Properties

Label 3040.2.f.b.1521.4
Level $3040$
Weight $2$
Character 3040.1521
Analytic conductor $24.275$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3040,2,Mod(1521,3040)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3040, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3040.1521"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3040 = 2^{5} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3040.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [44] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.2745222145\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: no (minimal twist has level 760)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1521.4
Character \(\chi\) \(=\) 3040.1521
Dual form 3040.2.f.b.1521.41

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.06281i q^{3} +1.00000i q^{5} +2.81229 q^{7} -6.38080 q^{9} +5.05668i q^{11} -3.98012i q^{13} +3.06281 q^{15} +1.62171 q^{17} -1.00000i q^{19} -8.61352i q^{21} -1.51916 q^{23} -1.00000 q^{25} +10.3548i q^{27} -0.617462i q^{29} +7.37672 q^{31} +15.4877 q^{33} +2.81229i q^{35} -6.69976i q^{37} -12.1904 q^{39} -10.2747 q^{41} -9.48263i q^{43} -6.38080i q^{45} +7.80972 q^{47} +0.908997 q^{49} -4.96700i q^{51} -8.96779i q^{53} -5.05668 q^{55} -3.06281 q^{57} -1.48840i q^{59} -7.73455i q^{61} -17.9447 q^{63} +3.98012 q^{65} -7.61986i q^{67} +4.65290i q^{69} +1.07002 q^{71} +10.8626 q^{73} +3.06281i q^{75} +14.2209i q^{77} -1.37931 q^{79} +12.5722 q^{81} -13.9294i q^{83} +1.62171i q^{85} -1.89117 q^{87} +0.709012 q^{89} -11.1933i q^{91} -22.5935i q^{93} +1.00000 q^{95} +14.3906 q^{97} -32.2657i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q - 4 q^{7} - 60 q^{9} + 24 q^{17} - 4 q^{23} - 44 q^{25} + 40 q^{33} + 24 q^{39} - 32 q^{41} + 20 q^{47} + 108 q^{49} - 8 q^{55} - 20 q^{63} + 12 q^{65} + 8 q^{71} - 88 q^{73} - 40 q^{79} + 116 q^{81}+ \cdots + 116 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3040\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(1217\) \(1921\) \(2661\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 3.06281i − 1.76831i −0.467190 0.884157i \(-0.654734\pi\)
0.467190 0.884157i \(-0.345266\pi\)
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 2.81229 1.06295 0.531474 0.847075i \(-0.321638\pi\)
0.531474 + 0.847075i \(0.321638\pi\)
\(8\) 0 0
\(9\) −6.38080 −2.12693
\(10\) 0 0
\(11\) 5.05668i 1.52465i 0.647196 + 0.762324i \(0.275942\pi\)
−0.647196 + 0.762324i \(0.724058\pi\)
\(12\) 0 0
\(13\) − 3.98012i − 1.10389i −0.833881 0.551944i \(-0.813886\pi\)
0.833881 0.551944i \(-0.186114\pi\)
\(14\) 0 0
\(15\) 3.06281 0.790814
\(16\) 0 0
\(17\) 1.62171 0.393323 0.196662 0.980471i \(-0.436990\pi\)
0.196662 + 0.980471i \(0.436990\pi\)
\(18\) 0 0
\(19\) − 1.00000i − 0.229416i
\(20\) 0 0
\(21\) − 8.61352i − 1.87962i
\(22\) 0 0
\(23\) −1.51916 −0.316767 −0.158384 0.987378i \(-0.550628\pi\)
−0.158384 + 0.987378i \(0.550628\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 10.3548i 1.99277i
\(28\) 0 0
\(29\) − 0.617462i − 0.114660i −0.998355 0.0573299i \(-0.981741\pi\)
0.998355 0.0573299i \(-0.0182587\pi\)
\(30\) 0 0
\(31\) 7.37672 1.32490 0.662449 0.749107i \(-0.269517\pi\)
0.662449 + 0.749107i \(0.269517\pi\)
\(32\) 0 0
\(33\) 15.4877 2.69606
\(34\) 0 0
\(35\) 2.81229i 0.475364i
\(36\) 0 0
\(37\) − 6.69976i − 1.10143i −0.834692 0.550717i \(-0.814354\pi\)
0.834692 0.550717i \(-0.185646\pi\)
\(38\) 0 0
\(39\) −12.1904 −1.95202
\(40\) 0 0
\(41\) −10.2747 −1.60465 −0.802323 0.596890i \(-0.796403\pi\)
−0.802323 + 0.596890i \(0.796403\pi\)
\(42\) 0 0
\(43\) − 9.48263i − 1.44609i −0.690802 0.723044i \(-0.742743\pi\)
0.690802 0.723044i \(-0.257257\pi\)
\(44\) 0 0
\(45\) − 6.38080i − 0.951194i
\(46\) 0 0
\(47\) 7.80972 1.13916 0.569582 0.821934i \(-0.307105\pi\)
0.569582 + 0.821934i \(0.307105\pi\)
\(48\) 0 0
\(49\) 0.908997 0.129857
\(50\) 0 0
\(51\) − 4.96700i − 0.695519i
\(52\) 0 0
\(53\) − 8.96779i − 1.23182i −0.787816 0.615910i \(-0.788788\pi\)
0.787816 0.615910i \(-0.211212\pi\)
\(54\) 0 0
\(55\) −5.05668 −0.681843
\(56\) 0 0
\(57\) −3.06281 −0.405679
\(58\) 0 0
\(59\) − 1.48840i − 0.193773i −0.995295 0.0968866i \(-0.969112\pi\)
0.995295 0.0968866i \(-0.0308884\pi\)
\(60\) 0 0
\(61\) − 7.73455i − 0.990307i −0.868805 0.495154i \(-0.835112\pi\)
0.868805 0.495154i \(-0.164888\pi\)
