Properties

Label 3024.2.t.j.1873.6
Level $3024$
Weight $2$
Character 3024.1873
Analytic conductor $24.147$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3024,2,Mod(289,3024)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3024, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3024.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.t (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,0,-4,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 5x^{12} - 3x^{11} + 7x^{10} + 30x^{9} - 117x^{7} + 270x^{5} + 189x^{4} - 243x^{3} - 1215x^{2} + 2187 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{7} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1873.6
Root \(-0.473632 + 1.66604i\) of defining polynomial
Character \(\chi\) \(=\) 3024.1873
Dual form 3024.2.t.j.289.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.90301 q^{5} +(2.43415 - 1.03677i) q^{7} -3.06586 q^{11} +(1.13161 - 1.96000i) q^{13} +(0.713726 - 1.23621i) q^{17} +(-2.98444 - 5.16919i) q^{19} -7.15543 q^{23} -1.37856 q^{25} +(-0.468164 - 0.810884i) q^{29} +(-4.11065 - 7.11985i) q^{31} +(4.63221 - 1.97298i) q^{35} +(-1.41550 - 2.45171i) q^{37} +(5.31672 - 9.20883i) q^{41} +(-2.98444 - 5.16919i) q^{43} +(0.483340 - 0.837169i) q^{47} +(4.85021 - 5.04732i) q^{49} +(-5.45142 + 9.44213i) q^{53} -5.83436 q^{55} +(5.68180 + 9.84117i) q^{59} +(-0.449718 + 0.778935i) q^{61} +(2.15346 - 3.72990i) q^{65} +(0.813810 + 1.40956i) q^{67} -2.36378 q^{71} +(-0.996286 + 1.72562i) q^{73} +(-7.46279 + 3.17860i) q^{77} +(-4.16945 + 7.22169i) q^{79} +(-7.98203 - 13.8253i) q^{83} +(1.35822 - 2.35251i) q^{85} +(2.58992 + 4.48587i) q^{89} +(0.722433 - 5.94416i) q^{91} +(-5.67940 - 9.83701i) q^{95} +(0.922890 + 1.59849i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 4 q^{5} + 3 q^{7} - 4 q^{11} + 2 q^{13} - 2 q^{17} - 7 q^{19} - 22 q^{23} + 18 q^{25} - q^{29} + q^{31} - 19 q^{35} + 10 q^{37} + 33 q^{41} - 7 q^{43} - 3 q^{47} - 13 q^{49} + 15 q^{53} + 28 q^{55}+ \cdots - 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.90301 0.851051 0.425525 0.904947i \(-0.360089\pi\)
0.425525 + 0.904947i \(0.360089\pi\)
\(6\) 0 0
\(7\) 2.43415 1.03677i 0.920024 0.391863i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.06586 −0.924393 −0.462196 0.886778i \(-0.652938\pi\)
−0.462196 + 0.886778i \(0.652938\pi\)
\(12\) 0 0
\(13\) 1.13161 1.96000i 0.313851 0.543607i −0.665341 0.746539i \(-0.731714\pi\)
0.979193 + 0.202933i \(0.0650473\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.713726 1.23621i 0.173104 0.299825i −0.766400 0.642364i \(-0.777954\pi\)
0.939503 + 0.342539i \(0.111287\pi\)
\(18\) 0 0
\(19\) −2.98444 5.16919i −0.684677 1.18589i −0.973538 0.228524i \(-0.926610\pi\)
0.288862 0.957371i \(-0.406723\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −7.15543 −1.49201 −0.746005 0.665940i \(-0.768031\pi\)
−0.746005 + 0.665940i \(0.768031\pi\)
\(24\) 0 0
\(25\) −1.37856 −0.275713
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.468164 0.810884i −0.0869359 0.150577i 0.819279 0.573396i \(-0.194374\pi\)
−0.906214 + 0.422818i \(0.861041\pi\)
\(30\) 0 0
\(31\) −4.11065 7.11985i −0.738294 1.27876i −0.953263 0.302142i \(-0.902298\pi\)
0.214969 0.976621i \(-0.431035\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.63221 1.97298i 0.782987 0.333495i
\(36\) 0 0
\(37\) −1.41550 2.45171i −0.232706 0.403059i 0.725897 0.687803i \(-0.241425\pi\)
−0.958604 + 0.284744i \(0.908091\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.31672 9.20883i 0.830332 1.43818i −0.0674429 0.997723i \(-0.521484\pi\)
0.897775 0.440454i \(-0.145183\pi\)
\(42\) 0 0
