Properties

Label 760.2.f.b.381.12
Level $760$
Weight $2$
Character 760.381
Analytic conductor $6.069$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [760,2,Mod(381,760)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(760, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("760.381"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 760 = 2^{3} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 760.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [44] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.06863055362\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 381.12
Character \(\chi\) \(=\) 760.381
Dual form 760.2.f.b.381.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.862980 + 1.12039i) q^{2} +3.06281i q^{3} +(-0.510530 - 1.93374i) q^{4} +1.00000i q^{5} +(-3.43153 - 2.64314i) q^{6} -2.81229 q^{7} +(2.60712 + 1.09679i) q^{8} -6.38080 q^{9} +(-1.12039 - 0.862980i) q^{10} -5.05668i q^{11} +(5.92268 - 1.56366i) q^{12} -3.98012i q^{13} +(2.42695 - 3.15085i) q^{14} -3.06281 q^{15} +(-3.47872 + 1.97447i) q^{16} +1.62171 q^{17} +(5.50651 - 7.14896i) q^{18} +1.00000i q^{19} +(1.93374 - 0.510530i) q^{20} -8.61352i q^{21} +(5.66544 + 4.36382i) q^{22} +1.51916 q^{23} +(-3.35926 + 7.98510i) q^{24} -1.00000 q^{25} +(4.45928 + 3.43477i) q^{26} -10.3548i q^{27} +(1.43576 + 5.43825i) q^{28} -0.617462i q^{29} +(2.64314 - 3.43153i) q^{30} -7.37672 q^{31} +(0.789902 - 5.60143i) q^{32} +15.4877 q^{33} +(-1.39951 + 1.81694i) q^{34} -2.81229i q^{35} +(3.25759 + 12.3388i) q^{36} -6.69976i q^{37} +(-1.12039 - 0.862980i) q^{38} +12.1904 q^{39} +(-1.09679 + 2.60712i) q^{40} -10.2747 q^{41} +(9.65047 + 7.43330i) q^{42} +9.48263i q^{43} +(-9.77832 + 2.58159i) q^{44} -6.38080i q^{45} +(-1.31101 + 1.70205i) q^{46} -7.80972 q^{47} +(-6.04741 - 10.6547i) q^{48} +0.908997 q^{49} +(0.862980 - 1.12039i) q^{50} +4.96700i q^{51} +(-7.69654 + 2.03197i) q^{52} -8.96779i q^{53} +(11.6013 + 8.93595i) q^{54} +5.05668 q^{55} +(-7.33197 - 3.08450i) q^{56} -3.06281 q^{57} +(0.691796 + 0.532858i) q^{58} +1.48840i q^{59} +(1.56366 + 5.92268i) q^{60} -7.73455i q^{61} +(6.36597 - 8.26478i) q^{62} +17.9447 q^{63} +(5.59410 + 5.71892i) q^{64} +3.98012 q^{65} +(-13.3655 + 17.3522i) q^{66} +7.61986i q^{67} +(-0.827933 - 3.13597i) q^{68} +4.65290i q^{69} +(3.15085 + 2.42695i) q^{70} -1.07002 q^{71} +(-16.6355 - 6.99841i) q^{72} +10.8626 q^{73} +(7.50632 + 5.78176i) q^{74} -3.06281i q^{75} +(1.93374 - 0.510530i) q^{76} +14.2209i q^{77} +(-10.5200 + 13.6579i) q^{78} +1.37931 q^{79} +(-1.97447 - 3.47872i) q^{80} +12.5722 q^{81} +(8.86691 - 11.5117i) q^{82} +13.9294i q^{83} +(-16.6563 + 4.39746i) q^{84} +1.62171i q^{85} +(-10.6242 - 8.18332i) q^{86} +1.89117 q^{87} +(5.54613 - 13.1834i) q^{88} +0.709012 q^{89} +(7.14896 + 5.50651i) q^{90} +11.1933i q^{91} +(-0.775577 - 2.93767i) q^{92} -22.5935i q^{93} +(6.73963 - 8.74990i) q^{94} -1.00000 q^{95} +(17.1561 + 2.41932i) q^{96} +14.3906 q^{97} +(-0.784447 + 1.01843i) q^{98} +32.2657i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 2 q^{2} - 2 q^{4} - 6 q^{6} + 4 q^{7} + 8 q^{8} - 60 q^{9} + 4 q^{12} + 4 q^{14} - 6 q^{16} + 24 q^{17} - 14 q^{18} - 4 q^{20} - 4 q^{22} + 4 q^{23} + 2 q^{24} - 44 q^{25} + 18 q^{26} - 14 q^{28}+ \cdots + 78 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/760\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(381\) \(401\) \(457\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.862980 + 1.12039i −0.610219 + 0.792233i
\(3\) 3.06281i 1.76831i 0.467190 + 0.884157i \(0.345266\pi\)
−0.467190 + 0.884157i \(0.654734\pi\)
\(4\) −0.510530 1.93374i −0.255265 0.966871i
\(5\) 1.00000i 0.447214i
\(6\) −3.43153 2.64314i −1.40092 1.07906i
\(7\) −2.81229 −1.06295 −0.531474 0.847075i \(-0.678362\pi\)
−0.531474 + 0.847075i \(0.678362\pi\)
\(8\) 2.60712 + 1.09679i 0.921754 + 0.387774i
\(9\) −6.38080 −2.12693
\(10\) −1.12039 0.862980i −0.354297 0.272898i
\(11\) 5.05668i 1.52465i −0.647196 0.762324i \(-0.724058\pi\)
0.647196 0.762324i \(-0.275942\pi\)
\(12\) 5.92268 1.56366i 1.70973 0.451388i
\(13\) 3.98012i 1.10389i −0.833881 0.551944i \(-0.813886\pi\)
0.833881 0.551944i \(-0.186114\pi\)
\(14\) 2.42695 3.15085i 0.648631 0.842101i
\(15\) −3.06281 −0.790814
\(16\) −3.47872 + 1.97447i −0.869680 + 0.493616i
\(17\) 1.62171 0.393323 0.196662 0.980471i \(-0.436990\pi\)
0.196662 + 0.980471i \(0.436990\pi\)
\(18\) 5.50651 7.14896i 1.29790 1.68503i
\(19\) 1.00000i 0.229416i
\(20\) 1.93374 0.510530i 0.432398 0.114158i
\(21\) 8.61352i 1.87962i
\(22\) 5.66544 + 4.36382i 1.20788 + 0.930369i
\(23\) 1.51916 0.316767 0.158384 0.987378i \(-0.449372\pi\)
0.158384 + 0.987378i \(0.449372\pi\)
\(24\) −3.35926 + 7.98510i −0.685707 + 1.62995i
\(25\) −1.00000 −0.200000
\(26\) 4.45928 + 3.43477i 0.874536 + 0.673614i
\(27\) 10.3548i 1.99277i
\(28\) 1.43576 + 5.43825i 0.271333 + 1.02773i
\(29\) 0.617462i 0.114660i −0.998355 0.0573299i \(-0.981741\pi\)
0.998355 0.0573299i \(-0.0182587\pi\)
\(30\) 2.64314 3.43153i 0.482570 0.626509i
\(31\) −7.37672 −1.32490 −0.662449 0.749107i \(-0.730483\pi\)
−0.662449 + 0.749107i \(0.730483\pi\)
\(32\) 0.789902 5.60143i 0.139636 0.990203i
\(33\) 15.4877 2.69606
\(34\) −1.39951 + 1.81694i −0.240013 + 0.311603i
\(35\) 2.81229i 0.475364i
\(36\) 3.25759 + 12.3388i 0.542932 + 2.05647i
\(37\) 6.69976i 1.10143i −0.834692 0.550717i \(-0.814354\pi\)
0.834692 0.550717i \(-0.185646\pi\)
\(38\) −1.12039 0.862980i −0.181751 0.139994i
\(39\) 12.1904 1.95202
\(40\) −1.09679 + 2.60712i −0.173418 + 0.412221i
\(41\) −10.2747 −1.60465 −0.802323 0.596890i \(-0.796403\pi\)
−0.802323 + 0.596890i \(0.796403\pi\)
\(42\) 9.65047 + 7.43330i 1.48910 + 1.14698i
\(43\) 9.48263i 1.44609i 0.690802 + 0.723044i \(0.257257\pi\)
−0.690802 + 0.723044i \(0.742743\pi\)
\(44\) −9.77832 + 2.58159i −1.47414 + 0.389189i
\(45\) 6.38080i 0.951194i
\(46\) −1.31101 + 1.70205i −0.193297 + 0.250953i
\(47\) −7.80972 −1.13916 −0.569582 0.821934i \(-0.692895\pi\)
−0.569582 + 0.821934i \(0.692895\pi\)
\(48\) −6.04741 10.6547i −0.872869 1.53787i
\(49\) 0.908997 0.129857
\(50\) 0.862980 1.12039i 0.122044 0.158447i
\(51\) 4.96700i 0.695519i
\(52\) −7.69654 + 2.03197i −1.06732 + 0.281784i
\(53\) 8.96779i 1.23182i −0.787816 0.615910i \(-0.788788\pi\)
0.787816 0.615910i \(-0.211212\pi\)
\(54\) 11.6013 + 8.93595i 1.57874 + 1.21603i
\(55\) 5.05668 0.681843
\(56\) −7.33197 3.08450i −0.979776 0.412184i
\(57\) −3.06281 −0.405679
\(58\) 0.691796 + 0.532858i 0.0908373 + 0.0699677i
\(59\) 1.48840i 0.193773i 0.995295 + 0.0968866i \(0.0308884\pi\)
−0.995295 + 0.0968866i \(0.969112\pi\)
\(60\) 1.56366 + 5.92268i 0.201867 + 0.764615i