\(62\) 0 0
\(63\) −17.9447 −2.26082
\(64\) 0 0
\(65\) 3.98012 0.493674
\(66\) 0 0
\(67\) − 7.61986i − 0.930914i −0.885071 0.465457i \(-0.845890\pi\)
0.885071 0.465457i \(-0.154110\pi\)
\(68\) 0 0
\(69\) 4.65290i 0.560144i
\(70\) 0 0
\(71\) 1.07002 0.126989 0.0634943 0.997982i \(-0.479776\pi\)
0.0634943 + 0.997982i \(0.479776\pi\)
\(72\) 0 0
\(73\) 10.8626 1.27137 0.635685 0.771949i \(-0.280718\pi\)
0.635685 + 0.771949i \(0.280718\pi\)
\(74\) 0 0
\(75\) 3.06281i 0.353663i
\(76\) 0 0
\(77\) 14.2209i 1.62062i
\(78\) 0 0
\(79\) −1.37931 −0.155185 −0.0775924 0.996985i \(-0.524723\pi\)
−0.0775924 + 0.996985i \(0.524723\pi\)
\(80\) 0 0
\(81\) 12.5722 1.39691
\(82\) 0 0
\(83\) − 13.9294i − 1.52895i −0.644653 0.764475i \(-0.722998\pi\)
0.644653 0.764475i \(-0.277002\pi\)
\(84\) 0 0
\(85\) 1.62171i 0.175899i
\(86\) 0 0
\(87\) −1.89117 −0.202755
\(88\) 0 0
\(89\) 0.709012 0.0751551 0.0375776 0.999294i \(-0.488036\pi\)
0.0375776 + 0.999294i \(0.488036\pi\)
\(90\) 0 0
\(91\) − 11.1933i − 1.17337i
\(92\) 0 0
\(93\) − 22.5935i − 2.34284i
\(94\) 0 0
\(95\) 1.00000 0.102598
\(96\) 0 0
\(97\) 14.3906 1.46115 0.730573 0.682835i \(-0.239253\pi\)
0.730573 + 0.682835i \(0.239253\pi\)
\(98\) 0 0
\(99\) − 32.2657i − 3.24282i
\(100\) 0 0
\(101\) − 12.0028i − 1.19432i −0.802121 0.597161i \(-0.796295\pi\)
0.802121 0.597161i \(-0.203705\pi\)
\(102\) 0 0
\(103\) 17.9996 1.77356 0.886778 0.462195i \(-0.152938\pi\)
0.886778 + 0.462195i \(0.152938\pi\)
\(104\) 0 0
\(105\) 8.61352 0.840594
\(106\) 0 0
\(107\) 18.2082i 1.76025i 0.474738 + 0.880127i \(0.342543\pi\)
−0.474738 + 0.880127i \(0.657457\pi\)
\(108\) 0 0
\(109\) − 1.41237i − 0.135280i −0.997710 0.0676402i \(-0.978453\pi\)
0.997710 0.0676402i \(-0.0215470\pi\)
\(110\) 0 0
\(111\) −20.5201 −1.94768
\(112\) 0 0
\(113\) −4.53336 −0.426463 −0.213231 0.977002i \(-0.568399\pi\)
−0.213231 + 0.977002i \(0.568399\pi\)
\(114\) 0 0
\(115\) − 1.51916i − 0.141663i
\(116\) 0 0
\(117\) 25.3964i 2.34790i
\(118\) 0 0
\(119\) 4.56073 0.418082
\(120\) 0 0
\(121\) −14.5701 −1.32455
\(122\) 0 0
\(123\) 31.4696i 2.83752i
\(124\) 0 0
\(125\) − 1.00000i − 0.0894427i
\(126\) 0 0
\(127\) −16.3081 −1.44711 −0.723554 0.690268i \(-0.757493\pi\)
−0.723554 + 0.690268i \(0.757493\pi\)
\(128\) 0 0
\(129\) −29.0435 −2.55714
\(130\) 0 0
\(131\) 8.26767i 0.722350i 0.932498 + 0.361175i \(0.117624\pi\)
−0.932498 + 0.361175i \(0.882376\pi\)
\(132\) 0 0
\(133\) − 2.81229i − 0.243857i
\(134\) 0 0
\(135\) −10.3548 −0.891195
\(136\) 0 0
\(137\) −17.5424 −1.49875 −0.749374 0.662147i \(-0.769646\pi\)
−0.749374 + 0.662147i \(0.769646\pi\)
\(138\) 0 0
\(139\) − 0.878831i − 0.0745414i −0.999305 0.0372707i \(-0.988134\pi\)
0.999305 0.0372707i \(-0.0118664\pi\)
\(140\) 0 0
\(141\) − 23.9197i − 2.01440i
\(142\) 0 0
\(143\) 20.1262 1.68304
\(144\) 0 0
\(145\) 0.617462 0.0512775
\(146\) 0 0
\(147\) − 2.78409i − 0.229627i
\(148\) 0 0
\(149\) − 8.52396i − 0.698310i −0.937065 0.349155i \(-0.886469\pi\)
0.937065 0.349155i \(-0.113531\pi\)
\(150\) 0 0
\(151\) 15.8403 1.28906 0.644531 0.764578i \(-0.277053\pi\)
0.644531 + 0.764578i \(0.277053\pi\)
\(152\) 0 0
\(153\) −10.3478 −0.836572
\(154\) 0 0
\(155\) 7.37672i 0.592513i
\(156\) 0 0
\(157\) − 0.882769i − 0.0704527i −0.999379 0.0352263i \(-0.988785\pi\)
0.999379 0.0352263i \(-0.0112152\pi\)
\(158\) 0 0
\(159\) −27.4666 −2.17825
\(160\) 0 0
\(161\) −4.27233 −0.336707
\(162\) 0 0
\(163\) − 8.67648i − 0.679594i −0.940499 0.339797i \(-0.889642\pi\)
0.940499 0.339797i \(-0.110358\pi\)
\(164\) 0 0
\(165\) 15.4877i 1.20571i
\(166\) 0 0
\(167\) 21.7621 1.68400 0.842001 0.539476i \(-0.181378\pi\)
0.842001 + 0.539476i \(0.181378\pi\)
\(168\) 0 0
\(169\) −2.84139 −0.218569
\(170\) 0 0
\(171\) 6.38080i 0.487952i
\(172\) 0 0
\(173\) 9.66571i 0.734870i 0.930049 + 0.367435i \(0.119764\pi\)
−0.930049 + 0.367435i \(0.880236\pi\)
\(174\) 0 0
\(175\) −2.81229 −0.212589
\(176\) 0 0
\(177\) −4.55868 −0.342652
\(178\) 0 0
\(179\) 20.0228i 1.49657i 0.663376 + 0.748286i \(0.269123\pi\)
−0.663376 + 0.748286i \(0.730877\pi\)
\(180\) 0 0
\(181\) − 3.56175i − 0.264742i −0.991200 0.132371i \(-0.957741\pi\)
0.991200 0.132371i \(-0.0422591\pi\)
\(182\) 0 0
\(183\) −23.6894 −1.75117
\(184\) 0 0
\(185\) 6.69976 0.492576
\(186\) 0 0
\(187\) 8.20049i 0.599679i
\(188\) 0 0
\(189\) 29.1206i 2.11821i
\(190\) 0 0
