Properties

Label 3040.2.f.a.1521.7
Level $3040$
Weight $2$
Character 3040.1521
Analytic conductor $24.275$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3040,2,Mod(1521,3040)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3040.1521"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3040, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3040 = 2^{5} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3040.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.2745222145\)
Analytic rank: \(0\)
Dimension: \(28\)
Twist minimal: no (minimal twist has level 760)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1521.7
Character \(\chi\) \(=\) 3040.1521
Dual form 3040.2.f.a.1521.22

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.74129i q^{3} +1.00000i q^{5} +4.26759 q^{7} -0.0320903 q^{9} +3.47101i q^{11} -1.17033i q^{13} +1.74129 q^{15} -3.21425 q^{17} +1.00000i q^{19} -7.43111i q^{21} +1.30724 q^{23} -1.00000 q^{25} -5.16799i q^{27} -7.74967i q^{29} +4.01448 q^{31} +6.04404 q^{33} +4.26759i q^{35} -2.87596i q^{37} -2.03788 q^{39} +9.51830 q^{41} +8.38330i q^{43} -0.0320903i q^{45} -0.615265 q^{47} +11.2123 q^{49} +5.59693i q^{51} +2.95709i q^{53} -3.47101 q^{55} +1.74129 q^{57} +0.792754i q^{59} -3.37425i q^{61} -0.136948 q^{63} +1.17033 q^{65} +10.6847i q^{67} -2.27628i q^{69} +0.758738 q^{71} +10.0998 q^{73} +1.74129i q^{75} +14.8129i q^{77} +15.5194 q^{79} -9.09524 q^{81} +10.8166i q^{83} -3.21425i q^{85} -13.4944 q^{87} -2.55872 q^{89} -4.99447i q^{91} -6.99037i q^{93} -1.00000 q^{95} -15.1049 q^{97} -0.111386i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 4 q^{7} - 12 q^{9} - 24 q^{17} - 4 q^{23} - 28 q^{25} - 40 q^{33} + 24 q^{39} + 32 q^{41} + 20 q^{47} - 36 q^{49} - 8 q^{55} - 20 q^{63} - 12 q^{65} + 8 q^{71} + 88 q^{73} - 40 q^{79} - 28 q^{81}+ \cdots - 116 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3040\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(1217\) \(1921\) \(2661\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.74129i − 1.00533i −0.864480 0.502667i \(-0.832352\pi\)
0.864480 0.502667i \(-0.167648\pi\)
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 4.26759 1.61300 0.806499 0.591235i \(-0.201360\pi\)
0.806499 + 0.591235i \(0.201360\pi\)
\(8\) 0 0
\(9\) −0.0320903 −0.0106968
\(10\) 0 0
\(11\) 3.47101i 1.04655i 0.852164 + 0.523275i \(0.175290\pi\)
−0.852164 + 0.523275i \(0.824710\pi\)
\(12\) 0 0
\(13\) − 1.17033i − 0.324590i −0.986742 0.162295i \(-0.948110\pi\)
0.986742 0.162295i \(-0.0518896\pi\)
\(14\) 0 0
\(15\) 1.74129 0.449599
\(16\) 0 0
\(17\) −3.21425 −0.779569 −0.389784 0.920906i \(-0.627451\pi\)
−0.389784 + 0.920906i \(0.627451\pi\)
\(18\) 0 0
\(19\) 1.00000i 0.229416i
\(20\) 0 0
\(21\) − 7.43111i − 1.62160i
\(22\) 0 0
\(23\) 1.30724 0.272578 0.136289 0.990669i \(-0.456482\pi\)
0.136289 + 0.990669i \(0.456482\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) − 5.16799i − 0.994580i
\(28\) 0 0
\(29\) − 7.74967i − 1.43908i −0.694452 0.719539i \(-0.744353\pi\)
0.694452 0.719539i \(-0.255647\pi\)
\(30\) 0 0
\(31\) 4.01448 0.721021 0.360511 0.932755i \(-0.382602\pi\)
0.360511 + 0.932755i \(0.382602\pi\)
\(32\) 0 0
\(33\) 6.04404 1.05213
\(34\) 0 0
\(35\) 4.26759i 0.721355i
\(36\) 0 0
\(37\) − 2.87596i − 0.472804i −0.971655 0.236402i \(-0.924032\pi\)
0.971655 0.236402i \(-0.0759683\pi\)
\(38\) 0 0
\(39\) −2.03788 −0.326321
\(40\) 0 0
\(41\) 9.51830 1.48651 0.743254 0.669009i \(-0.233281\pi\)
0.743254 + 0.669009i \(0.233281\pi\)
\(42\) 0 0
\(43\) 8.38330i 1.27844i 0.769024 + 0.639220i \(0.220743\pi\)
−0.769024 + 0.639220i \(0.779257\pi\)
\(44\) 0 0
\(45\) − 0.0320903i − 0.00478375i
\(46\) 0 0
\(47\) −0.615265 −0.0897457 −0.0448728 0.998993i \(-0.514288\pi\)
−0.0448728 + 0.998993i \(0.514288\pi\)
\(48\) 0 0
\(49\) 11.2123 1.60176
\(50\) 0 0
\(51\) 5.59693i 0.783727i
\(52\) 0 0
\(53\) 2.95709i 0.406187i 0.979159 + 0.203094i \(0.0650995\pi\)
−0.979159 + 0.203094i \(0.934900\pi\)
\(54\) 0 0
\(55\) −3.47101 −0.468031
\(56\) 0 0
\(57\) 1.74129 0.230639
\(58\) 0 0
\(59\) 0.792754i 0.103208i 0.998668 + 0.0516039i \(0.0164333\pi\)
−0.998668 + 0.0516039i \(0.983567\pi\)
\(60\) 0 0
\(61\) − 3.37425i − 0.432028i −0.976390 0.216014i \(-0.930694\pi\)
0.976390 0.216014i \(-0.0693057\pi\)
\(62\) 0 0
\(63\) −0.136948 −0.0172539
\(64\) 0 0