\(43\) −2.98444 5.16919i −0.455122 0.788295i 0.543573 0.839362i \(-0.317071\pi\)
−0.998695 + 0.0510671i \(0.983738\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.483340 0.837169i 0.0705023 0.122114i −0.828619 0.559813i \(-0.810873\pi\)
0.899122 + 0.437699i \(0.144206\pi\)
\(48\) 0 0
\(49\) 4.85021 5.04732i 0.692887 0.721046i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −5.45142 + 9.44213i −0.748810 + 1.29698i 0.199583 + 0.979881i \(0.436041\pi\)
−0.948393 + 0.317096i \(0.897292\pi\)
\(54\) 0 0
\(55\) −5.83436 −0.786705
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.68180 + 9.84117i 0.739708 + 1.28121i 0.952627 + 0.304142i \(0.0983697\pi\)
−0.212919 + 0.977070i \(0.568297\pi\)
\(60\) 0 0
\(61\) −0.449718 + 0.778935i −0.0575805 + 0.0997324i −0.893379 0.449304i \(-0.851672\pi\)
0.835798 + 0.549037i \(0.185005\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.15346 3.72990i 0.267104 0.462637i
\(66\) 0 0
\(67\) 0.813810 + 1.40956i 0.0994227 + 0.172205i 0.911446 0.411420i \(-0.134967\pi\)
−0.812023 + 0.583625i \(0.801634\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −2.36378 −0.280529 −0.140264 0.990114i \(-0.544795\pi\)
−0.140264 + 0.990114i \(0.544795\pi\)
\(72\) 0 0
\(73\) −0.996286 + 1.72562i −0.116606 + 0.201968i −0.918421 0.395605i \(-0.870535\pi\)
0.801814 + 0.597573i \(0.203868\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −7.46279 + 3.17860i −0.850463 + 0.362235i
\(78\) 0 0
\(79\) −4.16945 + 7.22169i −0.469099 + 0.812504i −0.999376 0.0353209i \(-0.988755\pi\)
0.530277 + 0.847825i \(0.322088\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −7.98203 13.8253i −0.876141 1.51752i −0.855542 0.517734i \(-0.826776\pi\)
−0.0205995 0.999788i \(-0.506557\pi\)
\(84\) 0 0
\(85\) 1.35822 2.35251i 0.147320 0.255166i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2.58992 + 4.48587i 0.274531 + 0.475501i 0.970017 0.243039i \(-0.0781442\pi\)
−0.695486 + 0.718540i \(0.744811\pi\)
\(90\) 0 0
\(91\) 0.722433 5.94416i 0.0757316 0.623118i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −5.67940 9.83701i −0.582694 1.00926i
\(96\) 0 0
\(97\) 0.922890 + 1.59849i 0.0937053 + 0.162302i 0.909068 0.416649i \(-0.136796\pi\)
−0.815362 + 0.578951i \(0.803462\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 8.06350 0.802349 0.401174 0.916002i \(-0.368602\pi\)
0.401174 + 0.916002i \(0.368602\pi\)
\(102\) 0 0
\(103\) 17.7986 1.75375 0.876875 0.480718i \(-0.159624\pi\)
0.876875 + 0.480718i \(0.159624\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.76005 + 15.1729i 0.846866 + 1.46682i 0.883991 + 0.467505i \(0.154847\pi\)
−0.0371245 + 0.999311i \(0.511820\pi\)
\(108\) 0 0
\(109\) 1.11441 1.93021i 0.106741 0.184881i −0.807707 0.589584i \(-0.799292\pi\)
0.914448 + 0.404703i \(0.132625\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 7.59999 13.1636i 0.714947 1.23832i −0.248033 0.968751i \(-0.579784\pi\)
0.962980 0.269573i \(-0.0868824\pi\)
\(114\) 0 0
\(115\) −13.6168 −1.26978
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.455652 3.74909i 0.0417695 0.343679i
\(120\) 0 0
\(121\) −1.60048 −0.145498
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −12.1385 −1.08570
\(126\) 0 0
\(127\) 16.9303 1.50232 0.751161 0.660119i \(-0.229494\pi\)
0.751161 + 0.660119i \(0.229494\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2.38354 0.208251 0.104125 0.994564i \(-0.466796\pi\)
0.104125 + 0.994564i \(0.466796\pi\)
\(132\) 0 0
\(133\) −12.6238 9.48844i −1.09463 0.822752i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −10.9820 −0.938254 −0.469127 0.883131i \(-0.655431\pi\)
−0.469127 + 0.883131i \(0.655431\pi\)
\(138\) 0 0