\(61\) 7.73455i 0.990307i −0.868805 0.495154i \(-0.835112\pi\)
0.868805 0.495154i \(-0.164888\pi\)
\(62\) 6.36597 8.26478i 0.808479 1.04963i
\(63\) 17.9447 2.26082
\(64\) 5.59410 + 5.71892i 0.699262 + 0.714865i
\(65\) 3.98012 0.493674
\(66\) −13.3655 + 17.3522i −1.64519 + 2.13590i
\(67\) 7.61986i 0.930914i 0.885071 + 0.465457i \(0.154110\pi\)
−0.885071 + 0.465457i \(0.845890\pi\)
\(68\) −0.827933 3.13597i −0.100402 0.380293i
\(69\) 4.65290i 0.560144i
\(70\) 3.15085 + 2.42695i 0.376599 + 0.290077i
\(71\) −1.07002 −0.126989 −0.0634943 0.997982i \(-0.520224\pi\)
−0.0634943 + 0.997982i \(0.520224\pi\)
\(72\) −16.6355 6.99841i −1.96051 0.824770i
\(73\) 10.8626 1.27137 0.635685 0.771949i \(-0.280718\pi\)
0.635685 + 0.771949i \(0.280718\pi\)
\(74\) 7.50632 + 5.78176i 0.872592 + 0.672116i
\(75\) 3.06281i 0.353663i
\(76\) 1.93374 0.510530i 0.221815 0.0585618i
\(77\) 14.2209i 1.62062i
\(78\) −10.5200 + 13.6579i −1.19116 + 1.54645i
\(79\) 1.37931 0.155185 0.0775924 0.996985i \(-0.475277\pi\)
0.0775924 + 0.996985i \(0.475277\pi\)
\(80\) −1.97447 3.47872i −0.220752 0.388933i
\(81\) 12.5722 1.39691
\(82\) 8.86691 11.5117i 0.979186 1.27125i
\(83\) 13.9294i 1.52895i 0.644653 + 0.764475i \(0.277002\pi\)
−0.644653 + 0.764475i \(0.722998\pi\)
\(84\) −16.6563 + 4.39746i −1.81735 + 0.479802i
\(85\) 1.62171i 0.175899i
\(86\) −10.6242 8.18332i −1.14564 0.882430i
\(87\) 1.89117 0.202755
\(88\) 5.54613 13.1834i 0.591219 1.40535i
\(89\) 0.709012 0.0751551 0.0375776 0.999294i \(-0.488036\pi\)
0.0375776 + 0.999294i \(0.488036\pi\)
\(90\) 7.14896 + 5.50651i 0.753567 + 0.580437i
\(91\) 11.1933i 1.17337i
\(92\) −0.775577 2.93767i −0.0808595 0.306273i
\(93\) 22.5935i 2.34284i
\(94\) 6.73963 8.74990i 0.695140 0.902483i
\(95\) −1.00000 −0.102598
\(96\) 17.1561 + 2.41932i 1.75099 + 0.246921i
\(97\) 14.3906 1.46115 0.730573 0.682835i \(-0.239253\pi\)
0.730573 + 0.682835i \(0.239253\pi\)
\(98\) −0.784447 + 1.01843i −0.0792411 + 0.102877i
\(99\) 32.2657i 3.24282i
\(100\) 0.510530 + 1.93374i 0.0510530 + 0.193374i
\(101\) 12.0028i 1.19432i −0.802121 0.597161i \(-0.796295\pi\)
0.802121 0.597161i \(-0.203705\pi\)
\(102\) −5.56495 4.28642i −0.551013 0.424419i
\(103\) −17.9996 −1.77356 −0.886778 0.462195i \(-0.847062\pi\)
−0.886778 + 0.462195i \(0.847062\pi\)
\(104\) 4.36537 10.3766i 0.428059 1.01751i
\(105\) 8.61352 0.840594
\(106\) 10.0474 + 7.73903i 0.975889 + 0.751681i
\(107\) 18.2082i 1.76025i −0.474738 0.880127i \(-0.657457\pi\)
0.474738 0.880127i \(-0.342543\pi\)
\(108\) −20.0234 + 5.28641i −1.92675 + 0.508685i
\(109\) 1.41237i 0.135280i −0.997710 0.0676402i \(-0.978453\pi\)
0.997710 0.0676402i \(-0.0215470\pi\)
\(110\) −4.36382 + 5.66544i −0.416074 + 0.540178i
\(111\) 20.5201 1.94768
\(112\) 9.78318 5.55278i 0.924424 0.524688i
\(113\) −4.53336 −0.426463 −0.213231 0.977002i \(-0.568399\pi\)
−0.213231 + 0.977002i \(0.568399\pi\)
\(114\) 2.64314 3.43153i 0.247553 0.321392i
\(115\) 1.51916i 0.141663i
\(116\) −1.19401 + 0.315233i −0.110861 + 0.0292686i
\(117\) 25.3964i 2.34790i
\(118\) −1.66758 1.28446i −0.153513 0.118244i
\(119\) −4.56073 −0.418082
\(120\) −7.98510 3.35926i −0.728936 0.306657i
\(121\) −14.5701 −1.32455
\(122\) 8.66568 + 6.67476i 0.784554 + 0.604305i
\(123\) 31.4696i 2.83752i
\(124\) 3.76604 + 14.2647i 0.338200 + 1.28101i
\(125\) 1.00000i 0.0894427i
\(126\) −15.4859 + 20.1050i −1.37960 + 1.79109i
\(127\) 16.3081 1.44711 0.723554 0.690268i \(-0.242507\pi\)
0.723554 + 0.690268i \(0.242507\pi\)
\(128\) −11.2350 + 1.33223i −0.993043 + 0.117754i
\(129\) −29.0435 −2.55714
\(130\) −3.43477 + 4.45928i −0.301249 + 0.391104i
\(131\) 8.26767i 0.722350i −0.932498 0.361175i \(-0.882376\pi\)
0.932498 0.361175i \(-0.117624\pi\)
\(132\) −7.90691 29.9491i −0.688208 2.60674i
\(133\) 2.81229i 0.243857i
\(134\) −8.53718 6.57579i −0.737500 0.568062i
\(135\) 10.3548 0.891195
\(136\) 4.22799 + 1.77868i 0.362547 + 0.152521i
\(137\) −17.5424 −1.49875 −0.749374 0.662147i \(-0.769646\pi\)
−0.749374 + 0.662147i \(0.769646\pi\)
\(138\) −5.21305 4.01536i −0.443764 0.341811i
\(139\) 0.878831i 0.0745414i 0.999305 + 0.0372707i \(0.0118664\pi\)
−0.999305 + 0.0372707i \(0.988134\pi\)
\(140\) −5.43825 + 1.43576i −0.459616 + 0.121344i
\(141\) 23.9197i 2.01440i
\(142\) 0.923410 1.19884i 0.0774909 0.100604i
\(143\) −20.1262 −1.68304
\(144\) 22.1970 12.5987i 1.84975 1.04989i
\(145\) 0.617462 0.0512775
\(146\) −9.37420 + 12.1703i −0.775814 + 1.00722i
\(147\) 2.78409i 0.229627i
\(148\) −12.9556 + 3.42043i −1.06494 + 0.281157i
\(149\) 8.52396i 0.698310i −0.937065 0.349155i \(-0.886469\pi\)
0.937065 0.349155i \(-0.113531\pi\)
\(150\) 3.43153 + 2.64314i 0.280183 + 0.215812i
\(151\) −15.8403 −1.28906 −0.644531 0.764578i \(-0.722947\pi\)
−0.644531 + 0.764578i \(0.722947\pi\)
\(152\) −1.09679 + 2.60712i −0.0889615 + 0.211465i
\(153\) −10.3478 −0.836572
\(154\) −15.9329 12.2723i −1.28391 0.988934i
\(155\) 7.37672i 0.592513i
\(156\) −6.22354 23.5730i −0.498282 1.88735i
\(157\) 0.882769i 0.0704527i −0.999379 0.0352263i \(-0.988785\pi\)
0.999379 0.0352263i \(-0.0112152\pi\)
\(158\) −1.19032 + 1.54536i −0.0946968 + 0.122942i
\(159\) 27.4666 2.17825
\(160\) 5.60143 + 0.789902i 0.442832 + 0.0624473i
\(161\) −4.27233 −0.336707
\(162\) −10.8496 + 14.0858i −0.852424 + 1.10668i
\(163\) 8.67648i 0.679594i 0.940499 + 0.339797i \(0.110358\pi\)
−0.940499 + 0.339797i \(0.889642\pi\)
\(164\) 5.24556 + 19.8687i 0.409610 + 1.55149i
\(165\) 15.4877i 1.20571i
\(166\) −15.6063 12.0208i −1.21128 0.932995i
\(167\) −21.7621 −1.68400 −0.842001 0.539476i \(-0.818622\pi\)
−0.842001 + 0.539476i \(0.818622\pi\)
\(168\) 9.44724 22.4564i 0.728870 1.73255i
\(169\) −2.84139 −0.218569
\(170\) −1.81694 1.39951i −0.139353 0.107337i
\(171\) 6.38080i 0.487952i
\(172\) 18.3370 4.84116i 1.39818 0.369135i
\(173\) 9.66571i 0.734870i 0.930049 + 0.367435i \(0.119764\pi\)
−0.930049 + 0.367435i \(0.880236\pi\)
\(174\) −1.63204 + 2.11884i −0.123725 + 0.160629i
\(175\) 2.81229 0.212589
\(176\) 9.98425 + 17.5908i 0.752591 + 1.32596i
\(177\) −4.55868 −0.342652
\(178\) −0.611864 + 0.794367i −0.0458611 + 0.0595404i
\(179\) 20.0228i 1.49657i −0.663376 0.748286i \(-0.730877\pi\)
0.663376 0.748286i \(-0.269123\pi\)
\(180\) −12.3388 + 3.25759i −0.919682 + 0.242806i
\(181\) 3.56175i 0.264742i −0.991200 0.132371i \(-0.957741\pi\)
0.991200 0.132371i \(-0.0422591\pi\)
\(182\) −12.5408 9.65958i −0.929586 0.716016i
\(183\) 23.6894 1.75117
\(184\) 3.96063 + 1.66620i 0.291982 + 0.122834i
\(185\) 6.69976 0.492576
\(186\) 25.3134 + 19.4977i 1.85607 + 1.42964i
\(187\) 8.20049i 0.599679i
\(188\) 3.98709 + 15.1020i 0.290789 + 1.10142i
\(189\) 29.1206i 2.11821i
\(190\) 0.862980 1.12039i 0.0626072 0.0812813i