\(65\) 1.17033 0.145161
\(66\) 0 0
\(67\) 10.6847i 1.30534i 0.757642 + 0.652670i \(0.226351\pi\)
−0.757642 + 0.652670i \(0.773649\pi\)
\(68\) 0 0
\(69\) − 2.27628i − 0.274032i
\(70\) 0 0
\(71\) 0.758738 0.0900456 0.0450228 0.998986i \(-0.485664\pi\)
0.0450228 + 0.998986i \(0.485664\pi\)
\(72\) 0 0
\(73\) 10.0998 1.18209 0.591046 0.806638i \(-0.298715\pi\)
0.591046 + 0.806638i \(0.298715\pi\)
\(74\) 0 0
\(75\) 1.74129i 0.201067i
\(76\) 0 0
\(77\) 14.8129i 1.68808i
\(78\) 0 0
\(79\) 15.5194 1.74607 0.873033 0.487661i \(-0.162150\pi\)
0.873033 + 0.487661i \(0.162150\pi\)
\(80\) 0 0
\(81\) −9.09524 −1.01058
\(82\) 0 0
\(83\) 10.8166i 1.18727i 0.804734 + 0.593636i \(0.202308\pi\)
−0.804734 + 0.593636i \(0.797692\pi\)
\(84\) 0 0
\(85\) − 3.21425i − 0.348634i
\(86\) 0 0
\(87\) −13.4944 −1.44675
\(88\) 0 0
\(89\) −2.55872 −0.271223 −0.135612 0.990762i \(-0.543300\pi\)
−0.135612 + 0.990762i \(0.543300\pi\)
\(90\) 0 0
\(91\) − 4.99447i − 0.523563i
\(92\) 0 0
\(93\) − 6.99037i − 0.724867i
\(94\) 0 0
\(95\) −1.00000 −0.102598
\(96\) 0 0
\(97\) −15.1049 −1.53367 −0.766836 0.641843i \(-0.778170\pi\)
−0.766836 + 0.641843i \(0.778170\pi\)
\(98\) 0 0
\(99\) − 0.111386i − 0.0111947i
\(100\) 0 0
\(101\) − 3.51450i − 0.349706i −0.984595 0.174853i \(-0.944055\pi\)
0.984595 0.174853i \(-0.0559450\pi\)
\(102\) 0 0
\(103\) 10.7032 1.05462 0.527309 0.849674i \(-0.323201\pi\)
0.527309 + 0.849674i \(0.323201\pi\)
\(104\) 0 0
\(105\) 7.43111 0.725202
\(106\) 0 0
\(107\) − 13.3164i − 1.28734i −0.765301 0.643672i \(-0.777410\pi\)
0.765301 0.643672i \(-0.222590\pi\)
\(108\) 0 0
\(109\) − 4.66724i − 0.447041i −0.974699 0.223520i \(-0.928245\pi\)
0.974699 0.223520i \(-0.0717549\pi\)
\(110\) 0 0
\(111\) −5.00787 −0.475326
\(112\) 0 0
\(113\) 6.23106 0.586169 0.293084 0.956087i \(-0.405318\pi\)
0.293084 + 0.956087i \(0.405318\pi\)
\(114\) 0 0
\(115\) 1.30724i 0.121901i
\(116\) 0 0
\(117\) 0.0375562i 0.00347207i
\(118\) 0 0
\(119\) −13.7171 −1.25744
\(120\) 0 0
\(121\) −1.04794 −0.0952670
\(122\) 0 0
\(123\) − 16.5741i − 1.49444i
\(124\) 0 0
\(125\) − 1.00000i − 0.0894427i
\(126\) 0 0
\(127\) 12.5227 1.11121 0.555603 0.831448i \(-0.312488\pi\)
0.555603 + 0.831448i \(0.312488\pi\)
\(128\) 0 0
\(129\) 14.5977 1.28526
\(130\) 0 0
\(131\) − 10.4192i − 0.910330i −0.890407 0.455165i \(-0.849580\pi\)
0.890407 0.455165i \(-0.150420\pi\)
\(132\) 0 0
\(133\) 4.26759i 0.370047i
\(134\) 0 0
\(135\) 5.16799 0.444790
\(136\) 0 0
\(137\) −21.8395 −1.86587 −0.932936 0.360041i \(-0.882763\pi\)
−0.932936 + 0.360041i \(0.882763\pi\)
\(138\) 0 0
\(139\) 0.938309i 0.0795863i 0.999208 + 0.0397932i \(0.0126699\pi\)
−0.999208 + 0.0397932i \(0.987330\pi\)
\(140\) 0 0
\(141\) 1.07136i 0.0902244i
\(142\) 0 0
\(143\) 4.06222 0.339700
\(144\) 0 0
\(145\) 7.74967 0.643575
\(146\) 0 0
\(147\) − 19.5239i − 1.61031i
\(148\) 0 0
\(149\) 4.84067i 0.396563i 0.980145 + 0.198281i \(0.0635360\pi\)
−0.980145 + 0.198281i \(0.936464\pi\)
\(150\) 0 0
\(151\) 16.9169 1.37668 0.688340 0.725388i \(-0.258340\pi\)
0.688340 + 0.725388i \(0.258340\pi\)
\(152\) 0 0
\(153\) 0.103146 0.00833888
\(154\) 0 0
\(155\) 4.01448i 0.322450i
\(156\) 0 0
\(157\) − 2.31235i − 0.184546i −0.995734 0.0922728i \(-0.970587\pi\)
0.995734 0.0922728i \(-0.0294132\pi\)
\(158\) 0 0
\(159\) 5.14914 0.408354
\(160\) 0 0
\(161\) 5.57876 0.439668
\(162\) 0 0
\(163\) 13.3563i 1.04615i 0.852288 + 0.523073i \(0.175215\pi\)
−0.852288 + 0.523073i \(0.824785\pi\)
\(164\) 0 0
\(165\) 6.04404i 0.470528i
\(166\) 0 0
\(167\) −17.5050 −1.35457 −0.677287 0.735719i \(-0.736844\pi\)
−0.677287 + 0.735719i \(0.736844\pi\)
\(168\) 0 0
\(169\) 11.6303 0.894641
\(170\) 0 0
\(171\) − 0.0320903i − 0.00245401i
\(172\) 0 0
\(173\) 19.6197i 1.49166i 0.666136 + 0.745830i \(0.267947\pi\)
−0.666136 + 0.745830i \(0.732053\pi\)
\(174\) 0 0
\(175\) −4.26759 −0.322600
\(176\) 0 0
\(177\) 1.38041 0.103758
\(178\) 0 0
\(179\) − 16.0479i − 1.19948i −0.800196 0.599739i \(-0.795271\pi\)
0.800196 0.599739i \(-0.204729\pi\)
\(180\) 0 0
\(181\) − 18.4270i − 1.36967i −0.728698 0.684836i \(-0.759874\pi\)
0.728698 0.684836i \(-0.240126\pi\)
\(182\) 0 0
\(183\) −5.87554 −0.434333
\(184\) 0 0
\(185\) 2.87596 0.211444
\(186\) 0 0
\(187\) − 11.1567i − 0.815858i
\(188\) 0 0
\(189\) − 22.0549i − 1.60426i
\(190\) 0 0
\(191\) 9.65264 0.698441 0.349220 0.937041i \(-0.386446\pi\)