\(139\) 3.70422 6.41590i 0.314188 0.544190i −0.665076 0.746775i \(-0.731601\pi\)
0.979265 + 0.202585i \(0.0649344\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.46936 + 6.00910i −0.290122 + 0.502506i
\(144\) 0 0
\(145\) −0.890919 1.54312i −0.0739868 0.128149i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −17.6239 −1.44381 −0.721904 0.691993i \(-0.756733\pi\)
−0.721904 + 0.691993i \(0.756733\pi\)
\(150\) 0 0
\(151\) 20.3664 1.65739 0.828697 0.559697i \(-0.189083\pi\)
0.828697 + 0.559697i \(0.189083\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −7.82259 13.5491i −0.628326 1.08829i
\(156\) 0 0
\(157\) −4.64118 8.03875i −0.370406 0.641562i 0.619222 0.785216i \(-0.287448\pi\)
−0.989628 + 0.143654i \(0.954115\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −17.4174 + 7.41854i −1.37268 + 0.584663i
\(162\) 0 0
\(163\) 11.9069 + 20.6234i 0.932623 + 1.61535i 0.778819 + 0.627248i \(0.215819\pi\)
0.153803 + 0.988101i \(0.450848\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −0.883505 + 1.53028i −0.0683676 + 0.118416i −0.898183 0.439622i \(-0.855112\pi\)
0.829815 + 0.558038i \(0.188446\pi\)
\(168\) 0 0
\(169\) 3.93893 + 6.82242i 0.302994 + 0.524802i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0.180049 0.311855i 0.0136889 0.0237099i −0.859100 0.511808i \(-0.828976\pi\)
0.872789 + 0.488098i \(0.162309\pi\)
\(174\) 0 0
\(175\) −3.35564 + 1.42926i −0.253662 + 0.108042i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −3.57701 + 6.19556i −0.267358 + 0.463078i −0.968179 0.250260i \(-0.919484\pi\)
0.700821 + 0.713337i \(0.252817\pi\)
\(180\) 0 0
\(181\) 11.0542 0.821650 0.410825 0.911714i \(-0.365241\pi\)
0.410825 + 0.911714i \(0.365241\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2.69370 4.66563i −0.198045 0.343024i
\(186\) 0 0
\(187\) −2.18819 + 3.79005i −0.160016 + 0.277156i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.35083 7.53586i 0.314815 0.545276i −0.664583 0.747214i \(-0.731391\pi\)
0.979398 + 0.201939i \(0.0647241\pi\)
\(192\) 0 0
\(193\) 0.709644 + 1.22914i 0.0510813 + 0.0884754i 0.890435 0.455110i \(-0.150400\pi\)
−0.839354 + 0.543585i \(0.817067\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −5.69424 −0.405698 −0.202849 0.979210i \(-0.565020\pi\)
−0.202849 + 0.979210i \(0.565020\pi\)
\(198\) 0 0
\(199\) −2.61327 + 4.52631i −0.185250 + 0.320862i −0.943661 0.330915i \(-0.892643\pi\)
0.758411 + 0.651777i \(0.225976\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.98028 1.48844i −0.138989 0.104468i
\(204\) 0 0
\(205\) 10.1178 17.5245i 0.706655 1.22396i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 9.14987 + 15.8480i 0.632910 + 1.09623i
\(210\) 0 0
\(211\) 5.93079 10.2724i 0.408293 0.707183i −0.586406 0.810017i \(-0.699458\pi\)
0.994699 + 0.102834i \(0.0327910\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −5.67940 9.83701i −0.387332 0.670879i
\(216\) 0 0
\(217\) −17.3876 13.0690i −1.18035 0.887182i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1.61531 2.79781i −0.108658 0.188201i
\(222\) 0 0
\(223\) −12.2950 21.2955i −0.823333 1.42605i −0.903187 0.429248i \(-0.858779\pi\)
0.0798535 0.996807i \(-0.474555\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 15.3180 1.01669 0.508344 0.861154i \(-0.330258\pi\)
0.508344 + 0.861154i \(0.330258\pi\)
\(228\) 0 0
\(229\) 17.0459 1.12643 0.563214 0.826311i \(-0.309565\pi\)
0.563214 + 0.826311i \(0.309565\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −9.88255 17.1171i −0.647427 1.12138i −0.983735 0.179625i \(-0.942512\pi\)
0.336308 0.941752i \(-0.390822\pi\)
\(234\) 0 0