\(191\) 18.5078 1.33918 0.669589 0.742732i \(-0.266470\pi\)
0.669589 + 0.742732i \(0.266470\pi\)
\(192\) −17.5160 + 17.1337i −1.26411 + 1.23652i
\(193\) −0.891942 −0.0642034 −0.0321017 0.999485i \(-0.510220\pi\)
−0.0321017 + 0.999485i \(0.510220\pi\)
\(194\) −12.4188 + 16.1230i −0.891619 + 1.15757i
\(195\) 12.1904i 0.872970i
\(196\) −0.464070 1.75777i −0.0331479 0.125555i
\(197\) 12.9518i 0.922776i 0.887198 + 0.461388i \(0.152648\pi\)
−0.887198 + 0.461388i \(0.847352\pi\)
\(198\) −36.1500 27.8447i −2.56907 1.97883i
\(199\) 6.52220 0.462347 0.231173 0.972913i \(-0.425744\pi\)
0.231173 + 0.972913i \(0.425744\pi\)
\(200\) −2.60712 1.09679i −0.184351 0.0775549i
\(201\) −23.3382 −1.64615
\(202\) 13.4478 + 10.3582i 0.946181 + 0.728798i
\(203\) 1.73649i 0.121877i
\(204\) 9.60489 2.53580i 0.672477 0.177541i
\(205\) 10.2747i 0.717620i
\(206\) 15.5333 20.1665i 1.08226 1.40507i
\(207\) −9.69347 −0.673743
\(208\) 7.85862 + 13.8457i 0.544897 + 0.960029i
\(209\) 5.05668 0.349778
\(210\) −7.43330 + 9.65047i −0.512946 + 0.665946i
\(211\) 26.7423i 1.84102i −0.390724 0.920508i \(-0.627775\pi\)
0.390724 0.920508i \(-0.372225\pi\)
\(212\) −17.3414 + 4.57832i −1.19101 + 0.314441i
\(213\) 3.27728i 0.224556i
\(214\) 20.4002 + 15.7133i 1.39453 + 1.07414i
\(215\) −9.48263 −0.646710
\(216\) 11.3570 26.9960i 0.772746 1.83685i
\(217\) 20.7455 1.40830
\(218\) 1.58240 + 1.21885i 0.107173 + 0.0825507i
\(219\) 33.2700i 2.24818i
\(220\) −2.58159 9.77832i −0.174051 0.659254i
\(221\) 6.45462i 0.434185i
\(222\) −17.7084 + 22.9904i −1.18851 + 1.54302i
\(223\) −1.22439 −0.0819910 −0.0409955 0.999159i \(-0.513053\pi\)
−0.0409955 + 0.999159i \(0.513053\pi\)
\(224\) −2.22144 + 15.7529i −0.148426 + 1.05253i
\(225\) 6.38080 0.425387
\(226\) 3.91220 5.07912i 0.260236 0.337858i
\(227\) 15.1423i 1.00503i 0.864568 + 0.502516i \(0.167592\pi\)
−0.864568 + 0.502516i \(0.832408\pi\)
\(228\) 1.56366 + 5.92268i 0.103556 + 0.392239i
\(229\) 8.06769i 0.533128i 0.963817 + 0.266564i \(0.0858884\pi\)
−0.963817 + 0.266564i \(0.914112\pi\)
\(230\) −1.70205 1.31101i −0.112230 0.0864452i
\(231\) −43.5559 −2.86576
\(232\) 0.677227 1.60980i 0.0444622 0.105688i
\(233\) −18.1011 −1.18584 −0.592922 0.805260i \(-0.702026\pi\)
−0.592922 + 0.805260i \(0.702026\pi\)
\(234\) −28.4538 21.9166i −1.86008 1.43273i
\(235\) 7.80972i 0.509450i
\(236\) 2.87818 0.759872i 0.187354 0.0494635i
\(237\) 4.22457i 0.274415i
\(238\) 3.93582 5.10978i 0.255122 0.331218i
\(239\) −22.5877 −1.46107 −0.730537 0.682873i \(-0.760730\pi\)
−0.730537 + 0.682873i \(0.760730\pi\)
\(240\) 10.6547 6.04741i 0.687755 0.390359i
\(241\) −1.66938 −0.107534 −0.0537671 0.998554i \(-0.517123\pi\)
−0.0537671 + 0.998554i \(0.517123\pi\)
\(242\) 12.5737 16.3241i 0.808266 1.04935i
\(243\) 7.44209i 0.477410i
\(244\) −14.9566 + 3.94872i −0.957499 + 0.252791i
\(245\) 0.908997i 0.0580737i
\(246\) 35.2581 + 27.1576i 2.24797 + 1.73151i
\(247\) 3.98012 0.253249
\(248\) −19.2320 8.09073i −1.22123 0.513762i
\(249\) −42.6631 −2.70366
\(250\) 1.12039 + 0.862980i 0.0708594 + 0.0545797i
\(251\) 3.43312i 0.216697i −0.994113 0.108348i \(-0.965444\pi\)
0.994113 0.108348i \(-0.0345562\pi\)
\(252\) −9.16130 34.7004i −0.577108 2.18592i
\(253\) 7.68192i 0.482958i
\(254\) −14.0735 + 18.2713i −0.883053 + 1.14645i
\(255\) −4.96700 −0.311045
\(256\) 8.20297 13.7372i 0.512686 0.858576i
\(257\) −4.54870 −0.283740 −0.141870 0.989885i \(-0.545312\pi\)
−0.141870 + 0.989885i \(0.545312\pi\)
\(258\) 25.0640 32.5399i 1.56041 2.02585i
\(259\) 18.8417i 1.17077i
\(260\) −2.03197 7.69654i −0.126018 0.477319i
\(261\) 3.93991i 0.243874i
\(262\) 9.26298 + 7.13484i 0.572269 + 0.440792i
\(263\) 11.0906 0.683878 0.341939 0.939722i \(-0.388916\pi\)
0.341939 + 0.939722i \(0.388916\pi\)
\(264\) 40.3781 + 16.9867i 2.48510 + 1.04546i
\(265\) 8.96779 0.550887
\(266\) 3.15085 + 2.42695i 0.193191 + 0.148806i
\(267\) 2.17157i 0.132898i
\(268\) 14.7348 3.89016i 0.900074 0.237630i
\(269\) 0.456872i 0.0278560i 0.999903 + 0.0139280i \(0.00443356\pi\)
−0.999903 + 0.0139280i \(0.995566\pi\)
\(270\) −8.93595 + 11.6013i −0.543825 + 0.706034i
\(271\) −8.24792 −0.501025 −0.250513 0.968113i \(-0.580599\pi\)
−0.250513 + 0.968113i \(0.580599\pi\)
\(272\) −5.64148 + 3.20202i −0.342065 + 0.194151i
\(273\) −34.2829 −2.07489
\(274\) 15.1387 19.6543i 0.914565 1.18736i
\(275\) 5.05668i 0.304930i
\(276\) 8.99752 2.37545i 0.541587 0.142985i
\(277\) 17.0974i 1.02729i 0.858004 + 0.513643i \(0.171704\pi\)
−0.858004 + 0.513643i \(0.828296\pi\)
\(278\) −0.984629 0.758413i −0.0590541 0.0454866i
\(279\) 47.0694 2.81797
\(280\) 3.08450 7.33197i 0.184334 0.438169i
\(281\) 8.94353 0.533527 0.266763 0.963762i \(-0.414046\pi\)
0.266763 + 0.963762i \(0.414046\pi\)
\(282\) 26.7993 + 20.6422i 1.59587 + 1.22923i
\(283\) 32.6729i 1.94220i 0.238671 + 0.971101i \(0.423288\pi\)
−0.238671 + 0.971101i \(0.576712\pi\)
\(284\) 0.546279 + 2.06915i 0.0324157 + 0.122782i
\(285\) 3.06281i 0.181425i
\(286\) 17.3685 22.5491i 1.02702 1.33336i
\(287\) 28.8956 1.70565
\(288\) −5.04021 + 35.7416i −0.296997 + 2.10610i
\(289\) −14.3700 −0.845297
\(290\) −0.532858 + 0.691796i −0.0312905 + 0.0406237i
\(291\) 44.0757i 2.58376i
\(292\) −5.54567 21.0054i −0.324536 1.22925i
\(293\) 27.7877i 1.62338i 0.584091 + 0.811688i \(0.301451\pi\)
−0.584091 + 0.811688i \(0.698549\pi\)
\(294\) −3.11925 2.40261i −0.181918 0.140123i
\(295\) −1.48840 −0.0866580
\(296\) 7.34824 17.4670i 0.427108 1.01525i
\(297\) −52.3607 −3.03828
\(298\) 9.55012 + 7.35601i 0.553224 + 0.426122i
\(299\) 6.04645i 0.349675i
\(300\) −5.92268 + 1.56366i −0.341946 + 0.0902777i
\(301\) 26.6679i 1.53711i
\(302\) 13.6698 17.7472i 0.786610 1.02124i
\(303\) 36.7622 2.11194
\(304\) −1.97447 3.47872i −0.113243 0.199518i
\(305\) 7.73455 0.442879
\(306\) 8.92997 11.5936i 0.510493 0.662760i
\(307\) 10.7593i 0.614067i −0.951699 0.307034i \(-0.900664\pi\)
0.951699 0.307034i \(-0.0993364\pi\)
\(308\) 27.4995 7.26018i 1.56693 0.413687i
\(309\) 55.1294i 3.13620i
\(310\) 8.26478 + 6.36597i 0.469408 + 0.361563i
\(311\) 14.8790 0.843708 0.421854 0.906664i \(-0.361379\pi\)
0.421854 + 0.906664i \(0.361379\pi\)
\(312\) 31.7817 + 13.3703i 1.79928 + 0.756943i
\(313\) −16.0734 −0.908523 −0.454261 0.890868i \(-0.650097\pi\)
−0.454261 + 0.890868i \(0.650097\pi\)
\(314\) 0.989042 + 0.761812i 0.0558149 + 0.0429916i
\(315\) 17.9447i 1.01107i
\(316\) −0.704180 2.66724i −0.0396132 0.150044i
\(317\) 29.8614i 1.67718i −0.544760 0.838592i \(-0.683379\pi\)
0.544760 0.838592i \(-0.316621\pi\)
\(318\) −23.7032 + 30.7732i −1.32921 + 1.72568i
\(319\) −3.12231 −0.174816
\(320\) −5.71892 + 5.59410i −0.319697 + 0.312720i
