Properties

Label 3060.1.f.h
Level $3060$
Weight $1$
Character orbit 3060.f
Analytic conductor $1.527$
Analytic rank $0$
Dimension $4$
Projective image $D_{6}$
CM discriminant -255
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3060,1,Mod(2719,3060)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3060, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3060.2719"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3060.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,2,0,0,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.52713893866\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{6}\)
Projective field: Galois closure of 6.0.4161600.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{12}^{5} q^{2} - \zeta_{12}^{4} q^{4} - \zeta_{12}^{3} q^{5} + (\zeta_{12}^{4} + \zeta_{12}^{2}) q^{7} + \zeta_{12}^{3} q^{8} + \zeta_{12}^{2} q^{10} + ( - \zeta_{12}^{5} + \zeta_{12}) q^{11} + \cdots + ( - \zeta_{12}^{5} - \zeta_{12}^{3} + \zeta_{12}) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} + 2 q^{10} - 2 q^{16} - 6 q^{22} - 4 q^{25} + 6 q^{28} + 2 q^{34} + 4 q^{37} + 4 q^{40} - 8 q^{49} - 2 q^{58} - 4 q^{64} - 6 q^{70} + 4 q^{73} + 6 q^{76} - 2 q^{82} - 4 q^{85} + 6 q^{94} + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3060\mathbb{Z}\right)^\times\).

\(n\) \(1261\) \(1361\) \(1531\) \(1837\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2719.1
0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i
−0.866025 + 0.500000i
−0.866025 0.500000i 0 0.500000 + 0.866025i 1.00000i 0 1.73205i 1.00000i 0 0.500000 0.866025i
2719.2 −0.866025 + 0.500000i 0 0.500000 0.866025i 1.00000i 0 1.73205i 1.00000i 0 0.500000 + 0.866025i
2719.3 0.866025 0.500000i 0 0.500000 0.866025i 1.00000i 0 1.73205i 1.00000i 0 0.500000 + 0.866025i
2719.4 0.866025 + 0.500000i 0 0.500000 + 0.866025i 1.00000i 0 1.73205i 1.00000i 0 0.500000 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
255.h odd 2 1 CM by \(\Q(\sqrt{-255}) \)
3.b odd 2 1 inner
4.b odd 2 1 inner
12.b even 2 1 inner
85.c even 2 1 inner
340.d odd 2 1 inner
1020.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3060.1.f.h yes 4
3.b odd 2 1 inner 3060.1.f.h yes 4
4.b odd 2 1 inner 3060.1.f.h yes 4
5.b even 2 1 3060.1.f.g 4
12.b even 2 1 inner 3060.1.f.h yes 4
15.d odd 2 1 3060.1.f.g 4
17.b even 2 1 3060.1.f.g 4
20.d odd 2 1 3060.1.f.g 4
51.c odd 2 1 3060.1.f.g 4
60.h even 2 1 3060.1.f.g 4
68.d odd 2 1 3060.1.f.g 4
85.c even 2 1 inner 3060.1.f.h yes 4
204.h even 2 1 3060.1.f.g 4
255.h odd 2 1 CM 3060.1.f.h yes 4
340.d odd 2 1 inner 3060.1.f.h yes 4
1020.b even 2 1 inner 3060.1.f.h yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3060.1.f.g 4 5.b even 2 1
3060.1.f.g 4 15.d odd 2 1
3060.1.f.g 4 17.b even 2 1
3060.1.f.g 4 20.d odd 2 1
3060.1.f.g 4 51.c odd 2 1
3060.1.f.g 4 60.h even 2 1
3060.1.f.g 4 68.d odd 2 1
3060.1.f.g 4 204.h even 2 1
3060.1.f.h yes 4 1.a even 1 1 trivial
3060.1.f.h yes 4 3.b odd 2 1 inner
3060.1.f.h yes 4 4.b odd 2 1 inner
3060.1.f.h yes 4 12.b even 2 1 inner
3060.1.f.h yes 4 85.c even 2 1 inner
3060.1.f.h yes 4 255.h odd 2 1 CM
3060.1.f.h yes 4 340.d odd 2 1 inner
3060.1.f.h yes 4 1020.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(3060, [\chi])\):

\( T_{7}^{2} + 3 \) Copy content Toggle raw display
\( T_{29}^{2} + 1 \) Copy content Toggle raw display
\( T_{31} \) Copy content Toggle raw display
\( T_{37} - 1 \) Copy content Toggle raw display
\( T_{47}^{2} - 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 3)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 3)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( (T - 1)^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( (T - 1)^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( (T - 2)^{4} \) Copy content Toggle raw display
show more
show less