0.349220 + 0.937041i \(0.386446\pi\)
\(192\) 0 0
\(193\) 12.4760 0.898042 0.449021 0.893521i \(-0.351773\pi\)
0.449021 + 0.893521i \(0.351773\pi\)
\(194\) 0 0
\(195\) − 2.03788i − 0.145935i
\(196\) 0 0
\(197\) − 9.56205i − 0.681268i −0.940196 0.340634i \(-0.889358\pi\)
0.940196 0.340634i \(-0.110642\pi\)
\(198\) 0 0
\(199\) −10.2805 −0.728766 −0.364383 0.931249i \(-0.618720\pi\)
−0.364383 + 0.931249i \(0.618720\pi\)
\(200\) 0 0
\(201\) 18.6051 1.31230
\(202\) 0 0
\(203\) − 33.0724i − 2.32123i
\(204\) 0 0
\(205\) 9.51830i 0.664787i
\(206\) 0 0
\(207\) −0.0419498 −0.00291571
\(208\) 0 0
\(209\) −3.47101 −0.240095
\(210\) 0 0
\(211\) 16.6190i 1.14410i 0.820218 + 0.572051i \(0.193852\pi\)
−0.820218 + 0.572051i \(0.806148\pi\)
\(212\) 0 0
\(213\) − 1.32118i − 0.0905259i
\(214\) 0 0
\(215\) −8.38330 −0.571736
\(216\) 0 0
\(217\) 17.1321 1.16301
\(218\) 0 0
\(219\) − 17.5867i − 1.18840i
\(220\) 0 0
\(221\) 3.76171i 0.253040i
\(222\) 0 0
\(223\) 9.11396 0.610316 0.305158 0.952302i \(-0.401291\pi\)
0.305158 + 0.952302i \(0.401291\pi\)
\(224\) 0 0
\(225\) 0.0320903 0.00213936
\(226\) 0 0
\(227\) 21.0419i 1.39660i 0.715804 + 0.698302i \(0.246061\pi\)
−0.715804 + 0.698302i \(0.753939\pi\)
\(228\) 0 0
\(229\) − 0.230519i − 0.0152331i −0.999971 0.00761655i \(-0.997576\pi\)
0.999971 0.00761655i \(-0.00242445\pi\)
\(230\) 0 0
\(231\) 25.7935 1.69709
\(232\) 0 0
\(233\) −2.23928 −0.146700 −0.0733501 0.997306i \(-0.523369\pi\)
−0.0733501 + 0.997306i \(0.523369\pi\)
\(234\) 0 0
\(235\) − 0.615265i − 0.0401355i
\(236\) 0 0
\(237\) − 27.0237i − 1.75538i
\(238\) 0 0
\(239\) −18.5649 −1.20086 −0.600431 0.799677i \(-0.705004\pi\)
−0.600431 + 0.799677i \(0.705004\pi\)
\(240\) 0 0
\(241\) −25.4868 −1.64175 −0.820874 0.571109i \(-0.806513\pi\)
−0.820874 + 0.571109i \(0.806513\pi\)
\(242\) 0 0
\(243\) 0.333478i 0.0213926i
\(244\) 0 0
\(245\) 11.2123i 0.716330i
\(246\) 0 0
\(247\) 1.17033 0.0744660
\(248\) 0 0
\(249\) 18.8348 1.19360
\(250\) 0 0
\(251\) − 4.83471i − 0.305164i −0.988291 0.152582i \(-0.951241\pi\)
0.988291 0.152582i \(-0.0487588\pi\)
\(252\) 0 0
\(253\) 4.53745i 0.285267i
\(254\) 0 0
\(255\) −5.59693 −0.350494
\(256\) 0 0
\(257\) −28.4477 −1.77452 −0.887261 0.461268i \(-0.847395\pi\)
−0.887261 + 0.461268i \(0.847395\pi\)
\(258\) 0 0
\(259\) − 12.2734i − 0.762632i
\(260\) 0 0
\(261\) 0.248690i 0.0153935i
\(262\) 0 0
\(263\) 0.204621 0.0126175 0.00630874 0.999980i \(-0.497992\pi\)
0.00630874 + 0.999980i \(0.497992\pi\)
\(264\) 0 0
\(265\) −2.95709 −0.181652
\(266\) 0 0
\(267\) 4.45547i 0.272670i
\(268\) 0 0
\(269\) 13.0098i 0.793224i 0.917986 + 0.396612i \(0.129814\pi\)
−0.917986 + 0.396612i \(0.870186\pi\)
\(270\) 0 0
\(271\) 28.4792 1.72999 0.864995 0.501780i \(-0.167321\pi\)
0.864995 + 0.501780i \(0.167321\pi\)
\(272\) 0 0
\(273\) −8.69682 −0.526356
\(274\) 0 0
\(275\) − 3.47101i − 0.209310i
\(276\) 0 0
\(277\) − 16.6647i − 1.00128i −0.865654 0.500642i \(-0.833097\pi\)
0.865654 0.500642i \(-0.166903\pi\)
\(278\) 0 0
\(279\) −0.128826 −0.00771260
\(280\) 0 0
\(281\) −14.4794 −0.863768 −0.431884 0.901929i \(-0.642151\pi\)
−0.431884 + 0.901929i \(0.642151\pi\)
\(282\) 0 0
\(283\) − 30.1537i − 1.79245i −0.443597 0.896227i \(-0.646298\pi\)
0.443597 0.896227i \(-0.353702\pi\)
\(284\) 0 0
\(285\) 1.74129i 0.103145i
\(286\) 0 0
\(287\) 40.6202 2.39773
\(288\) 0 0
\(289\) −6.66863 −0.392272
\(290\) 0 0
\(291\) 26.3020i 1.54185i
\(292\) 0 0
\(293\) − 26.5469i − 1.55089i −0.631418 0.775443i \(-0.717527\pi\)
0.631418 0.775443i \(-0.282473\pi\)
\(294\) 0 0
\(295\) −0.792754 −0.0461559
\(296\) 0 0
\(297\) 17.9382 1.04088
\(298\) 0 0
\(299\) − 1.52990i − 0.0884762i
\(300\) 0 0
\(301\) 35.7765i 2.06212i
\(302\) 0 0
\(303\) −6.11976 −0.351571
\(304\) 0 0
\(305\) 3.37425 0.193209
\(306\) 0 0
\(307\) − 25.1571i − 1.43579i −0.696150 0.717896i \(-0.745105\pi\)
0.696150 0.717896i \(-0.254895\pi\)
\(308\) 0 0
\(309\) − 18.6374i − 1.06024i
\(310\) 0 0
\(311\) −10.2706 −0.582394 −0.291197 0.956663i \(-0.594054\pi\)
−0.291197 + 0.956663i \(0.594054\pi\)
\(312\) 0 0
\(313\) −5.85159 −0.330752 −0.165376 0.986231i \(-0.552884\pi\)
−0.165376 + 0.986231i \(0.552884\pi\)
\(314\) 0 0
\(315\) − 0.136948i − 0.00771617i
\(316\) 0 0
\(317\) 10.5400i 0.591985i 0.955190 + 0.295992i \(0.0956503\pi\)
−0.955190 + 0.295992i \(0.904350\pi\)
\(318\) 0 0