\(321\) 55.7683 3.11268
\(322\) 3.68694 4.78666i 0.205465 0.266750i
\(323\) 1.62171i 0.0902345i
\(324\) −6.41850 24.3115i −0.356583 1.35064i
\(325\) 3.98012i 0.220778i
\(326\) −9.72101 7.48763i −0.538397 0.414702i
\(327\) 4.32581 0.239218
\(328\) −26.7875 11.2693i −1.47909 0.622241i
\(329\) 21.9632 1.21087
\(330\) −17.3522 13.3655i −0.955205 0.735749i
\(331\) 17.6580i 0.970573i −0.874355 0.485286i \(-0.838715\pi\)
0.874355 0.485286i \(-0.161285\pi\)
\(332\) 26.9359 7.11137i 1.47830 0.390287i
\(333\) 42.7499i 2.34268i
\(334\) 18.7803 24.3819i 1.02761 1.33412i
\(335\) −7.61986 −0.416317
\(336\) 17.0071 + 29.9640i 0.927813 + 1.63467i
\(337\) −17.1181 −0.932482 −0.466241 0.884658i \(-0.654392\pi\)
−0.466241 + 0.884658i \(0.654392\pi\)
\(338\) 2.45206 3.18346i 0.133375 0.173157i
\(339\) 13.8848i 0.754120i
\(340\) 3.13597 0.827933i 0.170072 0.0449009i
\(341\) 37.3018i 2.02000i
\(342\) 7.14896 + 5.50651i 0.386572 + 0.297758i
\(343\) 17.1297 0.924916
\(344\) −10.4005 + 24.7223i −0.560756 + 1.33294i
\(345\) −4.65290 −0.250504
\(346\) −10.8293 8.34132i −0.582188 0.448432i
\(347\) 10.4086i 0.558761i −0.960180 0.279381i \(-0.909871\pi\)
0.960180 0.279381i \(-0.0901291\pi\)
\(348\) −0.965498 3.65703i −0.0517561 0.196038i
\(349\) 22.1049i 1.18325i 0.806214 + 0.591624i \(0.201513\pi\)
−0.806214 + 0.591624i \(0.798487\pi\)
\(350\) −2.42695 + 3.15085i −0.129726 + 0.168420i
\(351\) −41.2132 −2.19980
\(352\) −28.3247 3.99429i −1.50971 0.212896i
\(353\) −7.96563 −0.423968 −0.211984 0.977273i \(-0.567992\pi\)
−0.211984 + 0.977273i \(0.567992\pi\)
\(354\) 3.93405 5.10749i 0.209093 0.271460i
\(355\) 1.07002i 0.0567910i
\(356\) −0.361972 1.37105i −0.0191845 0.0726653i
\(357\) 13.9687i 0.739300i
\(358\) 22.4332 + 17.2793i 1.18563 + 0.913238i
\(359\) −32.8817 −1.73543 −0.867715 0.497062i \(-0.834412\pi\)
−0.867715 + 0.497062i \(0.834412\pi\)
\(360\) 6.99841 16.6355i 0.368849 0.876767i
\(361\) −1.00000 −0.0526316
\(362\) 3.99053 + 3.07372i 0.209738 + 0.161551i
\(363\) 44.6253i 2.34222i
\(364\) 21.6449 5.71450i 1.13450 0.299521i
\(365\) 10.8626i 0.568574i
\(366\) −20.4435 + 26.5413i −1.06860 + 1.38734i
\(367\) 8.35897 0.436335 0.218167 0.975911i \(-0.429992\pi\)
0.218167 + 0.975911i \(0.429992\pi\)
\(368\) −5.28474 + 2.99953i −0.275486 + 0.156361i
\(369\) 65.5611 3.41298
\(370\) −5.78176 + 7.50632i −0.300580 + 0.390235i
\(371\) 25.2201i 1.30936i
\(372\) −43.6900 + 11.5347i −2.26522 + 0.598044i
\(373\) 5.73299i 0.296843i −0.988924 0.148422i \(-0.952581\pi\)
0.988924 0.148422i \(-0.0474192\pi\)
\(374\) 9.18771 + 7.07686i 0.475085 + 0.365936i
\(375\) 3.06281 0.158163
\(376\) −20.3608 8.56563i −1.05003 0.441739i
\(377\) −2.45758 −0.126572
\(378\) −32.6263 25.1305i −1.67812 1.29257i
\(379\) 26.5868i 1.36567i 0.730571 + 0.682836i \(0.239254\pi\)
−0.730571 + 0.682836i \(0.760746\pi\)
\(380\) 0.510530 + 1.93374i 0.0261896 + 0.0991989i
\(381\) 49.9485i 2.55894i
\(382\) −15.9719 + 20.7359i −0.817192 + 1.06094i
\(383\) −12.1889 −0.622824 −0.311412 0.950275i \(-0.600802\pi\)
−0.311412 + 0.950275i \(0.600802\pi\)
\(384\) −4.08037 34.4107i −0.208225 1.75601i
\(385\) −14.2209 −0.724763
\(386\) 0.769728 0.999319i 0.0391781 0.0508640i
\(387\) 60.5068i 3.07573i
\(388\) −7.34684 27.8277i −0.372979 1.41274i
\(389\) 17.2618i 0.875209i −0.899168 0.437605i \(-0.855827\pi\)
0.899168 0.437605i \(-0.144173\pi\)
\(390\) −13.6579 10.5200i −0.691595 0.532703i
\(391\) 2.46364 0.124592
\(392\) 2.36986 + 0.996980i 0.119696 + 0.0503551i
\(393\) 25.3223 1.27734
\(394\) −14.5110 11.1771i −0.731053 0.563096i
\(395\) 1.37931i 0.0694008i
\(396\) 62.3936 16.4726i 3.13539 0.827779i
\(397\) 0.694542i 0.0348581i 0.999848 + 0.0174290i \(0.00554812\pi\)
−0.999848 + 0.0174290i \(0.994452\pi\)
\(398\) −5.62853 + 7.30739i −0.282133 + 0.366286i
\(399\) 8.61352 0.431215
\(400\) 3.47872 1.97447i 0.173936 0.0987233i
\(401\) 24.2182 1.20940 0.604700 0.796454i \(-0.293293\pi\)
0.604700 + 0.796454i \(0.293293\pi\)
\(402\) 20.1404 26.1478i 1.00451 1.30413i
\(403\) 29.3603i 1.46254i
\(404\) −23.2103 + 6.12778i −1.15476 + 0.304868i
\(405\) 12.5722i 0.624719i
\(406\) −1.94553 1.49855i −0.0965552 0.0743719i
\(407\) −33.8786 −1.67930
\(408\) −5.44776 + 12.9495i −0.269704 + 0.641097i
\(409\) 27.3171 1.35074 0.675371 0.737478i \(-0.263983\pi\)
0.675371 + 0.737478i \(0.263983\pi\)
\(410\) 11.5117 + 8.86691i 0.568522 + 0.437905i
\(411\) 53.7290i 2.65026i
\(412\) 9.18935 + 34.8067i 0.452727 + 1.71480i
\(413\) 4.18582i 0.205971i
\(414\) 8.36528 10.8604i 0.411131 0.533761i
\(415\) −13.9294 −0.683767
\(416\) −22.2944 3.14391i −1.09307 0.154143i
\(417\) −2.69169 −0.131813
\(418\) −4.36382 + 5.66544i −0.213441 + 0.277106i
\(419\) 7.94266i 0.388024i −0.980999 0.194012i \(-0.937850\pi\)
0.980999 0.194012i \(-0.0621501\pi\)
\(420\) −4.39746 16.6563i −0.214574 0.812746i
\(421\) 24.3855i 1.18848i 0.804289 + 0.594239i \(0.202547\pi\)
−0.804289 + 0.594239i \(0.797453\pi\)
\(422\) 29.9617 + 23.0781i 1.45851 + 1.12342i
\(423\) 49.8322 2.42293
\(424\) 9.83580 23.3801i 0.477668 1.13544i
\(425\) −1.62171 −0.0786646
\(426\) 3.67182 + 2.82823i 0.177900 + 0.137028i
\(427\) 21.7518i 1.05264i
\(428\) −35.2100 + 9.29583i −1.70194 + 0.449331i
\(429\) 61.6428i 2.97614i
\(430\) 8.18332 10.6242i 0.394635 0.512345i
\(431\) −18.7021 −0.900850 −0.450425 0.892814i \(-0.648728\pi\)
−0.450425 + 0.892814i \(0.648728\pi\)
\(432\) 20.4451 + 36.0213i 0.983666 + 1.73307i
\(433\) 23.9396 1.15047 0.575233 0.817990i \(-0.304911\pi\)
0.575233 + 0.817990i \(0.304911\pi\)
\(434\) −17.9030 + 23.2430i −0.859370 + 1.11570i
\(435\) 1.89117i 0.0906746i
\(436\) −2.73116 + 0.721056i −0.130799 + 0.0345323i
\(437\) 1.51916i 0.0726714i
\(438\) −37.2753 28.7114i −1.78108 1.37188i
\(439\) −7.24965 −0.346007 −0.173003 0.984921i \(-0.555347\pi\)
−0.173003 + 0.984921i \(0.555347\pi\)
\(440\) 13.1834 + 5.54613i 0.628492 + 0.264401i
\(441\) −5.80013 −0.276197
\(442\) 7.23166 + 5.57021i 0.343975 + 0.264948i
\(443\) 26.9821i 1.28196i −0.767558 0.640979i \(-0.778529\pi\)
0.767558 0.640979i \(-0.221471\pi\)
\(444\) −10.4761 39.6806i −0.497174 1.88316i
\(445\) 0.709012i 0.0336104i
\(446\) 1.05662 1.37179i 0.0500325 0.0649560i
\(447\) 26.1073 1.23483
\(448\) −15.7322 16.0833i −0.743279 0.759864i
\(449\) 16.5865 0.782767 0.391384 0.920228i \(-0.371997\pi\)
0.391384 + 0.920228i \(0.371997\pi\)
\(450\) −5.50651 + 7.14896i −0.259579 + 0.337005i
\(451\) 51.9562i 2.44652i
\(452\) 2.31442 + 8.76636i 0.108861 + 0.412335i
\(453\) 48.5157i 2.27947i
\(454\) −16.9653 13.0675i −0.796219 0.613290i
\(455\) −11.1933 −0.524749
\(456\) −7.98510 3.35926i −0.373936 0.157312i