\(191\) −18.5078 −1.33918 −0.669589 0.742732i \(-0.733530\pi\)
−0.669589 + 0.742732i \(0.733530\pi\)
\(192\) 0 0
\(193\) −0.891942 −0.0642034 −0.0321017 0.999485i \(-0.510220\pi\)
−0.0321017 + 0.999485i \(0.510220\pi\)
\(194\) 0 0
\(195\) − 12.1904i − 0.872970i
\(196\) 0 0
\(197\) 12.9518i 0.922776i 0.887198 + 0.461388i \(0.152648\pi\)
−0.887198 + 0.461388i \(0.847352\pi\)
\(198\) 0 0
\(199\) −6.52220 −0.462347 −0.231173 0.972913i \(-0.574256\pi\)
−0.231173 + 0.972913i \(0.574256\pi\)
\(200\) 0 0
\(201\) −23.3382 −1.64615
\(202\) 0 0
\(203\) − 1.73649i − 0.121877i
\(204\) 0 0
\(205\) − 10.2747i − 0.717620i
\(206\) 0 0
\(207\) 9.69347 0.673743
\(208\) 0 0
\(209\) 5.05668 0.349778
\(210\) 0 0
\(211\) 26.7423i 1.84102i 0.390724 + 0.920508i \(0.372225\pi\)
−0.390724 + 0.920508i \(0.627775\pi\)
\(212\) 0 0
\(213\) − 3.27728i − 0.224556i
\(214\) 0 0
\(215\) 9.48263 0.646710
\(216\) 0 0
\(217\) 20.7455 1.40830
\(218\) 0 0
\(219\) − 33.2700i − 2.24818i
\(220\) 0 0
\(221\) − 6.45462i − 0.434185i
\(222\) 0 0
\(223\) 1.22439 0.0819910 0.0409955 0.999159i \(-0.486947\pi\)
0.0409955 + 0.999159i \(0.486947\pi\)
\(224\) 0 0
\(225\) 6.38080 0.425387
\(226\) 0 0
\(227\) − 15.1423i − 1.00503i −0.864568 0.502516i \(-0.832408\pi\)
0.864568 0.502516i \(-0.167592\pi\)
\(228\) 0 0
\(229\) 8.06769i 0.533128i 0.963817 + 0.266564i \(0.0858884\pi\)
−0.963817 + 0.266564i \(0.914112\pi\)
\(230\) 0 0
\(231\) 43.5559 2.86576
\(232\) 0 0
\(233\) −18.1011 −1.18584 −0.592922 0.805260i \(-0.702026\pi\)
−0.592922 + 0.805260i \(0.702026\pi\)
\(234\) 0 0
\(235\) 7.80972i 0.509450i
\(236\) 0 0
\(237\) 4.22457i 0.274415i
\(238\) 0 0
\(239\) 22.5877 1.46107 0.730537 0.682873i \(-0.239270\pi\)
0.730537 + 0.682873i \(0.239270\pi\)
\(240\) 0 0
\(241\) −1.66938 −0.107534 −0.0537671 0.998554i \(-0.517123\pi\)
−0.0537671 + 0.998554i \(0.517123\pi\)
\(242\) 0 0
\(243\) − 7.44209i − 0.477410i
\(244\) 0 0
\(245\) 0.908997i 0.0580737i
\(246\) 0 0
\(247\) −3.98012 −0.253249
\(248\) 0 0
\(249\) −42.6631 −2.70366
\(250\) 0 0
\(251\) 3.43312i 0.216697i 0.994113 + 0.108348i \(0.0345562\pi\)
−0.994113 + 0.108348i \(0.965444\pi\)
\(252\) 0 0
\(253\) − 7.68192i − 0.482958i
\(254\) 0 0
\(255\) 4.96700 0.311045
\(256\) 0 0
\(257\) −4.54870 −0.283740 −0.141870 0.989885i \(-0.545312\pi\)
−0.141870 + 0.989885i \(0.545312\pi\)
\(258\) 0 0
\(259\) − 18.8417i − 1.17077i
\(260\) 0 0
\(261\) 3.93991i 0.243874i
\(262\) 0 0
\(263\) −11.0906 −0.683878 −0.341939 0.939722i \(-0.611084\pi\)
−0.341939 + 0.939722i \(0.611084\pi\)
\(264\) 0 0
\(265\) 8.96779 0.550887
\(266\) 0 0
\(267\) − 2.17157i − 0.132898i
\(268\) 0 0
\(269\) 0.456872i 0.0278560i 0.999903 + 0.0139280i \(0.00443356\pi\)
−0.999903 + 0.0139280i \(0.995566\pi\)
\(270\) 0 0
\(271\) 8.24792 0.501025 0.250513 0.968113i \(-0.419401\pi\)
0.250513 + 0.968113i \(0.419401\pi\)
\(272\) 0 0
\(273\) −34.2829 −2.07489
\(274\) 0 0
\(275\) − 5.05668i − 0.304930i
\(276\) 0 0
\(277\) 17.0974i 1.02729i 0.858004 + 0.513643i \(0.171704\pi\)
−0.858004 + 0.513643i \(0.828296\pi\)
\(278\) 0 0
\(279\) −47.0694 −2.81797
\(280\) 0 0
\(281\) 8.94353 0.533527 0.266763 0.963762i \(-0.414046\pi\)
0.266763 + 0.963762i \(0.414046\pi\)
\(282\) 0 0
\(283\) − 32.6729i − 1.94220i −0.238671 0.971101i \(-0.576712\pi\)
0.238671 0.971101i \(-0.423288\pi\)
\(284\) 0 0
\(285\) − 3.06281i − 0.181425i
\(286\) 0 0
\(287\) −28.8956 −1.70565
\(288\) 0 0
\(289\) −14.3700 −0.845297
\(290\) 0 0
\(291\) − 44.0757i − 2.58376i
\(292\) 0 0
\(293\) 27.7877i 1.62338i 0.584091 + 0.811688i \(0.301451\pi\)
−0.584091 + 0.811688i \(0.698549\pi\)
\(294\) 0 0
\(295\) 1.48840 0.0866580
\(296\) 0 0
\(297\) −52.3607 −3.03828
\(298\) 0 0
\(299\) 6.04645i 0.349675i
\(300\) 0 0
\(301\) − 26.6679i − 1.53711i
\(302\) 0 0
\(303\) −36.7622 −2.11194
\(304\) 0 0
\(305\) 7.73455 0.442879
\(306\) 0 0
\(307\) 10.7593i 0.614067i 0.951699 + 0.307034i \(0.0993364\pi\)
−0.951699 + 0.307034i \(0.900664\pi\)
\(308\) 0 0
\(309\) − 55.1294i − 3.13620i
\(310\) 0 0
\(311\) −14.8790 −0.843708 −0.421854 0.906664i \(-0.638621\pi\)
−0.421854 + 0.906664i \(0.638621\pi\)
\(312\) 0 0
\(313\) −16.0734 −0.908523 −0.454261 0.890868i \(-0.650097\pi\)
−0.454261 + 0.890868i \(0.650097\pi\)
\(314\) 0 0
\(315\) − 17.9447i − 1.01107i
\(316\) 0 0
\(317\) − 29.8614i − 1.67718i −0.544760 0.838592i \(-0.683379\pi\)