\(319\) 26.8992 1.50607
\(320\) 0 0
\(321\) −23.1877 −1.29421
\(322\) 0 0
\(323\) − 3.21425i − 0.178845i
\(324\) 0 0
\(325\) 1.17033i 0.0649180i
\(326\) 0 0
\(327\) −8.12702 −0.449425
\(328\) 0 0
\(329\) −2.62570 −0.144760
\(330\) 0 0
\(331\) − 6.16543i − 0.338882i −0.985540 0.169441i \(-0.945804\pi\)
0.985540 0.169441i \(-0.0541963\pi\)
\(332\) 0 0
\(333\) 0.0922904i 0.00505748i
\(334\) 0 0
\(335\) −10.6847 −0.583766
\(336\) 0 0
\(337\) −30.1337 −1.64149 −0.820745 0.571295i \(-0.806441\pi\)
−0.820745 + 0.571295i \(0.806441\pi\)
\(338\) 0 0
\(339\) − 10.8501i − 0.589296i
\(340\) 0 0
\(341\) 13.9343i 0.754585i
\(342\) 0 0
\(343\) 17.9765 0.970642
\(344\) 0 0
\(345\) 2.27628 0.122551
\(346\) 0 0
\(347\) 27.8202i 1.49347i 0.665123 + 0.746734i \(0.268379\pi\)
−0.665123 + 0.746734i \(0.731621\pi\)
\(348\) 0 0
\(349\) 7.91760i 0.423819i 0.977289 + 0.211910i \(0.0679683\pi\)
−0.977289 + 0.211910i \(0.932032\pi\)
\(350\) 0 0
\(351\) −6.04823 −0.322831
\(352\) 0 0
\(353\) 27.1161 1.44324 0.721621 0.692288i \(-0.243397\pi\)
0.721621 + 0.692288i \(0.243397\pi\)
\(354\) 0 0
\(355\) 0.758738i 0.0402696i
\(356\) 0 0
\(357\) 23.8854i 1.26415i
\(358\) 0 0
\(359\) −4.76453 −0.251462 −0.125731 0.992064i \(-0.540128\pi\)
−0.125731 + 0.992064i \(0.540128\pi\)
\(360\) 0 0
\(361\) −1.00000 −0.0526316
\(362\) 0 0
\(363\) 1.82476i 0.0957751i
\(364\) 0 0
\(365\) 10.0998i 0.528648i
\(366\) 0 0
\(367\) −35.9120 −1.87459 −0.937296 0.348535i \(-0.886679\pi\)
−0.937296 + 0.348535i \(0.886679\pi\)
\(368\) 0 0
\(369\) −0.305445 −0.0159009
\(370\) 0 0
\(371\) 12.6196i 0.655179i
\(372\) 0 0
\(373\) 22.3983i 1.15974i 0.814710 + 0.579869i \(0.196896\pi\)
−0.814710 + 0.579869i \(0.803104\pi\)
\(374\) 0 0
\(375\) −1.74129 −0.0899198
\(376\) 0 0
\(377\) −9.06964 −0.467110
\(378\) 0 0
\(379\) 4.29393i 0.220565i 0.993900 + 0.110282i \(0.0351755\pi\)
−0.993900 + 0.110282i \(0.964825\pi\)
\(380\) 0 0
\(381\) − 21.8056i − 1.11713i
\(382\) 0 0
\(383\) −25.6760 −1.31198 −0.655991 0.754768i \(-0.727749\pi\)
−0.655991 + 0.754768i \(0.727749\pi\)
\(384\) 0 0
\(385\) −14.8129 −0.754934
\(386\) 0 0
\(387\) − 0.269023i − 0.0136752i
\(388\) 0 0
\(389\) − 21.3819i − 1.08411i −0.840344 0.542054i \(-0.817647\pi\)
0.840344 0.542054i \(-0.182353\pi\)
\(390\) 0 0
\(391\) −4.20179 −0.212494
\(392\) 0 0
\(393\) −18.1429 −0.915186
\(394\) 0 0
\(395\) 15.5194i 0.780864i
\(396\) 0 0
\(397\) − 37.8072i − 1.89749i −0.316044 0.948745i \(-0.602355\pi\)
0.316044 0.948745i \(-0.397645\pi\)
\(398\) 0 0
\(399\) 7.43111 0.372021
\(400\) 0 0
\(401\) 9.31973 0.465405 0.232703 0.972548i \(-0.425243\pi\)
0.232703 + 0.972548i \(0.425243\pi\)
\(402\) 0 0
\(403\) − 4.69824i − 0.234036i
\(404\) 0 0
\(405\) − 9.09524i − 0.451946i
\(406\) 0 0
\(407\) 9.98248 0.494813
\(408\) 0 0
\(409\) −5.74304 −0.283975 −0.141988 0.989868i \(-0.545349\pi\)
−0.141988 + 0.989868i \(0.545349\pi\)
\(410\) 0 0
\(411\) 38.0289i 1.87583i
\(412\) 0 0
\(413\) 3.38315i 0.166474i
\(414\) 0 0
\(415\) −10.8166 −0.530964
\(416\) 0 0
\(417\) 1.63387 0.0800109
\(418\) 0 0
\(419\) 13.1417i 0.642014i 0.947077 + 0.321007i \(0.104021\pi\)
−0.947077 + 0.321007i \(0.895979\pi\)
\(420\) 0 0
\(421\) 29.3028i 1.42813i 0.700078 + 0.714066i \(0.253148\pi\)
−0.700078 + 0.714066i \(0.746852\pi\)
\(422\) 0 0
\(423\) 0.0197441 0.000959990 0
\(424\) 0 0
\(425\) 3.21425 0.155914
\(426\) 0 0
\(427\) − 14.3999i − 0.696861i
\(428\) 0 0
\(429\) − 7.07350i − 0.341512i
\(430\) 0 0
\(431\) 5.65353 0.272321 0.136160 0.990687i \(-0.456524\pi\)
0.136160 + 0.990687i \(0.456524\pi\)
\(432\) 0 0
\(433\) −28.9462 −1.39106 −0.695532 0.718495i \(-0.744831\pi\)
−0.695532 + 0.718495i \(0.744831\pi\)
\(434\) 0 0
\(435\) − 13.4944i − 0.647008i
\(436\) 0 0
\(437\) 1.30724i 0.0625337i
\(438\) 0 0
\(439\) 20.1200 0.960274 0.480137 0.877193i \(-0.340587\pi\)
0.480137 + 0.877193i \(0.340587\pi\)
\(440\) 0 0
\(441\) −0.359808 −0.0171337
\(442\) 0 0
\(443\) − 21.9508i − 1.04291i −0.853278 0.521457i \(-0.825389\pi\)
0.853278 0.521457i \(-0.174611\pi\)
\(444\) 0 0
\(445\) − 2.55872i − 0.121295i
\(446\) 0 0
\(447\) 8.42900 0.398678
\(448\) 0 0
\(449\) −13.6209 −0.642812 −0.321406 0.946941i \(-0.604155\pi\)
−0.321406 + 0.946941i \(0.604155\pi\)
\(450\) 0 0
\(451\) 33.0381i 1.55570i
\(452\) 0 0
\(453\) − 29.4573i − 1.38402i
\(454\) 0 0
\(455\) 4.99447 0.234144