\(457\) 5.05916 0.236657 0.118329 0.992974i \(-0.462246\pi\)
0.118329 + 0.992974i \(0.462246\pi\)
\(458\) −9.03893 6.96226i −0.422361 0.325325i
\(459\) 16.7924i 0.783804i
\(460\) 2.93767 0.775577i 0.136969 0.0361615i
\(461\) 6.93588i 0.323036i −0.986870 0.161518i \(-0.948361\pi\)
0.986870 0.161518i \(-0.0516390\pi\)
\(462\) 37.5878 48.7994i 1.74874 2.27035i
\(463\) 7.62487 0.354358 0.177179 0.984179i \(-0.443303\pi\)
0.177179 + 0.984179i \(0.443303\pi\)
\(464\) 1.21916 + 2.14798i 0.0565980 + 0.0997174i
\(465\) 22.5935 1.04775
\(466\) 15.6209 20.2803i 0.723625 0.939465i
\(467\) 3.20732i 0.148417i −0.997243 0.0742086i \(-0.976357\pi\)
0.997243 0.0742086i \(-0.0236431\pi\)
\(468\) 49.1101 12.9656i 2.27011 0.599336i
\(469\) 21.4293i 0.989512i
\(470\) 8.74990 + 6.73963i 0.403603 + 0.310876i
\(471\) 2.70375 0.124582
\(472\) −1.63246 + 3.88043i −0.0751402 + 0.178611i
\(473\) 47.9507 2.20477
\(474\) −4.73315 3.64572i −0.217401 0.167454i
\(475\) 1.00000i 0.0458831i
\(476\) 2.32839 + 8.81928i 0.106722 + 0.404231i
\(477\) 57.2217i 2.62000i
\(478\) 19.4927 25.3069i 0.891576 1.15751i
\(479\) 7.68052 0.350932 0.175466 0.984486i \(-0.443857\pi\)
0.175466 + 0.984486i \(0.443857\pi\)
\(480\) −2.41932 + 17.1561i −0.110426 + 0.783066i
\(481\) −26.6659 −1.21586
\(482\) 1.44064 1.87035i 0.0656194 0.0851921i
\(483\) 13.0853i 0.595403i
\(484\) 7.43844 + 28.1747i 0.338111 + 1.28067i
\(485\) 14.3906i 0.653444i
\(486\) −8.33801 6.42238i −0.378220 0.291325i
\(487\) −5.35340 −0.242586 −0.121293 0.992617i \(-0.538704\pi\)
−0.121293 + 0.992617i \(0.538704\pi\)
\(488\) 8.48318 20.1649i 0.384016 0.912820i
\(489\) −26.5744 −1.20174
\(490\) −1.01843 0.784447i −0.0460079 0.0354377i
\(491\) 28.4990i 1.28614i 0.765807 + 0.643070i \(0.222340\pi\)
−0.765807 + 0.643070i \(0.777660\pi\)
\(492\) −60.8541 + 16.0662i −2.74351 + 0.724319i
\(493\) 1.00135i 0.0450984i
\(494\) −3.43477 + 4.45928i −0.154538 + 0.200632i
\(495\) −32.2657 −1.45024
\(496\) 25.6615 14.5651i 1.15224 0.653992i
\(497\) 3.00922 0.134982
\(498\) 36.8174 47.7991i 1.64983 2.14193i
\(499\) 7.57745i 0.339213i 0.985512 + 0.169607i \(0.0542497\pi\)
−0.985512 + 0.169607i \(0.945750\pi\)
\(500\) −1.93374 + 0.510530i −0.0864796 + 0.0228316i
\(501\) 66.6532i 2.97784i
\(502\) 3.84642 + 2.96272i 0.171674 + 0.132233i
\(503\) 3.33433 0.148670 0.0743352 0.997233i \(-0.476317\pi\)
0.0743352 + 0.997233i \(0.476317\pi\)
\(504\) 46.7839 + 19.6816i 2.08392 + 0.876687i
\(505\) 12.0028 0.534117
\(506\) 8.60672 + 6.62935i 0.382615 + 0.294710i
\(507\) 8.70264i 0.386498i
\(508\) −8.32575 31.5356i −0.369396 1.39917i
\(509\) 27.9961i 1.24091i 0.784243 + 0.620454i \(0.213051\pi\)
−0.784243 + 0.620454i \(0.786949\pi\)
\(510\) 4.28642 5.56495i 0.189806 0.246420i
\(511\) −30.5488 −1.35140
\(512\) 8.31199 + 21.0454i 0.367342 + 0.930086i
\(513\) 10.3548 0.457174
\(514\) 3.92544 5.09630i 0.173144 0.224788i
\(515\) 17.9996i 0.793159i
\(516\) 14.8276 + 56.1626i 0.652747 + 2.47242i
\(517\) 39.4913i 1.73682i
\(518\) −21.1100 16.2600i −0.927519 0.714424i
\(519\) −29.6042 −1.29948
\(520\) 10.3766 + 4.36537i 0.455046 + 0.191434i
\(521\) 13.5559 0.593897 0.296948 0.954894i \(-0.404031\pi\)
0.296948 + 0.954894i \(0.404031\pi\)
\(522\) −4.41421 3.40006i −0.193205 0.148817i
\(523\) 5.27502i 0.230660i −0.993327 0.115330i \(-0.963207\pi\)
0.993327 0.115330i \(-0.0367926\pi\)
\(524\) −15.9875 + 4.22089i −0.698419 + 0.184390i
\(525\) 8.61352i 0.375925i
\(526\) −9.57100 + 12.4258i −0.417315 + 0.541790i
\(527\) −11.9629 −0.521113
\(528\) −53.8772 + 30.5799i −2.34470 + 1.33082i
\(529\) −20.6921 −0.899659
\(530\) −7.73903 + 10.0474i −0.336162 + 0.436431i
\(531\) 9.49718i 0.412143i
\(532\) −5.43825 + 1.43576i −0.235778 + 0.0622481i
\(533\) 40.8948i 1.77135i
\(534\) −2.43300 1.87402i −0.105286 0.0810969i
\(535\) 18.2082 0.787210
\(536\) −8.35740 + 19.8658i −0.360985 + 0.858074i
\(537\) 61.3260 2.64641
\(538\) −0.511873 0.394272i −0.0220684 0.0169983i
\(539\) 4.59651i 0.197986i
\(540\) −5.28641 20.0234i −0.227491 0.861671i
\(541\) 37.8198i 1.62600i 0.582265 + 0.812999i \(0.302167\pi\)
−0.582265 + 0.812999i \(0.697833\pi\)
\(542\) 7.11779 9.24085i 0.305735 0.396929i
\(543\) 10.9089 0.468148
\(544\) 1.28099 9.08392i 0.0549222 0.389470i
\(545\) 1.41237 0.0604992
\(546\) 29.5855 38.4101i 1.26614 1.64380i
\(547\) 8.20562i 0.350847i 0.984493 + 0.175423i \(0.0561295\pi\)
−0.984493 + 0.175423i \(0.943871\pi\)
\(548\) 8.95592 + 33.9225i 0.382578 + 1.44910i
\(549\) 49.3526i 2.10632i
\(550\) −5.66544 4.36382i −0.241575 0.186074i
\(551\) 0.617462 0.0263048
\(552\) −5.10326 + 12.1307i −0.217209 + 0.516315i
\(553\) −3.87903 −0.164953
\(554\) −19.1557 14.7548i −0.813849 0.626869i
\(555\) 20.5201i 0.871029i
\(556\) 1.69943 0.448669i 0.0720720 0.0190278i
\(557\) 38.8646i 1.64675i −0.567500 0.823374i \(-0.692089\pi\)
0.567500 0.823374i \(-0.307911\pi\)
\(558\) −40.6200 + 52.7359i −1.71958 + 2.23249i
\(559\) 37.7420 1.59632
\(560\) 5.55278 + 9.78318i 0.234648 + 0.413415i
\(561\) 25.1165 1.06042
\(562\) −7.71809 + 10.0202i −0.325568 + 0.422677i
\(563\) 43.2675i 1.82351i 0.410736 + 0.911754i \(0.365272\pi\)
−0.410736 + 0.911754i \(0.634728\pi\)
\(564\) −46.2545 + 12.2117i −1.94766 + 0.514205i
\(565\) 4.53336i 0.190720i
\(566\) −36.6062 28.1961i −1.53868 1.18517i
\(567\) −35.3568 −1.48485
\(568\) −2.78968 1.17359i −0.117052 0.0492429i
\(569\) −4.14459 −0.173750 −0.0868750 0.996219i \(-0.527688\pi\)
−0.0868750 + 0.996219i \(0.527688\pi\)
\(570\) 3.43153 + 2.64314i 0.143731 + 0.110709i
\(571\) 7.85216i 0.328603i 0.986410 + 0.164301i \(0.0525369\pi\)
−0.986410 + 0.164301i \(0.947463\pi\)
\(572\) 10.2750 + 38.9189i 0.429621 + 1.62728i
\(573\) 56.6859i 2.36809i
\(574\) −24.9363 + 32.3742i −1.04082 + 1.35127i
\(575\) −1.51916 −0.0633534
\(576\) −35.6948 36.4913i −1.48728 1.52047i
\(577\) 8.01296 0.333584 0.166792 0.985992i \(-0.446659\pi\)
0.166792 + 0.985992i \(0.446659\pi\)
\(578\) 12.4011 16.1000i 0.515816 0.669672i
\(579\) 2.73185i 0.113532i
\(580\) −0.315233 1.19401i −0.0130893 0.0495787i
\(581\) 39.1736i 1.62519i
\(582\) −49.3818 38.0365i −2.04694 1.57666i
\(583\) −45.3473 −1.87809
\(584\) 28.3200 + 11.9140i 1.17189 + 0.493004i
\(585\) −25.3964 −1.05001
\(586\) −31.1330 23.9803i −1.28609 0.990616i
\(587\) 25.2668i 1.04287i −0.853290 0.521436i \(-0.825396\pi\)
0.853290 0.521436i \(-0.174604\pi\)
\(588\) 5.38370 1.42136i 0.222020 0.0586158i
\(589\) 7.37672i 0.303953i
\(590\) 1.28446 1.66758i 0.0528804 0.0686533i
\(591\) −39.6688 −1.63176
\(592\) 13.2284 + 23.3066i 0.543686 + 0.957895i
\(593\) 10.1106 0.415192 0.207596 0.978215i \(-0.433436\pi\)
0.207596 + 0.978215i \(0.433436\pi\)
\(594\) 45.1863 58.6642i 1.85402 2.40702i
