6858 −0.599655 −0.299827 0.953993i \(-0.596929\pi\)
−0.299827 + 0.953993i \(0.596929\pi\)
\(972\) 0 0
\(973\) −4.49047 −0.143958
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −27.2435 −0.871597 −0.435798 0.900044i \(-0.643534\pi\)
−0.435798 + 0.900044i \(0.643534\pi\)
\(978\) 0 0
\(979\) −5.57355 −0.178131
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 40.8686 1.30351 0.651753 0.758431i \(-0.274034\pi\)
0.651753 + 0.758431i \(0.274034\pi\)
\(984\) 0 0
\(985\) 26.0448 0.829857
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 79.5128 2.52836
\(990\) 0 0
\(991\) −29.7980 −0.946564 −0.473282 0.880911i \(-0.656931\pi\)
−0.473282 + 0.880911i \(0.656931\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −3.19866 −0.101404
\(996\) 0 0
\(997\) 9.33503 0.295643 0.147822 0.989014i \(-0.452774\pi\)
0.147822 + 0.989014i \(0.452774\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3060.2.a.r.1.3 3
3.2 odd 2 3060.2.a.t.1.3 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3060.2.a.r.1.3 3 1.1 even 1 trivial
3060.2.a.t.1.3 yes 3 3.2 odd 2