\(456\) 0 0
\(457\) 27.7553 1.29834 0.649169 0.760644i \(-0.275117\pi\)
0.649169 + 0.760644i \(0.275117\pi\)
\(458\) 0 0
\(459\) 16.6112i 0.775344i
\(460\) 0 0
\(461\) 26.1891i 1.21975i 0.792499 + 0.609873i \(0.208780\pi\)
−0.792499 + 0.609873i \(0.791220\pi\)
\(462\) 0 0
\(463\) −28.7874 −1.33786 −0.668932 0.743324i \(-0.733248\pi\)
−0.668932 + 0.743324i \(0.733248\pi\)
\(464\) 0 0
\(465\) 6.99037 0.324170
\(466\) 0 0
\(467\) 34.8523i 1.61277i 0.591390 + 0.806386i \(0.298579\pi\)
−0.591390 + 0.806386i \(0.701421\pi\)
\(468\) 0 0
\(469\) 45.5978i 2.10551i
\(470\) 0 0
\(471\) −4.02647 −0.185530
\(472\) 0 0
\(473\) −29.0985 −1.33795
\(474\) 0 0
\(475\) − 1.00000i − 0.0458831i
\(476\) 0 0
\(477\) − 0.0948939i − 0.00434489i
\(478\) 0 0
\(479\) −27.5781 −1.26007 −0.630037 0.776565i \(-0.716960\pi\)
−0.630037 + 0.776565i \(0.716960\pi\)
\(480\) 0 0
\(481\) −3.36581 −0.153468
\(482\) 0 0
\(483\) − 9.71424i − 0.442013i
\(484\) 0 0
\(485\) − 15.1049i − 0.685879i
\(486\) 0 0
\(487\) −37.6560 −1.70636 −0.853179 0.521619i \(-0.825328\pi\)
−0.853179 + 0.521619i \(0.825328\pi\)
\(488\) 0 0
\(489\) 23.2572 1.05173
\(490\) 0 0
\(491\) 5.16332i 0.233018i 0.993190 + 0.116509i \(0.0371703\pi\)
−0.993190 + 0.116509i \(0.962830\pi\)
\(492\) 0 0
\(493\) 24.9093i 1.12186i
\(494\) 0 0
\(495\) 0.111386 0.00500643
\(496\) 0 0
\(497\) 3.23798 0.145243
\(498\) 0 0
\(499\) − 31.2755i − 1.40008i −0.714102 0.700042i \(-0.753165\pi\)
0.714102 0.700042i \(-0.246835\pi\)
\(500\) 0 0
\(501\) 30.4812i 1.36180i
\(502\) 0 0
\(503\) −34.1754 −1.52381 −0.761904 0.647690i \(-0.775735\pi\)
−0.761904 + 0.647690i \(0.775735\pi\)
\(504\) 0 0
\(505\) 3.51450 0.156393
\(506\) 0 0
\(507\) − 20.2518i − 0.899414i
\(508\) 0 0
\(509\) 7.59220i 0.336518i 0.985743 + 0.168259i \(0.0538145\pi\)
−0.985743 + 0.168259i \(0.946185\pi\)
\(510\) 0 0
\(511\) 43.1018 1.90671
\(512\) 0 0
\(513\) 5.16799 0.228172
\(514\) 0 0
\(515\) 10.7032i 0.471639i
\(516\) 0 0
\(517\) − 2.13559i − 0.0939233i
\(518\) 0 0
\(519\) 34.1636 1.49962
\(520\) 0 0
\(521\) 44.3595 1.94343 0.971713 0.236166i \(-0.0758909\pi\)
0.971713 + 0.236166i \(0.0758909\pi\)
\(522\) 0 0
\(523\) 13.6137i 0.595288i 0.954677 + 0.297644i \(0.0962008\pi\)
−0.954677 + 0.297644i \(0.903799\pi\)
\(524\) 0 0
\(525\) 7.43111i 0.324320i
\(526\) 0 0
\(527\) −12.9035 −0.562086
\(528\) 0 0
\(529\) −21.2911 −0.925701
\(530\) 0 0
\(531\) − 0.0254397i − 0.00110399i
\(532\) 0 0
\(533\) − 11.1395i − 0.482506i
\(534\) 0 0
\(535\) 13.3164 0.575718
\(536\) 0 0
\(537\) −27.9441 −1.20588
\(538\) 0 0
\(539\) 38.9182i 1.67632i
\(540\) 0 0
\(541\) 7.68283i 0.330311i 0.986268 + 0.165155i \(0.0528126\pi\)
−0.986268 + 0.165155i \(0.947187\pi\)
\(542\) 0 0
\(543\) −32.0868 −1.37698
\(544\) 0 0
\(545\) 4.66724 0.199923
\(546\) 0 0
\(547\) 9.48006i 0.405338i 0.979247 + 0.202669i \(0.0649615\pi\)
−0.979247 + 0.202669i \(0.935038\pi\)
\(548\) 0 0
\(549\) 0.108281i 0.00462131i
\(550\) 0 0
\(551\) 7.74967 0.330147
\(552\) 0 0
\(553\) 66.2303 2.81640
\(554\) 0 0
\(555\) − 5.00787i − 0.212572i
\(556\) 0 0
\(557\) 0.204570i 0.00866793i 0.999991 + 0.00433396i \(0.00137955\pi\)
−0.999991 + 0.00433396i \(0.998620\pi\)
\(558\) 0 0
\(559\) 9.81119 0.414969
\(560\) 0 0
\(561\) −19.4270 −0.820210
\(562\) 0 0
\(563\) 9.61089i 0.405051i 0.979277 + 0.202525i \(0.0649149\pi\)
−0.979277 + 0.202525i \(0.935085\pi\)
\(564\) 0 0
\(565\) 6.23106i 0.262143i
\(566\) 0 0
\(567\) −38.8148 −1.63007
\(568\) 0 0
\(569\) −28.0632 −1.17647 −0.588236 0.808689i \(-0.700177\pi\)
−0.588236 + 0.808689i \(0.700177\pi\)
\(570\) 0 0
\(571\) 34.0399i 1.42453i 0.701912 + 0.712264i \(0.252330\pi\)
−0.701912 + 0.712264i \(0.747670\pi\)
\(572\) 0 0
\(573\) − 16.8081i − 0.702166i
\(574\) 0 0
\(575\) −1.30724 −0.0545156
\(576\) 0 0
\(577\) 24.5221 1.02087 0.510435 0.859917i \(-0.329485\pi\)
0.510435 + 0.859917i \(0.329485\pi\)
\(578\) 0 0
\(579\) − 21.7243i − 0.902832i
\(580\) 0 0
\(581\) 46.1607i 1.91507i
\(582\) 0 0
\(583\) −10.2641 −0.425095
\(584\) 0 0
\(585\) −0.0375562 −0.00155276
\(586\) 0 0
\(587\) 20.6206i 0.851102i 0.904935 + 0.425551i \(0.139920\pi\)
−0.904935 + 0.425551i \(0.860080\pi\)
\(588\) 0 0
\(589\) 4.01448i 0.165414i
\(590\) 0 0
\(591\) −16.6503 −0.684902
\(592\) 0 0
\(593\) 5.04425 0.207143 0.103571 0.994622i \(-0.466973\pi\)
0.103571 + 0.994622i \(0.466973\pi\)