\(595\) 4.56073i 0.186972i
\(596\) −16.4831 + 4.35173i −0.675175 + 0.178254i
\(597\) 19.9763i 0.817574i
\(598\) 6.77436 + 5.21797i 0.277024 + 0.213379i
\(599\) −19.9087 −0.813446 −0.406723 0.913552i \(-0.633329\pi\)
−0.406723 + 0.913552i \(0.633329\pi\)
\(600\) 3.35926 7.98510i 0.137141 0.325990i
\(601\) −25.0367 −1.02127 −0.510634 0.859798i \(-0.670589\pi\)
−0.510634 + 0.859798i \(0.670589\pi\)
\(602\) 29.8784 + 23.0139i 1.21775 + 0.937977i
\(603\) 48.6208i 1.97999i
\(604\) 8.08692 + 30.6310i 0.329052 + 1.24636i
\(605\) 14.5701i 0.592357i
\(606\) −31.7251 + 41.1879i −1.28874 + 1.67314i
\(607\) −4.94906 −0.200876 −0.100438 0.994943i \(-0.532024\pi\)
−0.100438 + 0.994943i \(0.532024\pi\)
\(608\) 5.60143 + 0.789902i 0.227168 + 0.0320348i
\(609\) −5.31852 −0.215518
\(610\) −6.67476 + 8.66568i −0.270253 + 0.350863i
\(611\) 31.0836i 1.25751i
\(612\) 5.28287 + 20.0100i 0.213548 + 0.808858i
\(613\) 28.5126i 1.15161i 0.817585 + 0.575807i \(0.195312\pi\)
−0.817585 + 0.575807i \(0.804688\pi\)
\(614\) 12.0546 + 9.28509i 0.486484 + 0.374716i
\(615\) 31.4696 1.26898
\(616\) −15.5973 + 37.0755i −0.628435 + 1.49381i
\(617\) 36.9906 1.48919 0.744593 0.667519i \(-0.232644\pi\)
0.744593 + 0.667519i \(0.232644\pi\)
\(618\) 61.7663 + 47.5756i 2.48460 + 1.91377i
\(619\) 14.0321i 0.563997i −0.959415 0.281998i \(-0.909003\pi\)
0.959415 0.281998i \(-0.0909973\pi\)
\(620\) −14.2647 + 3.76604i −0.572883 + 0.151248i
\(621\) 15.7305i 0.631245i
\(622\) −12.8402 + 16.6702i −0.514847 + 0.668413i
\(623\) −1.99395 −0.0798860
\(624\) −42.4068 + 24.0695i −1.69763 + 0.963549i
\(625\) 1.00000 0.0400000
\(626\) 13.8710 18.0084i 0.554398 0.719761i
\(627\) 15.4877i 0.618518i
\(628\) −1.70705 + 0.450680i −0.0681186 + 0.0179841i
\(629\) 10.8651i 0.433219i
\(630\) −20.1050 15.4859i −0.801002 0.616974i
\(631\) −12.3580 −0.491962 −0.245981 0.969275i \(-0.579110\pi\)
−0.245981 + 0.969275i \(0.579110\pi\)
\(632\) 3.59603 + 1.51282i 0.143042 + 0.0601767i
\(633\) 81.9066 3.25549
\(634\) 33.4563 + 25.7698i 1.32872 + 1.02345i
\(635\) 16.3081i 0.647166i
\(636\) −14.0225 53.1134i −0.556030 2.10608i
\(637\) 3.61792i 0.143347i
\(638\) 2.69449 3.49819i 0.106676 0.138495i
\(639\) 6.82762 0.270096
\(640\) −1.33223 11.2350i −0.0526610 0.444102i
\(641\) −24.6420 −0.973301 −0.486651 0.873597i \(-0.661782\pi\)
−0.486651 + 0.873597i \(0.661782\pi\)
\(642\) −48.1269 + 62.4820i −1.89942 + 2.46597i
\(643\) 19.7785i 0.779990i −0.920817 0.389995i \(-0.872477\pi\)
0.920817 0.389995i \(-0.127523\pi\)
\(644\) 2.18115 + 8.26159i 0.0859494 + 0.325552i
\(645\) 29.0435i 1.14359i
\(646\) −1.81694 1.39951i −0.0714867 0.0550628i
\(647\) −9.04173 −0.355467 −0.177734 0.984079i \(-0.556877\pi\)
−0.177734 + 0.984079i \(0.556877\pi\)
\(648\) 32.7773 + 13.7891i 1.28761 + 0.541688i
\(649\) 7.52637 0.295436
\(650\) −4.45928 3.43477i −0.174907 0.134723i
\(651\) 63.5396i 2.49031i
\(652\) 16.7781 4.42960i 0.657080 0.173477i
\(653\) 43.0547i 1.68486i −0.538805 0.842430i \(-0.681124\pi\)
0.538805 0.842430i \(-0.318876\pi\)
\(654\) −3.73309 + 4.84658i −0.145975 + 0.189516i
\(655\) 8.26767 0.323045
\(656\) 35.7430 20.2871i 1.39553 0.792080i
\(657\) −69.3120 −2.70412
\(658\) −18.9538 + 24.6073i −0.738897 + 0.959292i
\(659\) 49.7536i 1.93813i −0.246814 0.969063i \(-0.579384\pi\)
0.246814 0.969063i \(-0.420616\pi\)
\(660\) 29.9491 7.90691i 1.16577 0.307776i
\(661\) 38.6735i 1.50423i −0.659034 0.752113i \(-0.729035\pi\)
0.659034 0.752113i \(-0.270965\pi\)
\(662\) 19.7838 + 15.2385i 0.768919 + 0.592262i
\(663\) 19.7693 0.767775
\(664\) −15.2776 + 36.3156i −0.592888 + 1.40932i
\(665\) 2.81229 0.109056
\(666\) −47.8963 36.8923i −1.85595 1.42955i
\(667\) 0.938025i 0.0363205i
\(668\) 11.1102 + 42.0823i 0.429866 + 1.62821i
\(669\) 3.75006i 0.144986i
\(670\) 6.57579 8.53718i 0.254045 0.329820i
\(671\) −39.1112 −1.50987
\(672\) −48.2481 6.80384i −1.86121 0.262464i
\(673\) −30.4504 −1.17378 −0.586889 0.809668i \(-0.699647\pi\)
−0.586889 + 0.809668i \(0.699647\pi\)
\(674\) 14.7726 19.1789i 0.569018 0.738742i
\(675\) 10.3548i 0.398555i
\(676\) 1.45061 + 5.49452i 0.0557929 + 0.211328i
\(677\) 21.2451i 0.816517i −0.912866 0.408259i \(-0.866136\pi\)
0.912866 0.408259i \(-0.133864\pi\)
\(678\) 15.5564 + 11.9823i 0.597439 + 0.460179i
\(679\) −40.4706 −1.55312
\(680\) −1.77868 + 4.22799i −0.0682093 + 0.162136i
\(681\) −46.3781 −1.77721
\(682\) −41.7924 32.1907i −1.60031 1.23265i
\(683\) 25.0990i 0.960388i 0.877162 + 0.480194i \(0.159434\pi\)
−0.877162 + 0.480194i \(0.840566\pi\)
\(684\) −12.3388 + 3.25759i −0.471787 + 0.124557i
\(685\) 17.5424i 0.670261i
\(686\) −14.7826 + 19.1919i −0.564402 + 0.732749i
\(687\) −24.7098 −0.942738
\(688\) −18.7231 32.9874i −0.713812 1.25763i
\(689\) −35.6929 −1.35979
\(690\) 4.01536 5.21305i 0.152862 0.198457i
\(691\) 43.6924i 1.66214i 0.556171 + 0.831068i \(0.312270\pi\)
−0.556171 + 0.831068i \(0.687730\pi\)
\(692\) 18.6910 4.93463i 0.710525 0.187587i
\(693\) 90.7406i 3.44695i
\(694\) 11.6616 + 8.98239i 0.442669 + 0.340967i
\(695\) −0.878831 −0.0333359
\(696\) 4.93050 + 2.07422i 0.186890 + 0.0786231i
\(697\) −16.6627 −0.631144
\(698\) −24.7660 19.0761i −0.937407 0.722040i
\(699\) 55.4403i 2.09695i
\(700\) −1.43576 5.43825i −0.0542666 0.205547i
\(701\) 5.13928i 0.194108i 0.995279 + 0.0970539i \(0.0309419\pi\)
−0.995279 + 0.0970539i \(0.969058\pi\)
\(702\) 35.5662 46.1747i 1.34236 1.74275i
\(703\) 6.69976 0.252686
\(704\) 28.9188 28.2876i 1.08992 1.06613i
\(705\) 23.9197 0.900867
\(706\) 6.87419 8.92458i 0.258713 0.335881i
\(707\) 33.7554i 1.26950i
\(708\) 2.32734 + 8.81532i 0.0874669 + 0.331300i
\(709\) 23.4211i 0.879596i −0.898097 0.439798i \(-0.855050\pi\)
0.898097 0.439798i \(-0.144950\pi\)
\(710\) 1.19884 + 0.923410i 0.0449917 + 0.0346550i
\(711\) −8.80112 −0.330068
\(712\) 1.84848 + 0.777639i 0.0692746 + 0.0291432i
\(713\) −11.2064 −0.419684
\(714\) 15.6503 + 12.0547i 0.585697 + 0.451135i
\(715\) 20.1262i 0.752678i
\(716\) −38.7189 + 10.2222i −1.44699 + 0.382022i
\(717\) 69.1817i 2.58364i
\(718\) 28.3763 36.8402i 1.05899 1.37486i
\(719\) 22.6820 0.845894 0.422947 0.906154i \(-0.360996\pi\)
0.422947 + 0.906154i \(0.360996\pi\)
\(720\) 12.5987 + 22.1970i 0.469525 + 0.827234i
\(721\) 50.6203 1.88520
\(722\) 0.862980 1.12039i 0.0321168 0.0416965i
\(723\) 5.11299i 0.190154i
\(724\) −6.88750 + 1.81838i −0.255972 + 0.0675794i
\(725\) 0.617462i 0.0229320i
\(726\) 49.9976 + 38.5108i 1.85558 + 1.42927i
\(727\) 34.2340 1.26967 0.634835 0.772648i \(-0.281068\pi\)
0.634835 + 0.772648i \(0.281068\pi\)
\(728\) −12.2767 + 29.1822i −0.455005 + 1.08156i
\(729\) 14.9230 0.552704
\(730\) −12.1703 9.37420i −0.450443 0.346955i