0.544760 0.838592i \(-0.316621\pi\)
\(318\) 0 0
\(319\) 3.12231 0.174816
\(320\) 0 0
\(321\) 55.7683 3.11268
\(322\) 0 0
\(323\) − 1.62171i − 0.0902345i
\(324\) 0 0
\(325\) 3.98012i 0.220778i
\(326\) 0 0
\(327\) −4.32581 −0.239218
\(328\) 0 0
\(329\) 21.9632 1.21087
\(330\) 0 0
\(331\) 17.6580i 0.970573i 0.874355 + 0.485286i \(0.161285\pi\)
−0.874355 + 0.485286i \(0.838715\pi\)
\(332\) 0 0
\(333\) 42.7499i 2.34268i
\(334\) 0 0
\(335\) 7.61986 0.416317
\(336\) 0 0
\(337\) −17.1181 −0.932482 −0.466241 0.884658i \(-0.654392\pi\)
−0.466241 + 0.884658i \(0.654392\pi\)
\(338\) 0 0
\(339\) 13.8848i 0.754120i
\(340\) 0 0
\(341\) 37.3018i 2.02000i
\(342\) 0 0
\(343\) −17.1297 −0.924916
\(344\) 0 0
\(345\) −4.65290 −0.250504
\(346\) 0 0
\(347\) 10.4086i 0.558761i 0.960180 + 0.279381i \(0.0901291\pi\)
−0.960180 + 0.279381i \(0.909871\pi\)
\(348\) 0 0
\(349\) 22.1049i 1.18325i 0.806214 + 0.591624i \(0.201513\pi\)
−0.806214 + 0.591624i \(0.798487\pi\)
\(350\) 0 0
\(351\) 41.2132 2.19980
\(352\) 0 0
\(353\) −7.96563 −0.423968 −0.211984 0.977273i \(-0.567992\pi\)
−0.211984 + 0.977273i \(0.567992\pi\)
\(354\) 0 0
\(355\) 1.07002i 0.0567910i
\(356\) 0 0
\(357\) − 13.9687i − 0.739300i
\(358\) 0 0
\(359\) 32.8817 1.73543 0.867715 0.497062i \(-0.165588\pi\)
0.867715 + 0.497062i \(0.165588\pi\)
\(360\) 0 0
\(361\) −1.00000 −0.0526316
\(362\) 0 0
\(363\) 44.6253i 2.34222i
\(364\) 0 0
\(365\) 10.8626i 0.568574i
\(366\) 0 0
\(367\) −8.35897 −0.436335 −0.218167 0.975911i \(-0.570008\pi\)
−0.218167 + 0.975911i \(0.570008\pi\)
\(368\) 0 0
\(369\) 65.5611 3.41298
\(370\) 0 0
\(371\) − 25.2201i − 1.30936i
\(372\) 0 0
\(373\) − 5.73299i − 0.296843i −0.988924 0.148422i \(-0.952581\pi\)
0.988924 0.148422i \(-0.0474192\pi\)
\(374\) 0 0
\(375\) −3.06281 −0.158163
\(376\) 0 0
\(377\) −2.45758 −0.126572
\(378\) 0 0
\(379\) − 26.5868i − 1.36567i −0.730571 0.682836i \(-0.760746\pi\)
0.730571 0.682836i \(-0.239254\pi\)
\(380\) 0 0
\(381\) 49.9485i 2.55894i
\(382\) 0 0
\(383\) 12.1889 0.622824 0.311412 0.950275i \(-0.399198\pi\)
0.311412 + 0.950275i \(0.399198\pi\)
\(384\) 0 0
\(385\) −14.2209 −0.724763
\(386\) 0 0
\(387\) 60.5068i 3.07573i
\(388\) 0 0
\(389\) − 17.2618i − 0.875209i −0.899168 0.437605i \(-0.855827\pi\)
0.899168 0.437605i \(-0.144173\pi\)
\(390\) 0 0
\(391\) −2.46364 −0.124592
\(392\) 0 0
\(393\) 25.3223 1.27734
\(394\) 0 0
\(395\) − 1.37931i − 0.0694008i
\(396\) 0 0
\(397\) 0.694542i 0.0348581i 0.999848 + 0.0174290i \(0.00554812\pi\)
−0.999848 + 0.0174290i \(0.994452\pi\)
\(398\) 0 0
\(399\) −8.61352 −0.431215
\(400\) 0 0
\(401\) 24.2182 1.20940 0.604700 0.796454i \(-0.293293\pi\)
0.604700 + 0.796454i \(0.293293\pi\)
\(402\) 0 0
\(403\) − 29.3603i − 1.46254i
\(404\) 0 0
\(405\) 12.5722i 0.624719i
\(406\) 0 0
\(407\) 33.8786 1.67930
\(408\) 0 0
\(409\) 27.3171 1.35074 0.675371 0.737478i \(-0.263983\pi\)
0.675371 + 0.737478i \(0.263983\pi\)
\(410\) 0 0
\(411\) 53.7290i 2.65026i
\(412\) 0 0
\(413\) − 4.18582i − 0.205971i
\(414\) 0 0
\(415\) 13.9294 0.683767
\(416\) 0 0
\(417\) −2.69169 −0.131813
\(418\) 0 0
\(419\) 7.94266i 0.388024i 0.980999 + 0.194012i \(0.0621501\pi\)
−0.980999 + 0.194012i \(0.937850\pi\)
\(420\) 0 0
\(421\) 24.3855i 1.18848i 0.804289 + 0.594239i \(0.202547\pi\)
−0.804289 + 0.594239i \(0.797453\pi\)
\(422\) 0 0
\(423\) −49.8322 −2.42293
\(424\) 0 0
\(425\) −1.62171 −0.0786646
\(426\) 0 0
\(427\) − 21.7518i − 1.05264i
\(428\) 0 0
\(429\) − 61.6428i − 2.97614i
\(430\) 0 0
\(431\) 18.7021 0.900850 0.450425 0.892814i \(-0.351272\pi\)
0.450425 + 0.892814i \(0.351272\pi\)
\(432\) 0 0
\(433\) 23.9396 1.15047 0.575233 0.817990i \(-0.304911\pi\)
0.575233 + 0.817990i \(0.304911\pi\)
\(434\) 0 0
\(435\) − 1.89117i − 0.0906746i
\(436\) 0 0
\(437\) 1.51916i 0.0726714i
\(438\) 0 0
\(439\) 7.24965 0.346007 0.173003 0.984921i \(-0.444653\pi\)
0.173003 + 0.984921i \(0.444653\pi\)
\(440\) 0 0
\(441\) −5.80013 −0.276197
\(442\) 0 0
\(443\) 26.9821i 1.28196i 0.767558 + 0.640979i \(0.221471\pi\)
−0.767558 + 0.640979i \(0.778529\pi\)
\(444\) 0 0
\(445\) 0.709012i 0.0336104i
\(446\) 0 0
\(447\) −26.1073 −1.23483
\(448\) 0 0
\(449\) 16.5865 0.782767 0.391384 0.920228i \(-0.371997\pi\)
0.391384 + 0.920228i \(0.371997\pi\)
\(450\) 0 0
\(451\) − 51.9562i − 2.44652i
\(452\) 0 0
\(453\) − 48.5157i − 2.27947i
\(454\) 0 0