\(594\) 0 0
\(595\) − 13.7171i − 0.562346i
\(596\) 0 0
\(597\) 17.9013i 0.732653i
\(598\) 0 0
\(599\) 30.4668 1.24484 0.622420 0.782684i \(-0.286150\pi\)
0.622420 + 0.782684i \(0.286150\pi\)
\(600\) 0 0
\(601\) 9.78410 0.399102 0.199551 0.979887i \(-0.436052\pi\)
0.199551 + 0.979887i \(0.436052\pi\)
\(602\) 0 0
\(603\) − 0.342875i − 0.0139629i
\(604\) 0 0
\(605\) − 1.04794i − 0.0426047i
\(606\) 0 0
\(607\) −25.7805 −1.04640 −0.523199 0.852211i \(-0.675262\pi\)
−0.523199 + 0.852211i \(0.675262\pi\)
\(608\) 0 0
\(609\) −57.5887 −2.33361
\(610\) 0 0
\(611\) 0.720061i 0.0291305i
\(612\) 0 0
\(613\) − 10.4870i − 0.423567i −0.977317 0.211784i \(-0.932073\pi\)
0.977317 0.211784i \(-0.0679272\pi\)
\(614\) 0 0
\(615\) 16.5741 0.668333
\(616\) 0 0
\(617\) 11.3355 0.456350 0.228175 0.973620i \(-0.426724\pi\)
0.228175 + 0.973620i \(0.426724\pi\)
\(618\) 0 0
\(619\) − 22.1178i − 0.888990i −0.895781 0.444495i \(-0.853383\pi\)
0.895781 0.444495i \(-0.146617\pi\)
\(620\) 0 0
\(621\) − 6.75580i − 0.271101i
\(622\) 0 0
\(623\) −10.9196 −0.437483
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 6.04404i 0.241376i
\(628\) 0 0
\(629\) 9.24403i 0.368584i
\(630\) 0 0
\(631\) 23.9941 0.955191 0.477596 0.878580i \(-0.341508\pi\)
0.477596 + 0.878580i \(0.341508\pi\)
\(632\) 0 0
\(633\) 28.9386 1.15020
\(634\) 0 0
\(635\) 12.5227i 0.496946i
\(636\) 0 0
\(637\) − 13.1221i − 0.519916i
\(638\) 0 0
\(639\) −0.0243482 −0.000963198 0
\(640\) 0 0
\(641\) 9.70799 0.383442 0.191721 0.981449i \(-0.438593\pi\)
0.191721 + 0.981449i \(0.438593\pi\)
\(642\) 0 0
\(643\) − 20.5326i − 0.809727i −0.914377 0.404863i \(-0.867319\pi\)
0.914377 0.404863i \(-0.132681\pi\)
\(644\) 0 0
\(645\) 14.5977i 0.574786i
\(646\) 0 0
\(647\) 44.4245 1.74651 0.873253 0.487266i \(-0.162006\pi\)
0.873253 + 0.487266i \(0.162006\pi\)
\(648\) 0 0
\(649\) −2.75166 −0.108012
\(650\) 0 0
\(651\) − 29.8320i − 1.16921i
\(652\) 0 0
\(653\) 22.6543i 0.886530i 0.896391 + 0.443265i \(0.146180\pi\)
−0.896391 + 0.443265i \(0.853820\pi\)
\(654\) 0 0
\(655\) 10.4192 0.407112
\(656\) 0 0
\(657\) −0.324106 −0.0126446
\(658\) 0 0
\(659\) 38.5716i 1.50254i 0.659998 + 0.751268i \(0.270557\pi\)
−0.659998 + 0.751268i \(0.729443\pi\)
\(660\) 0 0
\(661\) 24.3737i 0.948025i 0.880518 + 0.474013i \(0.157195\pi\)
−0.880518 + 0.474013i \(0.842805\pi\)
\(662\) 0 0
\(663\) 6.55023 0.254390
\(664\) 0 0
\(665\) −4.26759 −0.165490
\(666\) 0 0
\(667\) − 10.1307i − 0.392261i
\(668\) 0 0
\(669\) − 15.8700i − 0.613572i
\(670\) 0 0
\(671\) 11.7121 0.452139
\(672\) 0 0
\(673\) 10.1067 0.389585 0.194793 0.980844i \(-0.437597\pi\)
0.194793 + 0.980844i \(0.437597\pi\)
\(674\) 0 0
\(675\) 5.16799i 0.198916i
\(676\) 0 0
\(677\) − 28.7783i − 1.10604i −0.833167 0.553021i \(-0.813475\pi\)
0.833167 0.553021i \(-0.186525\pi\)
\(678\) 0 0
\(679\) −64.4616 −2.47381
\(680\) 0 0
\(681\) 36.6401 1.40405
\(682\) 0 0
\(683\) 5.91909i 0.226488i 0.993567 + 0.113244i \(0.0361241\pi\)
−0.993567 + 0.113244i \(0.963876\pi\)
\(684\) 0 0
\(685\) − 21.8395i − 0.834444i
\(686\) 0 0
\(687\) −0.401400 −0.0153144
\(688\) 0 0
\(689\) 3.46075 0.131844
\(690\) 0 0
\(691\) − 34.4298i − 1.30977i −0.755727 0.654887i \(-0.772716\pi\)
0.755727 0.654887i \(-0.227284\pi\)
\(692\) 0 0
\(693\) − 0.475350i − 0.0180571i
\(694\) 0 0
\(695\) −0.938309 −0.0355921
\(696\) 0 0
\(697\) −30.5941 −1.15884
\(698\) 0 0
\(699\) 3.89924i 0.147483i
\(700\) 0 0
\(701\) 9.66489i 0.365038i 0.983202 + 0.182519i \(0.0584251\pi\)
−0.983202 + 0.182519i \(0.941575\pi\)
\(702\) 0 0
\(703\) 2.87596 0.108469
\(704\) 0 0
\(705\) −1.07136 −0.0403496
\(706\) 0 0
\(707\) − 14.9984i − 0.564074i
\(708\) 0 0
\(709\) − 39.6534i − 1.48921i −0.667503 0.744607i \(-0.732637\pi\)
0.667503 0.744607i \(-0.267363\pi\)
\(710\) 0 0
\(711\) −0.498022 −0.0186773
\(712\) 0 0
\(713\) 5.24788 0.196535
\(714\) 0 0
\(715\) 4.06222i 0.151918i
\(716\) 0 0
\(717\) 32.3268i 1.20727i
\(718\) 0 0
\(719\) 6.63763 0.247542 0.123771 0.992311i \(-0.460501\pi\)
0.123771 + 0.992311i \(0.460501\pi\)
\(720\) 0 0
\(721\) 45.6769 1.70110
\(722\) 0 0
\(723\) 44.3799i 1.65051i
\(724\) 0 0
\(725\) 7.74967i 0.287816i
\(726\) 0 0
\(727\) −30.3254 −1.12471 −0.562353 0.826898i \(-0.690104\pi\)
−0.562353 + 0.826898i \(0.690104\pi\)
\(728\) 0 0
\(729\) −26.7050 −0.989076
\(730\) 0 0
\(731\) − 26.9460i − 0.996633i
\(732\) 0 0