\(731\) 15.3781i 0.568780i
\(732\) −12.0942 45.8093i −0.447013 1.69316i
\(733\) 35.0860i 1.29593i 0.761670 + 0.647965i \(0.224380\pi\)
−0.761670 + 0.647965i \(0.775620\pi\)
\(734\) −7.21363 + 9.36527i −0.266260 + 0.345679i
\(735\) −2.78409 −0.102693
\(736\) 1.19999 8.50948i 0.0442322 0.313664i
\(737\) 38.5312 1.41932
\(738\) −56.5780 + 73.4538i −2.08266 + 2.70387i
\(739\) 6.36634i 0.234190i −0.993121 0.117095i \(-0.962642\pi\)
0.993121 0.117095i \(-0.0373581\pi\)
\(740\) −3.42043 12.9556i −0.125737 0.476258i
\(741\) 12.1904i 0.447824i
\(742\) −28.2562 21.7644i −1.03732 0.798997i
\(743\) −0.905818 −0.0332312 −0.0166156 0.999862i \(-0.505289\pi\)
−0.0166156 + 0.999862i \(0.505289\pi\)
\(744\) 24.7804 58.9038i 0.908492 2.15952i
\(745\) 8.52396 0.312294
\(746\) 6.42316 + 4.94746i 0.235169 + 0.181139i
\(747\) 88.8808i 3.25198i
\(748\) −15.8576 + 4.18659i −0.579813 + 0.153077i
\(749\) 51.2068i 1.87106i
\(750\) −2.64314 + 3.43153i −0.0965140 + 0.125302i
\(751\) −17.1561 −0.626035 −0.313018 0.949747i \(-0.601340\pi\)
−0.313018 + 0.949747i \(0.601340\pi\)
\(752\) 27.1678 15.4200i 0.990708 0.562310i
\(753\) 10.5150 0.383188
\(754\) 2.12084 2.75344i 0.0772365 0.100274i
\(755\) 15.8403i 0.576486i
\(756\) 56.3118 14.8669i 2.04804 0.540705i
\(757\) 36.1374i 1.31344i 0.754136 + 0.656718i \(0.228056\pi\)
−0.754136 + 0.656718i \(0.771944\pi\)
\(758\) −29.7875 22.9439i −1.08193 0.833360i
\(759\) 23.5283 0.854022
\(760\) −2.60712 1.09679i −0.0945700 0.0397848i
\(761\) −8.20143 −0.297302 −0.148651 0.988890i \(-0.547493\pi\)
−0.148651 + 0.988890i \(0.547493\pi\)
\(762\) −55.9616 43.1046i −2.02728 1.56151i
\(763\) 3.97199i 0.143796i
\(764\) −9.44878 35.7893i −0.341845 1.29481i
\(765\) 10.3478i 0.374127i
\(766\) 10.5188 13.6563i 0.380059 0.493422i
\(767\) 5.92402 0.213904
\(768\) 42.0745 + 25.1241i 1.51823 + 0.906589i
\(769\) 18.4357 0.664810 0.332405 0.943137i \(-0.392140\pi\)
0.332405 + 0.943137i \(0.392140\pi\)
\(770\) 12.2723 15.9329i 0.442265 0.574181i
\(771\) 13.9318i 0.501742i
\(772\) 0.455363 + 1.72479i 0.0163889 + 0.0620764i
\(773\) 20.9082i 0.752014i 0.926617 + 0.376007i \(0.122703\pi\)
−0.926617 + 0.376007i \(0.877297\pi\)
\(774\) 67.7909 + 52.2162i 2.43670 + 1.87687i
\(775\) 7.37672 0.264980
\(776\) 37.5180 + 15.7835i 1.34682 + 0.566595i
\(777\) −57.7085 −2.07028
\(778\) 19.3399 + 14.8966i 0.693369 + 0.534069i
\(779\) 10.2747i 0.368131i
\(780\) 23.5730 6.22354i 0.844050 0.222839i
\(781\) 5.41078i 0.193613i
\(782\) −2.12608 + 2.76023i −0.0760284 + 0.0987057i
\(783\) −6.39367 −0.228491
\(784\) −3.16215 + 1.79478i −0.112934 + 0.0640994i
\(785\) 0.882769 0.0315074
\(786\) −21.8526 + 28.3708i −0.779458 + 1.01195i
\(787\) 34.8166i 1.24108i −0.784176 0.620539i \(-0.786914\pi\)
0.784176 0.620539i \(-0.213086\pi\)
\(788\) 25.0454 6.61227i 0.892206 0.235552i
\(789\) 33.9685i 1.20931i
\(790\) −1.54536 1.19032i −0.0549815 0.0423497i
\(791\) 12.7492 0.453308
\(792\) −35.3887 + 84.1204i −1.25748 + 2.98909i
\(793\) −30.7845 −1.09319
\(794\) −0.778156 0.599376i −0.0276157 0.0212711i
\(795\) 27.4666i 0.974141i
\(796\) −3.32978 12.6123i −0.118021 0.447030i
\(797\) 31.0580i 1.10013i −0.835121 0.550066i \(-0.814603\pi\)
0.835121 0.550066i \(-0.185397\pi\)
\(798\) −7.43330 + 9.65047i −0.263136 + 0.341623i
\(799\) −12.6651 −0.448060
\(800\) −0.789902 + 5.60143i −0.0279273 + 0.198041i
\(801\) −4.52407 −0.159850
\(802\) −20.8998 + 27.1337i −0.737999 + 0.958126i
\(803\) 54.9287i 1.93839i
\(804\) 11.9148 + 45.1300i 0.420204 + 1.59161i
\(805\) 4.27233i 0.150580i
\(806\) −32.8948 25.3373i −1.15867 0.892470i
\(807\) −1.39931 −0.0492582
\(808\) 13.1646 31.2926i 0.463127 1.10087i
\(809\) −18.1110 −0.636750 −0.318375 0.947965i \(-0.603137\pi\)
−0.318375 + 0.947965i \(0.603137\pi\)
\(810\) −14.0858 10.8496i −0.494923 0.381216i
\(811\) 26.9319i 0.945707i 0.881141 + 0.472854i \(0.156776\pi\)
−0.881141 + 0.472854i \(0.843224\pi\)
\(812\) 3.35792 0.886528i 0.117840 0.0311110i
\(813\) 25.2618i 0.885970i
\(814\) 29.2365 37.9571i 1.02474 1.33040i
\(815\) −8.67648 −0.303924
\(816\) −9.80717 17.2788i −0.343320 0.604879i
\(817\) −9.48263 −0.331755
\(818\) −23.5741 + 30.6057i −0.824249 + 1.07010i
\(819\) 71.4221i 2.49569i
\(820\) −19.8687 + 5.24556i −0.693846 + 0.183183i
\(821\) 15.3754i 0.536604i −0.963335 0.268302i \(-0.913537\pi\)
0.963335 0.268302i \(-0.0864625\pi\)
\(822\) 60.1973 + 46.3671i 2.09962 + 1.61724i
\(823\) −9.79320 −0.341370 −0.170685 0.985326i \(-0.554598\pi\)
−0.170685 + 0.985326i \(0.554598\pi\)
\(824\) −46.9271 19.7418i −1.63478 0.687740i
\(825\) −15.4877 −0.539211
\(826\) 4.68973 + 3.61228i 0.163177 + 0.125687i
\(827\) 13.5867i 0.472456i −0.971698 0.236228i \(-0.924089\pi\)
0.971698 0.236228i \(-0.0759113\pi\)
\(828\) 4.94881 + 18.7447i 0.171983 + 0.651423i
\(829\) 4.13713i 0.143688i 0.997416 + 0.0718442i \(0.0228884\pi\)
−0.997416 + 0.0718442i \(0.977112\pi\)
\(830\) 12.0208 15.6063i 0.417248 0.541703i
\(831\) −52.3662 −1.81656
\(832\) 22.7620 22.2652i 0.789131 0.771907i
\(833\) 1.47413 0.0510757
\(834\) 2.32288 3.01573i 0.0804346 0.104426i
\(835\) 21.7621i 0.753108i
\(836\) −2.58159 9.77832i −0.0892861 0.338190i
\(837\) 76.3841i 2.64022i
\(838\) 8.89885 + 6.85436i 0.307406 + 0.236780i
\(839\) 3.97020 0.137067 0.0685333 0.997649i \(-0.478168\pi\)
0.0685333 + 0.997649i \(0.478168\pi\)
\(840\) 22.4564 + 9.44724i 0.774821 + 0.325961i
\(841\) 28.6187 0.986853
\(842\) −27.3212 21.0442i −0.941550 0.725232i
\(843\) 27.3923i 0.943442i
\(844\) −51.7127 + 13.6527i −1.78002 + 0.469947i
\(845\) 2.84139i 0.0977468i
\(846\) −43.0043 + 55.8314i −1.47852 + 1.91952i
\(847\) 40.9753 1.40793
\(848\) 17.7066 + 31.1964i 0.608047 + 1.07129i
\(849\) −100.071 −3.43442
\(850\) 1.39951 1.81694i 0.0480027 0.0623207i
\(851\) 10.1780i 0.348898i
\(852\) −6.33742 + 1.67315i −0.217116 + 0.0573212i
\(853\) 36.8510i 1.26176i 0.775882 + 0.630878i \(0.217305\pi\)
−0.775882 + 0.630878i \(0.782695\pi\)
\(854\) −24.3704 18.7714i −0.833939 0.642344i
\(855\) 6.38080 0.218219
\(856\) 19.9706 47.4709i 0.682581 1.62252i
\(857\) −21.6000 −0.737841 −0.368921 0.929461i \(-0.620273\pi\)
−0.368921 + 0.929461i \(0.620273\pi\)
\(858\) 69.0637 + 53.1965i 2.35780 + 1.81610i
\(859\) 5.01717i 0.171184i −0.996330 0.0855919i \(-0.972722\pi\)
0.996330 0.0855919i \(-0.0272781\pi\)
\(860\) 4.84116 + 18.3370i 0.165082 + 0.625285i
\(861\) 88.5018i 3.01613i
\(862\) 16.1396 20.9536i 0.549716 0.713683i
\(863\) −48.4943 −1.65077 −0.825383 0.564573i \(-0.809041\pi\)
−0.825383 + 0.564573i \(0.809041\pi\)
\(864\) −58.0015 8.17924i −1.97325 0.278263i
\(865\) −9.66571 −0.328644
\(866\) −20.6594 + 26.8216i −0.702036 + 0.911437i