\(455\) 11.1933 0.524749
\(456\) 0 0
\(457\) 5.05916 0.236657 0.118329 0.992974i \(-0.462246\pi\)
0.118329 + 0.992974i \(0.462246\pi\)
\(458\) 0 0
\(459\) 16.7924i 0.783804i
\(460\) 0 0
\(461\) − 6.93588i − 0.323036i −0.986870 0.161518i \(-0.948361\pi\)
0.986870 0.161518i \(-0.0516390\pi\)
\(462\) 0 0
\(463\) −7.62487 −0.354358 −0.177179 0.984179i \(-0.556697\pi\)
−0.177179 + 0.984179i \(0.556697\pi\)
\(464\) 0 0
\(465\) 22.5935 1.04775
\(466\) 0 0
\(467\) 3.20732i 0.148417i 0.997243 + 0.0742086i \(0.0236431\pi\)
−0.997243 + 0.0742086i \(0.976357\pi\)
\(468\) 0 0
\(469\) − 21.4293i − 0.989512i
\(470\) 0 0
\(471\) −2.70375 −0.124582
\(472\) 0 0
\(473\) 47.9507 2.20477
\(474\) 0 0
\(475\) 1.00000i 0.0458831i
\(476\) 0 0
\(477\) 57.2217i 2.62000i
\(478\) 0 0
\(479\) −7.68052 −0.350932 −0.175466 0.984486i \(-0.556143\pi\)
−0.175466 + 0.984486i \(0.556143\pi\)
\(480\) 0 0
\(481\) −26.6659 −1.21586
\(482\) 0 0
\(483\) 13.0853i 0.595403i
\(484\) 0 0
\(485\) 14.3906i 0.653444i
\(486\) 0 0
\(487\) 5.35340 0.242586 0.121293 0.992617i \(-0.461296\pi\)
0.121293 + 0.992617i \(0.461296\pi\)
\(488\) 0 0
\(489\) −26.5744 −1.20174
\(490\) 0 0
\(491\) − 28.4990i − 1.28614i −0.765807 0.643070i \(-0.777660\pi\)
0.765807 0.643070i \(-0.222340\pi\)
\(492\) 0 0
\(493\) − 1.00135i − 0.0450984i
\(494\) 0 0
\(495\) 32.2657 1.45024
\(496\) 0 0
\(497\) 3.00922 0.134982
\(498\) 0 0
\(499\) − 7.57745i − 0.339213i −0.985512 0.169607i \(-0.945750\pi\)
0.985512 0.169607i \(-0.0542497\pi\)
\(500\) 0 0
\(501\) − 66.6532i − 2.97784i
\(502\) 0 0
\(503\) −3.33433 −0.148670 −0.0743352 0.997233i \(-0.523683\pi\)
−0.0743352 + 0.997233i \(0.523683\pi\)
\(504\) 0 0
\(505\) 12.0028 0.534117
\(506\) 0 0
\(507\) 8.70264i 0.386498i
\(508\) 0 0
\(509\) 27.9961i 1.24091i 0.784243 + 0.620454i \(0.213051\pi\)
−0.784243 + 0.620454i \(0.786949\pi\)
\(510\) 0 0
\(511\) 30.5488 1.35140
\(512\) 0 0
\(513\) 10.3548 0.457174
\(514\) 0 0
\(515\) 17.9996i 0.793159i
\(516\) 0 0
\(517\) 39.4913i 1.73682i
\(518\) 0 0
\(519\) 29.6042 1.29948
\(520\) 0 0
\(521\) 13.5559 0.593897 0.296948 0.954894i \(-0.404031\pi\)
0.296948 + 0.954894i \(0.404031\pi\)
\(522\) 0 0
\(523\) 5.27502i 0.230660i 0.993327 + 0.115330i \(0.0367926\pi\)
−0.993327 + 0.115330i \(0.963207\pi\)
\(524\) 0 0
\(525\) 8.61352i 0.375925i
\(526\) 0 0
\(527\) 11.9629 0.521113
\(528\) 0 0
\(529\) −20.6921 −0.899659
\(530\) 0 0
\(531\) 9.49718i 0.412143i
\(532\) 0 0
\(533\) 40.8948i 1.77135i
\(534\) 0 0
\(535\) −18.2082 −0.787210
\(536\) 0 0
\(537\) 61.3260 2.64641
\(538\) 0 0
\(539\) 4.59651i 0.197986i
\(540\) 0 0
\(541\) 37.8198i 1.62600i 0.582265 + 0.812999i \(0.302167\pi\)
−0.582265 + 0.812999i \(0.697833\pi\)
\(542\) 0 0
\(543\) −10.9089 −0.468148
\(544\) 0 0
\(545\) 1.41237 0.0604992
\(546\) 0 0
\(547\) − 8.20562i − 0.350847i −0.984493 0.175423i \(-0.943871\pi\)
0.984493 0.175423i \(-0.0561295\pi\)
\(548\) 0 0
\(549\) 49.3526i 2.10632i
\(550\) 0 0
\(551\) −0.617462 −0.0263048
\(552\) 0 0
\(553\) −3.87903 −0.164953
\(554\) 0 0
\(555\) − 20.5201i − 0.871029i
\(556\) 0 0
\(557\) − 38.8646i − 1.64675i −0.567500 0.823374i \(-0.692089\pi\)
0.567500 0.823374i \(-0.307911\pi\)
\(558\) 0 0
\(559\) −37.7420 −1.59632
\(560\) 0 0
\(561\) 25.1165 1.06042
\(562\) 0 0
\(563\) − 43.2675i − 1.82351i −0.410736 0.911754i \(-0.634728\pi\)
0.410736 0.911754i \(-0.365272\pi\)
\(564\) 0 0
\(565\) − 4.53336i − 0.190720i
\(566\) 0 0
\(567\) 35.3568 1.48485
\(568\) 0 0
\(569\) −4.14459 −0.173750 −0.0868750 0.996219i \(-0.527688\pi\)
−0.0868750 + 0.996219i \(0.527688\pi\)
\(570\) 0 0
\(571\) − 7.85216i − 0.328603i −0.986410 0.164301i \(-0.947463\pi\)
0.986410 0.164301i \(-0.0525369\pi\)
\(572\) 0 0
\(573\) 56.6859i 2.36809i
\(574\) 0 0
\(575\) 1.51916 0.0633534
\(576\) 0 0
\(577\) 8.01296 0.333584 0.166792 0.985992i \(-0.446659\pi\)
0.166792 + 0.985992i \(0.446659\pi\)
\(578\) 0 0
\(579\) 2.73185i 0.113532i
\(580\) 0 0
\(581\) − 39.1736i − 1.62519i
\(582\) 0 0
\(583\) 45.3473 1.87809
\(584\) 0 0
\(585\) −25.3964 −1.05001
\(586\) 0 0
\(587\) 25.2668i 1.04287i 0.853290 + 0.521436i \(0.174604\pi\)
−0.853290 + 0.521436i \(0.825396\pi\)
\(588\) 0 0
\(589\) − 7.37672i − 0.303953i
\(590\) 0 0
\(591\) 39.6688 1.63176
\(592\) 0 0
\(593\) 10.1106 0.415192 0.207596 0.978215i \(-0.433436\pi\)
0.207596 + 0.978215i \(0.433436\pi\)