\(733\) 44.5305i 1.64477i 0.568930 + 0.822386i \(0.307357\pi\)
−0.568930 + 0.822386i \(0.692643\pi\)
\(734\) 0 0
\(735\) 19.5239 0.720151
\(736\) 0 0
\(737\) −37.0866 −1.36610
\(738\) 0 0
\(739\) 8.37611i 0.308120i 0.988061 + 0.154060i \(0.0492349\pi\)
−0.988061 + 0.154060i \(0.950765\pi\)
\(740\) 0 0
\(741\) − 2.03788i − 0.0748633i
\(742\) 0 0
\(743\) 14.1329 0.518485 0.259243 0.965812i \(-0.416527\pi\)
0.259243 + 0.965812i \(0.416527\pi\)
\(744\) 0 0
\(745\) −4.84067 −0.177348
\(746\) 0 0
\(747\) − 0.347107i − 0.0127000i
\(748\) 0 0
\(749\) − 56.8289i − 2.07648i
\(750\) 0 0
\(751\) 4.23734 0.154623 0.0773114 0.997007i \(-0.475366\pi\)
0.0773114 + 0.997007i \(0.475366\pi\)
\(752\) 0 0
\(753\) −8.41863 −0.306792
\(754\) 0 0
\(755\) 16.9169i 0.615670i
\(756\) 0 0
\(757\) 31.0769i 1.12951i 0.825258 + 0.564755i \(0.191029\pi\)
−0.825258 + 0.564755i \(0.808971\pi\)
\(758\) 0 0
\(759\) 7.90101 0.286788
\(760\) 0 0
\(761\) 14.8599 0.538671 0.269335 0.963046i \(-0.413196\pi\)
0.269335 + 0.963046i \(0.413196\pi\)
\(762\) 0 0
\(763\) − 19.9179i − 0.721076i
\(764\) 0 0
\(765\) 0.103146i 0.00372926i
\(766\) 0 0
\(767\) 0.927780 0.0335002
\(768\) 0 0
\(769\) −7.04822 −0.254165 −0.127083 0.991892i \(-0.540561\pi\)
−0.127083 + 0.991892i \(0.540561\pi\)
\(770\) 0 0
\(771\) 49.5358i 1.78399i
\(772\) 0 0
\(773\) − 23.7187i − 0.853103i −0.904463 0.426551i \(-0.859728\pi\)
0.904463 0.426551i \(-0.140272\pi\)
\(774\) 0 0
\(775\) −4.01448 −0.144204
\(776\) 0 0
\(777\) −21.3716 −0.766700
\(778\) 0 0
\(779\) 9.51830i 0.341028i
\(780\) 0 0
\(781\) 2.63359i 0.0942372i
\(782\) 0 0
\(783\) −40.0502 −1.43128
\(784\) 0 0
\(785\) 2.31235 0.0825313
\(786\) 0 0
\(787\) − 17.6151i − 0.627910i −0.949438 0.313955i \(-0.898346\pi\)
0.949438 0.313955i \(-0.101654\pi\)
\(788\) 0 0
\(789\) − 0.356305i − 0.0126848i
\(790\) 0 0
\(791\) 26.5916 0.945489
\(792\) 0 0
\(793\) −3.94897 −0.140232
\(794\) 0 0
\(795\) 5.14914i 0.182621i
\(796\) 0 0
\(797\) − 18.2108i − 0.645059i −0.946559 0.322530i \(-0.895467\pi\)
0.946559 0.322530i \(-0.104533\pi\)
\(798\) 0 0
\(799\) 1.97761 0.0699629
\(800\) 0 0
\(801\) 0.0821101 0.00290122
\(802\) 0 0
\(803\) 35.0565i 1.23712i
\(804\) 0 0
\(805\) 5.57876i 0.196626i
\(806\) 0 0
\(807\) 22.6539 0.797456
\(808\) 0 0
\(809\) −28.3141 −0.995469 −0.497735 0.867329i \(-0.665835\pi\)
−0.497735 + 0.867329i \(0.665835\pi\)
\(810\) 0 0
\(811\) 3.81640i 0.134012i 0.997753 + 0.0670060i \(0.0213447\pi\)
−0.997753 + 0.0670060i \(0.978655\pi\)
\(812\) 0 0
\(813\) − 49.5906i − 1.73922i
\(814\) 0 0
\(815\) −13.3563 −0.467851
\(816\) 0 0
\(817\) −8.38330 −0.293294
\(818\) 0 0
\(819\) 0.160274i 0.00560044i
\(820\) 0 0
\(821\) 8.02224i 0.279978i 0.990153 + 0.139989i \(0.0447068\pi\)
−0.990153 + 0.139989i \(0.955293\pi\)
\(822\) 0 0
\(823\) −27.9881 −0.975604 −0.487802 0.872954i \(-0.662201\pi\)
−0.487802 + 0.872954i \(0.662201\pi\)
\(824\) 0 0
\(825\) −6.04404 −0.210427
\(826\) 0 0
\(827\) − 35.0995i − 1.22053i −0.792197 0.610265i \(-0.791063\pi\)
0.792197 0.610265i \(-0.208937\pi\)
\(828\) 0 0
\(829\) 35.6312i 1.23752i 0.785578 + 0.618762i \(0.212366\pi\)
−0.785578 + 0.618762i \(0.787634\pi\)
\(830\) 0 0
\(831\) −29.0181 −1.00663
\(832\) 0 0
\(833\) −36.0392 −1.24868
\(834\) 0 0
\(835\) − 17.5050i − 0.605784i
\(836\) 0 0
\(837\) − 20.7468i − 0.717113i
\(838\) 0 0
\(839\) −21.6230 −0.746507 −0.373254 0.927729i \(-0.621758\pi\)
−0.373254 + 0.927729i \(0.621758\pi\)
\(840\) 0 0
\(841\) −31.0574 −1.07094
\(842\) 0 0
\(843\) 25.2128i 0.868376i
\(844\) 0 0
\(845\) 11.6303i 0.400096i
\(846\) 0 0
\(847\) −4.47217 −0.153665
\(848\) 0 0
\(849\) −52.5064 −1.80201
\(850\) 0 0
\(851\) − 3.75956i − 0.128876i
\(852\) 0 0
\(853\) − 31.6534i − 1.08379i −0.840446 0.541895i \(-0.817707\pi\)
0.840446 0.541895i \(-0.182293\pi\)
\(854\) 0 0
\(855\) 0.0320903 0.00109747
\(856\) 0 0
\(857\) −21.3449 −0.729128 −0.364564 0.931178i \(-0.618782\pi\)
−0.364564 + 0.931178i \(0.618782\pi\)
\(858\) 0 0
\(859\) 50.1606i 1.71146i 0.517423 + 0.855730i \(0.326891\pi\)
−0.517423 + 0.855730i \(0.673109\pi\)
\(860\) 0 0
\(861\) − 70.7315i − 2.41052i
\(862\) 0 0
\(863\) −40.4392 −1.37657 −0.688283 0.725442i \(-0.741635\pi\)
−0.688283 + 0.725442i \(0.741635\pi\)
\(864\) 0 0
\(865\) −19.6197 −0.667091
\(866\) 0 0
\(867\) 11.6120i 0.394365i
\(868\) 0 0
\(869\) 53.8680i 1.82735i