\(867\) 44.0127i 1.49475i
\(868\) −10.5912 40.1165i −0.359489 1.36164i
\(869\) 6.97475i 0.236602i
\(870\) −2.11884 1.63204i −0.0718354 0.0553314i
\(871\) 30.3280 1.02762
\(872\) 1.54907 3.68221i 0.0524582 0.124695i
\(873\) −91.8237 −3.10776
\(874\) −1.70205 1.31101i −0.0575726 0.0443455i
\(875\) 2.81229i 0.0950729i
\(876\) 64.3357 16.9853i 2.17370 0.573881i
\(877\) 9.26377i 0.312815i −0.987693 0.156408i \(-0.950009\pi\)
0.987693 0.156408i \(-0.0499913\pi\)
\(878\) 6.25630 8.12240i 0.211140 0.274118i
\(879\) −85.1085 −2.87064
\(880\) −17.5908 + 9.98425i −0.592985 + 0.336569i
\(881\) 14.0630 0.473793 0.236897 0.971535i \(-0.423870\pi\)
0.236897 + 0.971535i \(0.423870\pi\)
\(882\) 5.00540 6.49839i 0.168541 0.218812i
\(883\) 48.1637i 1.62084i −0.585850 0.810419i \(-0.699239\pi\)
0.585850 0.810419i \(-0.300761\pi\)
\(884\) −12.4816 + 3.29527i −0.419801 + 0.110832i
\(885\) 4.55868i 0.153238i
\(886\) 30.2304 + 23.2850i 1.01561 + 0.782275i
\(887\) 36.5264 1.22644 0.613218 0.789914i \(-0.289875\pi\)
0.613218 + 0.789914i \(0.289875\pi\)
\(888\) 53.4982 + 22.5063i 1.79528 + 0.755261i
\(889\) −45.8631 −1.53820
\(890\) −0.794367 0.611864i −0.0266273 0.0205097i
\(891\) 63.5738i 2.12980i
\(892\) 0.625086 + 2.36765i 0.0209294 + 0.0792748i
\(893\) 7.80972i 0.261342i
\(894\) −22.5300 + 29.2502i −0.753518 + 0.978273i
\(895\) 20.0228 0.669288
\(896\) 31.5961 3.74662i 1.05555 0.125166i
\(897\) 18.5191 0.618336
\(898\) −14.3139 + 18.5833i −0.477660 + 0.620134i
\(899\) 4.55485i 0.151913i
\(900\) −3.25759 12.3388i −0.108586 0.411294i
\(901\) 14.5432i 0.484504i
\(902\) −58.2110 44.8371i −1.93821 1.49291i
\(903\) 81.6788 2.71810
\(904\) −11.8190 4.97215i −0.393094 0.165371i
\(905\) 3.56175 0.118396
\(906\) 54.3563 + 41.8681i 1.80587 + 1.39097i
\(907\) 48.6955i 1.61691i 0.588560 + 0.808454i \(0.299695\pi\)
−0.588560 + 0.808454i \(0.700305\pi\)
\(908\) 29.2814 7.73061i 0.971736 0.256549i
\(909\) 76.5874i 2.54024i
\(910\) 9.65958 12.5408i 0.320212 0.415723i
\(911\) −37.7398 −1.25038 −0.625188 0.780474i \(-0.714978\pi\)
−0.625188 + 0.780474i \(0.714978\pi\)
\(912\) 10.6547 6.04741i 0.352811 0.200250i
\(913\) 70.4366 2.33111
\(914\) −4.36595 + 5.66821i −0.144413 + 0.187488i
\(915\) 23.6894i 0.783149i
\(916\) 15.6008 4.11880i 0.515466 0.136089i
\(917\) 23.2511i 0.767820i
\(918\) 18.8140 + 14.4915i 0.620955 + 0.478292i
\(919\) 1.08745 0.0358718 0.0179359 0.999839i \(-0.494291\pi\)
0.0179359 + 0.999839i \(0.494291\pi\)
\(920\) −1.66620 + 3.96063i −0.0549331 + 0.130578i
\(921\) 32.9538 1.08586
\(922\) 7.77086 + 5.98553i 0.255920 + 0.197123i
\(923\) 4.25883i 0.140181i
\(924\) 22.2366 + 84.2258i 0.731529 + 2.77083i
\(925\) 6.69976i 0.220287i
\(926\) −6.58012 + 8.54280i −0.216236 + 0.280734i
\(927\) 114.852 3.77224
\(928\) −3.45867 0.487735i −0.113537 0.0160107i
\(929\) 7.94724 0.260740 0.130370 0.991465i \(-0.458383\pi\)
0.130370 + 0.991465i \(0.458383\pi\)
\(930\) −19.4977 + 25.3134i −0.639356 + 0.830060i
\(931\) 0.908997i 0.0297912i
\(932\) 9.24117 + 35.0029i 0.302705 + 1.14656i
\(933\) 45.5714i 1.49194i
\(934\) 3.59344 + 2.76786i 0.117581 + 0.0905671i
\(935\) 8.20049 0.268185
\(936\) −27.8545 + 66.2113i −0.910454 + 2.16418i
\(937\) −20.6423 −0.674356 −0.337178 0.941441i \(-0.609472\pi\)
−0.337178 + 0.941441i \(0.609472\pi\)
\(938\) 24.0091 + 18.4931i 0.783924 + 0.603820i
\(939\) 49.2298i 1.60655i
\(940\) −15.1020 + 3.98709i −0.492572 + 0.130045i
\(941\) 2.32808i 0.0758931i 0.999280 + 0.0379466i \(0.0120817\pi\)
−0.999280 + 0.0379466i \(0.987918\pi\)
\(942\) −2.33329 + 3.02925i −0.0760226 + 0.0986982i
\(943\) −15.6090 −0.508299
\(944\) −2.93879 5.17772i −0.0956496 0.168521i
\(945\) −29.1206 −0.947294
\(946\) −41.3805 + 53.7232i −1.34540 + 1.74669i
\(947\) 35.7286i 1.16102i −0.814252 0.580511i \(-0.802853\pi\)
0.814252 0.580511i \(-0.197147\pi\)
\(948\) 8.16923 2.15677i 0.265324 0.0700486i
\(949\) 43.2344i 1.40345i
\(950\) 1.12039 + 0.862980i 0.0363501 + 0.0279988i
\(951\) 91.4598 2.96579
\(952\) −11.8904 5.00217i −0.385369 0.162121i
\(953\) 31.4726 1.01950 0.509749 0.860323i \(-0.329738\pi\)
0.509749 + 0.860323i \(0.329738\pi\)
\(954\) −64.1104 49.3812i −2.07565 1.59878i
\(955\) 18.5078i 0.598898i
\(956\) 11.5317 + 43.6787i 0.372961 + 1.41267i
\(957\) 9.56305i 0.309129i
\(958\) −6.62814 + 8.60514i −0.214145 + 0.278020i
\(959\) 49.3344 1.59309
\(960\) −17.1337 17.5160i −0.552986 0.565326i
\(961\) 23.4160 0.755356
\(962\) 23.0121 29.8761i 0.741941 0.963244i
\(963\) 116.183i 3.74394i
\(964\) 0.852268 + 3.22815i 0.0274497 + 0.103972i
\(965\) 0.891942i 0.0287126i
\(966\) 14.6606 + 11.2924i 0.471698 + 0.363327i
\(967\) 18.4524 0.593390 0.296695 0.954972i \(-0.404116\pi\)
0.296695 + 0.954972i \(0.404116\pi\)
\(968\) −37.9858 15.9803i −1.22091 0.513627i
\(969\) −4.96700 −0.159563
\(970\) −16.1230 12.4188i −0.517680 0.398744i
\(971\) 13.8572i 0.444698i −0.974967 0.222349i \(-0.928628\pi\)
0.974967 0.222349i \(-0.0713724\pi\)
\(972\) 14.3911 3.79941i 0.461594 0.121866i
\(973\) 2.47153i 0.0792336i
\(974\) 4.61988 5.99787i 0.148030 0.192184i
\(975\) −12.1904 −0.390404
\(976\) 15.2716 + 26.9063i 0.488832 + 0.861250i
\(977\) −12.4100 −0.397032 −0.198516 0.980098i \(-0.563612\pi\)
−0.198516 + 0.980098i \(0.563612\pi\)
\(978\) 22.9332 29.7736i 0.733323 0.952055i
\(979\) 3.58525i 0.114585i
\(980\) 1.75777 0.464070i 0.0561498 0.0148242i
\(981\) 9.01204i 0.287732i
\(982\) −31.9298 24.5940i −1.01892 0.784828i
\(983\) 24.7262 0.788643 0.394322 0.918973i \(-0.370980\pi\)
0.394322 + 0.918973i \(0.370980\pi\)
\(984\) 34.5156 82.0449i 1.10032 2.61549i
\(985\) −12.9518 −0.412678
\(986\) 1.12189 + 0.864143i 0.0357284 + 0.0275199i
\(987\) 67.2691i 2.14120i
\(988\) −2.03197 7.69654i −0.0646456 0.244859i
\(989\) 14.4056i 0.458073i
\(990\) 27.8447 36.1500i 0.884962 1.14892i
\(991\) 25.6353 0.814334 0.407167 0.913354i \(-0.366517\pi\)
0.407167 + 0.913354i \(0.366517\pi\)
\(992\) −5.82689 + 41.3202i −0.185004 + 1.31192i
\(993\) 54.0832 1.71628
\(994\) −2.59690 + 3.37149i −0.0823687 + 0.106937i
\(995\) 6.52220i 0.206768i
\(996\) 21.7808 + 82.4995i 0.690151 + 2.61410i
\(997\) 14.5038i 0.459339i 0.973269 + 0.229669i \(0.0737645\pi\)
−0.973269 + 0.229669i \(0.926236\pi\)
\(998\) −8.48967 6.53919i −0.268736 0.206994i
\(999\) −69.3744 −2.19491
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 760.2.f.b.381.12 yes 44
4.3 odd 2 3040.2.f.b.1521.4 44
8.3 odd 2 3040.2.f.b.1521.41 44
8.5 even 2 inner 760.2.f.b.381.11 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
760.2.f.b.381.11 44 8.5 even 2 inner
760.2.f.b.381.12 yes 44 1.1 even 1 trivial
3040.2.f.b.1521.4 44 4.3 odd 2
3040.2.f.b.1521.41 44 8.3 odd 2