\(594\) 0 0
\(595\) 4.56073i 0.186972i
\(596\) 0 0
\(597\) 19.9763i 0.817574i
\(598\) 0 0
\(599\) 19.9087 0.813446 0.406723 0.913552i \(-0.366671\pi\)
0.406723 + 0.913552i \(0.366671\pi\)
\(600\) 0 0
\(601\) −25.0367 −1.02127 −0.510634 0.859798i \(-0.670589\pi\)
−0.510634 + 0.859798i \(0.670589\pi\)
\(602\) 0 0
\(603\) 48.6208i 1.97999i
\(604\) 0 0
\(605\) − 14.5701i − 0.592357i
\(606\) 0 0
\(607\) 4.94906 0.200876 0.100438 0.994943i \(-0.467976\pi\)
0.100438 + 0.994943i \(0.467976\pi\)
\(608\) 0 0
\(609\) −5.31852 −0.215518
\(610\) 0 0
\(611\) − 31.0836i − 1.25751i
\(612\) 0 0
\(613\) 28.5126i 1.15161i 0.817585 + 0.575807i \(0.195312\pi\)
−0.817585 + 0.575807i \(0.804688\pi\)
\(614\) 0 0
\(615\) −31.4696 −1.26898
\(616\) 0 0
\(617\) 36.9906 1.48919 0.744593 0.667519i \(-0.232644\pi\)
0.744593 + 0.667519i \(0.232644\pi\)
\(618\) 0 0
\(619\) 14.0321i 0.563997i 0.959415 + 0.281998i \(0.0909973\pi\)
−0.959415 + 0.281998i \(0.909003\pi\)
\(620\) 0 0
\(621\) − 15.7305i − 0.631245i
\(622\) 0 0
\(623\) 1.99395 0.0798860
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) − 15.4877i − 0.618518i
\(628\) 0 0
\(629\) − 10.8651i − 0.433219i
\(630\) 0 0
\(631\) 12.3580 0.491962 0.245981 0.969275i \(-0.420890\pi\)
0.245981 + 0.969275i \(0.420890\pi\)
\(632\) 0 0
\(633\) 81.9066 3.25549
\(634\) 0 0
\(635\) − 16.3081i − 0.647166i
\(636\) 0 0
\(637\) − 3.61792i − 0.143347i
\(638\) 0 0
\(639\) −6.82762 −0.270096
\(640\) 0 0
\(641\) −24.6420 −0.973301 −0.486651 0.873597i \(-0.661782\pi\)
−0.486651 + 0.873597i \(0.661782\pi\)
\(642\) 0 0
\(643\) 19.7785i 0.779990i 0.920817 + 0.389995i \(0.127523\pi\)
−0.920817 + 0.389995i \(0.872477\pi\)
\(644\) 0 0
\(645\) − 29.0435i − 1.14359i
\(646\) 0 0
\(647\) 9.04173 0.355467 0.177734 0.984079i \(-0.443123\pi\)
0.177734 + 0.984079i \(0.443123\pi\)
\(648\) 0 0
\(649\) 7.52637 0.295436
\(650\) 0 0
\(651\) − 63.5396i − 2.49031i
\(652\) 0 0
\(653\) − 43.0547i − 1.68486i −0.538805 0.842430i \(-0.681124\pi\)
0.538805 0.842430i \(-0.318876\pi\)
\(654\) 0 0
\(655\) −8.26767 −0.323045
\(656\) 0 0
\(657\) −69.3120 −2.70412
\(658\) 0 0
\(659\) 49.7536i 1.93813i 0.246814 + 0.969063i \(0.420616\pi\)
−0.246814 + 0.969063i \(0.579384\pi\)
\(660\) 0 0
\(661\) − 38.6735i − 1.50423i −0.659034 0.752113i \(-0.729035\pi\)
0.659034 0.752113i \(-0.270965\pi\)
\(662\) 0 0
\(663\) −19.7693 −0.767775
\(664\) 0 0
\(665\) 2.81229 0.109056
\(666\) 0 0
\(667\) 0.938025i 0.0363205i
\(668\) 0 0
\(669\) − 3.75006i − 0.144986i
\(670\) 0 0
\(671\) 39.1112 1.50987
\(672\) 0 0
\(673\) −30.4504 −1.17378 −0.586889 0.809668i \(-0.699647\pi\)
−0.586889 + 0.809668i \(0.699647\pi\)
\(674\) 0 0
\(675\) − 10.3548i − 0.398555i
\(676\) 0 0
\(677\) − 21.2451i − 0.816517i −0.912866 0.408259i \(-0.866136\pi\)
0.912866 0.408259i \(-0.133864\pi\)
\(678\) 0 0
\(679\) 40.4706 1.55312
\(680\) 0 0
\(681\) −46.3781 −1.77721
\(682\) 0 0
\(683\) − 25.0990i − 0.960388i −0.877162 0.480194i \(-0.840566\pi\)
0.877162 0.480194i \(-0.159434\pi\)
\(684\) 0 0
\(685\) − 17.5424i − 0.670261i
\(686\) 0 0
\(687\) 24.7098 0.942738
\(688\) 0 0
\(689\) −35.6929 −1.35979
\(690\) 0 0
\(691\) − 43.6924i − 1.66214i −0.556171 0.831068i \(-0.687730\pi\)
0.556171 0.831068i \(-0.312270\pi\)
\(692\) 0 0
\(693\) − 90.7406i − 3.44695i
\(694\) 0 0
\(695\) 0.878831 0.0333359
\(696\) 0 0
\(697\) −16.6627 −0.631144
\(698\) 0 0
\(699\) 55.4403i 2.09695i
\(700\) 0 0
\(701\) 5.13928i 0.194108i 0.995279 + 0.0970539i \(0.0309419\pi\)
−0.995279 + 0.0970539i \(0.969058\pi\)
\(702\) 0 0
\(703\) −6.69976 −0.252686
\(704\) 0 0
\(705\) 23.9197 0.900867
\(706\) 0 0
\(707\) − 33.7554i − 1.26950i
\(708\) 0 0
\(709\) − 23.4211i − 0.879596i −0.898097 0.439798i \(-0.855050\pi\)
0.898097 0.439798i \(-0.144950\pi\)
\(710\) 0 0
\(711\) 8.80112 0.330068
\(712\) 0 0
\(713\) −11.2064 −0.419684
\(714\) 0 0
\(715\) 20.1262i 0.752678i
\(716\) 0 0
\(717\) − 69.1817i − 2.58364i
\(718\) 0 0
\(719\) −22.6820 −0.845894 −0.422947 0.906154i \(-0.639004\pi\)
−0.422947 + 0.906154i \(0.639004\pi\)
\(720\) 0 0
\(721\) 50.6203 1.88520
\(722\) 0 0
\(723\) 5.11299i 0.190154i
\(724\) 0 0
\(725\) 0.617462i 0.0229320i
\(726\) 0 0
\(727\) −34.2340 −1.26967 −0.634835 0.772648i \(-0.718932\pi\)
−0.634835 + 0.772648i \(0.718932\pi\)
\(728\) 0 0
\(729\) 14.9230 0.552704
\(730\) 0 0
\(731\) − 15.3781i − 0.568780i