\(870\) 0 0
\(871\) 12.5045 0.423700
\(872\) 0 0
\(873\) 0.484722 0.0164054
\(874\) 0 0
\(875\) − 4.26759i − 0.144271i
\(876\) 0 0
\(877\) − 40.6935i − 1.37412i −0.726599 0.687061i \(-0.758900\pi\)
0.726599 0.687061i \(-0.241100\pi\)
\(878\) 0 0
\(879\) −46.2258 −1.55916
\(880\) 0 0
\(881\) −50.5155 −1.70191 −0.850956 0.525238i \(-0.823976\pi\)
−0.850956 + 0.525238i \(0.823976\pi\)
\(882\) 0 0
\(883\) 36.2505i 1.21993i 0.792429 + 0.609964i \(0.208816\pi\)
−0.792429 + 0.609964i \(0.791184\pi\)
\(884\) 0 0
\(885\) 1.38041i 0.0464021i
\(886\) 0 0
\(887\) 11.6574 0.391418 0.195709 0.980662i \(-0.437299\pi\)
0.195709 + 0.980662i \(0.437299\pi\)
\(888\) 0 0
\(889\) 53.4416 1.79237
\(890\) 0 0
\(891\) − 31.5697i − 1.05763i
\(892\) 0 0
\(893\) − 0.615265i − 0.0205891i
\(894\) 0 0
\(895\) 16.0479 0.536423
\(896\) 0 0
\(897\) −2.66399 −0.0889481
\(898\) 0 0
\(899\) − 31.1109i − 1.03761i
\(900\) 0 0
\(901\) − 9.50480i − 0.316651i
\(902\) 0 0
\(903\) 62.2972 2.07312
\(904\) 0 0
\(905\) 18.4270 0.612536
\(906\) 0 0
\(907\) − 12.8607i − 0.427033i −0.976939 0.213516i \(-0.931508\pi\)
0.976939 0.213516i \(-0.0684917\pi\)
\(908\) 0 0
\(909\) 0.112781i 0.00374072i
\(910\) 0 0
\(911\) −45.7183 −1.51471 −0.757357 0.653001i \(-0.773510\pi\)
−0.757357 + 0.653001i \(0.773510\pi\)
\(912\) 0 0
\(913\) −37.5444 −1.24254
\(914\) 0 0
\(915\) − 5.87554i − 0.194240i
\(916\) 0 0
\(917\) − 44.4649i − 1.46836i
\(918\) 0 0
\(919\) −25.2194 −0.831910 −0.415955 0.909385i \(-0.636553\pi\)
−0.415955 + 0.909385i \(0.636553\pi\)
\(920\) 0 0
\(921\) −43.8058 −1.44345
\(922\) 0 0
\(923\) − 0.887970i − 0.0292279i
\(924\) 0 0
\(925\) 2.87596i 0.0945608i
\(926\) 0 0
\(927\) −0.343469 −0.0112810
\(928\) 0 0
\(929\) 43.1572 1.41594 0.707972 0.706241i \(-0.249610\pi\)
0.707972 + 0.706241i \(0.249610\pi\)
\(930\) 0 0
\(931\) 11.2123i 0.367470i
\(932\) 0 0
\(933\) 17.8841i 0.585501i
\(934\) 0 0
\(935\) 11.1567 0.364863
\(936\) 0 0
\(937\) −5.42120 −0.177103 −0.0885515 0.996072i \(-0.528224\pi\)
−0.0885515 + 0.996072i \(0.528224\pi\)
\(938\) 0 0
\(939\) 10.1893i 0.332516i
\(940\) 0 0
\(941\) − 3.35000i − 0.109207i −0.998508 0.0546035i \(-0.982611\pi\)
0.998508 0.0546035i \(-0.0173895\pi\)
\(942\) 0 0
\(943\) 12.4427 0.405190
\(944\) 0 0
\(945\) 22.0549 0.717445
\(946\) 0 0
\(947\) 19.1023i 0.620741i 0.950616 + 0.310370i \(0.100453\pi\)
−0.950616 + 0.310370i \(0.899547\pi\)
\(948\) 0 0
\(949\) − 11.8201i − 0.383695i
\(950\) 0 0
\(951\) 18.3532 0.595142
\(952\) 0 0
\(953\) 35.0195 1.13439 0.567196 0.823583i \(-0.308028\pi\)
0.567196 + 0.823583i \(0.308028\pi\)
\(954\) 0 0
\(955\) 9.65264i 0.312352i
\(956\) 0 0
\(957\) − 46.8393i − 1.51410i
\(958\) 0 0
\(959\) −93.2020 −3.00965
\(960\) 0 0
\(961\) −14.8840 −0.480129
\(962\) 0 0
\(963\) 0.427328i 0.0137704i
\(964\) 0 0
\(965\) 12.4760i 0.401617i
\(966\) 0 0
\(967\) −35.2602 −1.13389 −0.566947 0.823755i \(-0.691875\pi\)
−0.566947 + 0.823755i \(0.691875\pi\)
\(968\) 0 0
\(969\) −5.59693 −0.179799
\(970\) 0 0
\(971\) − 30.0212i − 0.963426i −0.876329 0.481713i \(-0.840015\pi\)
0.876329 0.481713i \(-0.159985\pi\)
\(972\) 0 0
\(973\) 4.00432i 0.128373i
\(974\) 0 0
\(975\) 2.03788 0.0652643
\(976\) 0 0
\(977\) 3.41415 0.109228 0.0546142 0.998508i \(-0.482607\pi\)
0.0546142 + 0.998508i \(0.482607\pi\)
\(978\) 0 0
\(979\) − 8.88134i − 0.283849i
\(980\) 0 0
\(981\) 0.149773i 0.00478190i
\(982\) 0 0
\(983\) −44.2342 −1.41085 −0.705426 0.708783i \(-0.749244\pi\)
−0.705426 + 0.708783i \(0.749244\pi\)
\(984\) 0 0
\(985\) 9.56205 0.304672
\(986\) 0 0
\(987\) 4.57211i 0.145532i
\(988\) 0 0
\(989\) 10.9590i 0.348475i
\(990\) 0 0
\(991\) −38.5006 −1.22301 −0.611506 0.791240i \(-0.709436\pi\)
−0.611506 + 0.791240i \(0.709436\pi\)
\(992\) 0 0
\(993\) −10.7358 −0.340690
\(994\) 0 0
\(995\) − 10.2805i − 0.325914i
\(996\) 0 0
\(997\) − 38.3171i − 1.21351i −0.794887 0.606757i \(-0.792470\pi\)
0.794887 0.606757i \(-0.207530\pi\)
\(998\) 0 0
\(999\) −14.8629 −0.470242
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3040.2.f.a.1521.7 28
4.3 odd 2 760.2.f.a.381.3 28
8.3 odd 2 760.2.f.a.381.4 yes 28
8.5 even 2 inner 3040.2.f.a.1521.22 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
760.2.f.a.381.3 28 4.3 odd 2
760.2.f.a.381.4 yes 28 8.3 odd 2
3040.2.f.a.1521.7 28 1.1 even 1 trivial
3040.2.f.a.1521.22 28 8.5 even 2 inner