\(732\) 0 0
\(733\) 35.0860i 1.29593i 0.761670 + 0.647965i \(0.224380\pi\)
−0.761670 + 0.647965i \(0.775620\pi\)
\(734\) 0 0
\(735\) 2.78409 0.102693
\(736\) 0 0
\(737\) 38.5312 1.41932
\(738\) 0 0
\(739\) 6.36634i 0.234190i 0.993121 + 0.117095i \(0.0373581\pi\)
−0.993121 + 0.117095i \(0.962642\pi\)
\(740\) 0 0
\(741\) 12.1904i 0.447824i
\(742\) 0 0
\(743\) 0.905818 0.0332312 0.0166156 0.999862i \(-0.494711\pi\)
0.0166156 + 0.999862i \(0.494711\pi\)
\(744\) 0 0
\(745\) 8.52396 0.312294
\(746\) 0 0
\(747\) 88.8808i 3.25198i
\(748\) 0 0
\(749\) 51.2068i 1.87106i
\(750\) 0 0
\(751\) 17.1561 0.626035 0.313018 0.949747i \(-0.398660\pi\)
0.313018 + 0.949747i \(0.398660\pi\)
\(752\) 0 0
\(753\) 10.5150 0.383188
\(754\) 0 0
\(755\) 15.8403i 0.576486i
\(756\) 0 0
\(757\) 36.1374i 1.31344i 0.754136 + 0.656718i \(0.228056\pi\)
−0.754136 + 0.656718i \(0.771944\pi\)
\(758\) 0 0
\(759\) −23.5283 −0.854022
\(760\) 0 0
\(761\) −8.20143 −0.297302 −0.148651 0.988890i \(-0.547493\pi\)
−0.148651 + 0.988890i \(0.547493\pi\)
\(762\) 0 0
\(763\) − 3.97199i − 0.143796i
\(764\) 0 0
\(765\) − 10.3478i − 0.374127i
\(766\) 0 0
\(767\) −5.92402 −0.213904
\(768\) 0 0
\(769\) 18.4357 0.664810 0.332405 0.943137i \(-0.392140\pi\)
0.332405 + 0.943137i \(0.392140\pi\)
\(770\) 0 0
\(771\) 13.9318i 0.501742i
\(772\) 0 0
\(773\) 20.9082i 0.752014i 0.926617 + 0.376007i \(0.122703\pi\)
−0.926617 + 0.376007i \(0.877297\pi\)
\(774\) 0 0
\(775\) −7.37672 −0.264980
\(776\) 0 0
\(777\) −57.7085 −2.07028
\(778\) 0 0
\(779\) 10.2747i 0.368131i
\(780\) 0 0
\(781\) 5.41078i 0.193613i
\(782\) 0 0
\(783\) 6.39367 0.228491
\(784\) 0 0
\(785\) 0.882769 0.0315074
\(786\) 0 0
\(787\) 34.8166i 1.24108i 0.784176 + 0.620539i \(0.213086\pi\)
−0.784176 + 0.620539i \(0.786914\pi\)
\(788\) 0 0
\(789\) 33.9685i 1.20931i
\(790\) 0 0
\(791\) −12.7492 −0.453308
\(792\) 0 0
\(793\) −30.7845 −1.09319
\(794\) 0 0
\(795\) − 27.4666i − 0.974141i
\(796\) 0 0
\(797\) − 31.0580i − 1.10013i −0.835121 0.550066i \(-0.814603\pi\)
0.835121 0.550066i \(-0.185397\pi\)
\(798\) 0 0
\(799\) 12.6651 0.448060
\(800\) 0 0
\(801\) −4.52407 −0.159850
\(802\) 0 0
\(803\) 54.9287i 1.93839i
\(804\) 0 0
\(805\) − 4.27233i − 0.150580i
\(806\) 0 0
\(807\) 1.39931 0.0492582
\(808\) 0 0
\(809\) −18.1110 −0.636750 −0.318375 0.947965i \(-0.603137\pi\)
−0.318375 + 0.947965i \(0.603137\pi\)
\(810\) 0 0
\(811\) − 26.9319i − 0.945707i −0.881141 0.472854i \(-0.843224\pi\)
0.881141 0.472854i \(-0.156776\pi\)
\(812\) 0 0
\(813\) − 25.2618i − 0.885970i
\(814\) 0 0
\(815\) 8.67648 0.303924
\(816\) 0 0
\(817\) −9.48263 −0.331755
\(818\) 0 0
\(819\) 71.4221i 2.49569i
\(820\) 0 0
\(821\) − 15.3754i − 0.536604i −0.963335 0.268302i \(-0.913537\pi\)
0.963335 0.268302i \(-0.0864625\pi\)
\(822\) 0 0
\(823\) 9.79320 0.341370 0.170685 0.985326i \(-0.445402\pi\)
0.170685 + 0.985326i \(0.445402\pi\)
\(824\) 0 0
\(825\) −15.4877 −0.539211
\(826\) 0 0
\(827\) 13.5867i 0.472456i 0.971698 + 0.236228i \(0.0759113\pi\)
−0.971698 + 0.236228i \(0.924089\pi\)
\(828\) 0 0
\(829\) 4.13713i 0.143688i 0.997416 + 0.0718442i \(0.0228884\pi\)
−0.997416 + 0.0718442i \(0.977112\pi\)
\(830\) 0 0
\(831\) 52.3662 1.81656
\(832\) 0 0
\(833\) 1.47413 0.0510757
\(834\) 0 0
\(835\) 21.7621i 0.753108i
\(836\) 0 0
\(837\) 76.3841i 2.64022i
\(838\) 0 0
\(839\) −3.97020 −0.137067 −0.0685333 0.997649i \(-0.521832\pi\)
−0.0685333 + 0.997649i \(0.521832\pi\)
\(840\) 0 0
\(841\) 28.6187 0.986853
\(842\) 0 0
\(843\) − 27.3923i − 0.943442i
\(844\) 0 0
\(845\) − 2.84139i − 0.0977468i
\(846\) 0 0
\(847\) −40.9753 −1.40793
\(848\) 0 0
\(849\) −100.071 −3.43442
\(850\) 0 0
\(851\) 10.1780i 0.348898i
\(852\) 0 0
\(853\) 36.8510i 1.26176i 0.775882 + 0.630878i \(0.217305\pi\)
−0.775882 + 0.630878i \(0.782695\pi\)
\(854\) 0 0
\(855\) −6.38080 −0.218219
\(856\) 0 0
\(857\) −21.6000 −0.737841 −0.368921 0.929461i \(-0.620273\pi\)
−0.368921 + 0.929461i \(0.620273\pi\)
\(858\) 0 0
\(859\) 5.01717i 0.171184i 0.996330 + 0.0855919i \(0.0272781\pi\)
−0.996330 + 0.0855919i \(0.972722\pi\)
\(860\) 0 0
\(861\) 88.5018i 3.01613i
\(862\) 0 0
\(863\) 48.4943 1.65077 0.825383 0.564573i \(-0.190959\pi\)
0.825383 + 0.564573i \(0.190959\pi\)
\(864\) 0 0
\(865\) −9.66571 −0.328644
\(866\) 0 0
\(867\) 44.0127i 1.49475i
\(868\) 0 0
\(869\) − 6.97475i − 0.236602i
\(870\) 0 0
\(871\) −30.3280 −1.02762
\(872\) 0 0
\(873\) −91.8237 −3.10776
\(874\) 0 0
\(875\) − 2.81229i − 0.0950729i
\(876\) 0 0
\(877\) − 9.26377i − 0.312815i −0.987693 0.156408i \(-0.950009\pi\)
0.987693 0.156408i \(-0.0499913\pi\)
\(878\) 0 0
\(879\) 85.1085 2.87064
\(880\) 0 0
\(881\) 14.0630 0.473793 0.236897 0.971535i \(-0.423870\pi\)
0.236897 + 0.971535i \(0.423870\pi\)
\(882\) 0 0
\(883\) 48.1637i 1.62084i 0.585850 + 0.810419i \(0.300761\pi\)
−0.585850 + 0.810419i \(0.699239\pi\)
\(884\) 0 0
\(885\) − 4.55868i − 0.153238i
\(886\) 0 0
\(887\) −36.5264 −1.22644 −0.613218 0.789914i \(-0.710125\pi\)
−0.613218 + 0.789914i \(0.710125\pi\)
\(888\) 0 0
\(889\) −45.8631 −1.53820
\(890\) 0 0
\(891\) 63.5738i 2.12980i
\(892\) 0 0
\(893\) − 7.80972i − 0.261342i
\(894\) 0 0
\(895\) −20.0228 −0.669288
\(896\) 0 0
\(897\) 18.5191 0.618336
\(898\) 0 0
\(899\) − 4.55485i − 0.151913i
\(900\) 0 0
\(901\) − 14.5432i − 0.484504i
\(902\) 0 0
\(903\) −81.6788 −2.71810
\(904\) 0 0
\(905\) 3.56175 0.118396
\(906\) 0 0
\(907\) − 48.6955i − 1.61691i −0.588560 0.808454i \(-0.700305\pi\)
0.588560 0.808454i \(-0.299695\pi\)
\(908\) 0 0
\(909\) 76.5874i 2.54024i
\(910\) 0 0
\(911\) 37.7398 1.25038 0.625188 0.780474i \(-0.285022\pi\)
0.625188 + 0.780474i \(0.285022\pi\)
\(912\) 0 0
\(913\) 70.4366 2.33111
\(914\) 0 0
\(915\) − 23.6894i − 0.783149i
\(916\) 0 0
\(917\) 23.2511i 0.767820i
\(918\) 0 0
\(919\) −1.08745 −0.0358718 −0.0179359 0.999839i \(-0.505709\pi\)
−0.0179359 + 0.999839i \(0.505709\pi\)
\(920\) 0 0
\(921\) 32.9538 1.08586
\(922\) 0 0
\(923\) − 4.25883i − 0.140181i
\(924\) 0 0
\(925\) 6.69976i 0.220287i
\(926\) 0 0
\(927\) −114.852 −3.77224
\(928\) 0 0
\(929\) 7.94724 0.260740 0.130370 0.991465i \(-0.458383\pi\)
0.130370 + 0.991465i \(0.458383\pi\)
\(930\) 0 0
\(931\) − 0.908997i − 0.0297912i
\(932\) 0 0
\(933\) 45.5714i 1.49194i
\(934\) 0 0
\(935\) −8.20049 −0.268185
\(936\) 0 0
\(937\) −20.6423 −0.674356 −0.337178 0.941441i \(-0.609472\pi\)
−0.337178 + 0.941441i \(0.609472\pi\)
\(938\) 0 0
\(939\) 49.2298i 1.60655i
\(940\) 0 0
\(941\) 2.32808i 0.0758931i 0.999280 + 0.0379466i \(0.0120817\pi\)
−0.999280 + 0.0379466i \(0.987918\pi\)
\(942\) 0 0
\(943\) 15.6090 0.508299
\(944\) 0 0
\(945\) −29.1206 −0.947294
\(946\) 0 0
\(947\) 35.7286i 1.16102i 0.814252 + 0.580511i \(0.197147\pi\)
−0.814252 + 0.580511i \(0.802853\pi\)
\(948\) 0 0
\(949\) − 43.2344i − 1.40345i
\(950\) 0 0
\(951\) −91.4598 −2.96579
\(952\) 0 0
\(953\) 31.4726 1.01950 0.509749 0.860323i \(-0.329738\pi\)
0.509749 + 0.860323i \(0.329738\pi\)
\(954\) 0 0
\(955\) − 18.5078i − 0.598898i
\(956\) 0 0
\(957\) − 9.56305i − 0.309129i
\(958\) 0 0
\(959\) −49.3344 −1.59309
\(960\) 0 0
\(961\) 23.4160 0.755356
\(962\) 0 0
\(963\) − 116.183i − 3.74394i
\(964\) 0 0
\(965\) − 0.891942i − 0.0287126i
\(966\) 0 0
\(967\) −18.4524 −0.593390 −0.296695 0.954972i \(-0.595884\pi\)
−0.296695 + 0.954972i \(0.595884\pi\)
\(968\) 0 0
\(969\) −4.96700 −0.159563
\(970\) 0 0
\(971\) 13.8572i 0.444698i 0.974967 + 0.222349i \(0.0713724\pi\)
−0.974967 + 0.222349i \(0.928628\pi\)
\(972\) 0 0
\(973\) − 2.47153i − 0.0792336i
\(974\) 0 0
\(975\) 12.1904 0.390404
\(976\) 0 0
\(977\) −12.4100 −0.397032 −0.198516 0.980098i \(-0.563612\pi\)
−0.198516 + 0.980098i \(0.563612\pi\)
\(978\) 0 0
\(979\) 3.58525i 0.114585i
\(980\) 0 0
\(981\) 9.01204i 0.287732i
\(982\) 0 0
\(983\) −24.7262 −0.788643 −0.394322 0.918973i \(-0.629020\pi\)
−0.394322 + 0.918973i \(0.629020\pi\)
\(984\) 0 0
\(985\) −12.9518 −0.412678
\(986\) 0 0
\(987\) − 67.2691i − 2.14120i
\(988\) 0 0
\(989\) 14.4056i 0.458073i
\(990\) 0 0
\(991\) −25.6353 −0.814334 −0.407167 0.913354i \(-0.633483\pi\)
−0.407167 + 0.913354i \(0.633483\pi\)
\(992\) 0 0
\(993\) 54.0832 1.71628
\(994\) 0 0
\(995\) − 6.52220i − 0.206768i
\(996\) 0 0
\(997\) 14.5038i 0.459339i 0.973269 + 0.229669i \(0.0737645\pi\)
−0.973269 + 0.229669i \(0.926236\pi\)
\(998\) 0 0
\(999\) 69.3744 2.19491
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3040.2.f.b.1521.4 44
4.3 odd 2 760.2.f.b.381.12 yes 44
8.3 odd 2 760.2.f.b.381.11 44
8.5 even 2 inner 3040.2.f.b.1521.41 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
760.2.f.b.381.11 44 8.3 odd 2
760.2.f.b.381.12 yes 44 4.3 odd 2
3040.2.f.b.1521.4 44 1.1 even 1 trivial
3040.2.f.b.1521.41 44 8.5 even 2 inner