\(235\) 0.919799 1.59314i 0.0600011 0.103925i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 8.35041 14.4633i 0.540143 0.935555i −0.458752 0.888564i \(-0.651703\pi\)
0.998895 0.0469909i \(-0.0149632\pi\)
\(240\) 0 0
\(241\) 6.39995 0.412257 0.206129 0.978525i \(-0.433914\pi\)
0.206129 + 0.978525i \(0.433914\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 9.22999 9.60509i 0.589682 0.613647i
\(246\) 0 0
\(247\) −13.5088 −0.859547
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −26.8346 −1.69378 −0.846891 0.531766i \(-0.821529\pi\)
−0.846891 + 0.531766i \(0.821529\pi\)
\(252\) 0 0
\(253\) 21.9376 1.37920
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −7.17597 −0.447625 −0.223812 0.974632i \(-0.571850\pi\)
−0.223812 + 0.974632i \(0.571850\pi\)
\(258\) 0 0
\(259\) −5.98741 4.50030i −0.372039 0.279635i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 20.4137 1.25876 0.629382 0.777096i \(-0.283308\pi\)
0.629382 + 0.777096i \(0.283308\pi\)
\(264\) 0 0
\(265\) −10.3741 + 17.9685i −0.637275 + 1.10379i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3.37251 5.84136i 0.205626 0.356154i −0.744706 0.667392i \(-0.767410\pi\)
0.950332 + 0.311238i \(0.100744\pi\)
\(270\) 0 0
\(271\) 1.04632 + 1.81228i 0.0635596 + 0.110088i 0.896054 0.443945i \(-0.146421\pi\)
−0.832495 + 0.554033i \(0.813088\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.22649 0.254867
\(276\) 0 0
\(277\) −23.5410 −1.41444 −0.707221 0.706992i \(-0.750052\pi\)
−0.707221 + 0.706992i \(0.750052\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −9.66048 16.7324i −0.576296 0.998173i −0.995900 0.0904661i \(-0.971164\pi\)
0.419604 0.907707i \(-0.362169\pi\)
\(282\) 0 0
\(283\) −2.22658 3.85655i −0.132356 0.229248i 0.792228 0.610225i \(-0.208921\pi\)
−0.924584 + 0.380977i \(0.875588\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.39426 27.9279i 0.200357 1.64853i
\(288\) 0 0
\(289\) 7.48119 + 12.9578i 0.440070 + 0.762224i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 11.7314 20.3193i 0.685354 1.18707i −0.287972 0.957639i \(-0.592981\pi\)
0.973325 0.229429i \(-0.0736858\pi\)
\(294\) 0 0
\(295\) 10.8125 + 18.7278i 0.629529 + 1.09038i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −8.09714 + 14.0247i −0.468270 + 0.811067i
\(300\) 0 0
\(301\) −12.6238 9.48844i −0.727627 0.546904i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −0.855817 + 1.48232i −0.0490039 + 0.0848773i
\(306\) 0 0
\(307\) −7.79955 −0.445144 −0.222572 0.974916i \(-0.571445\pi\)
−0.222572 + 0.974916i \(0.571445\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −7.49449 12.9808i −0.424974 0.736076i 0.571444 0.820641i \(-0.306383\pi\)
−0.996418 + 0.0845650i \(0.973050\pi\)
\(312\) 0 0
\(313\) −3.46332 + 5.99864i −0.195758 + 0.339063i −0.947149 0.320794i \(-0.896050\pi\)
0.751391 + 0.659858i \(0.229383\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 5.42872 9.40282i 0.304907 0.528115i −0.672333 0.740249i \(-0.734708\pi\)
0.977241 + 0.212133i \(0.0680412\pi\)
\(318\) 0 0
\(319\) 1.43533 + 2.48606i 0.0803629 + 0.139193i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −8.52027 −0.474081
\(324\) 0 0
\(325\) −1.55999 + 2.70199i −0.0865328 + 0.149879i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0.308570 2.53891i 0.0170120 0.139975i
\(330\) 0 0
\(331\) −4.02584 + 6.97297i −0.221280 + 0.383269i −0.955197 0.295971i \(-0.904357\pi\)
0.733917 + 0.679240i \(0.237690\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1.54869 + 2.68240i 0.0846138 + 0.146555i
\(336\) 0 0
\(337\) 11.4293 19.7961i 0.622594 1.07836i −0.366407 0.930455i \(-0.619412\pi\)
0.989001 0.147909i \(-0.0472543\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 12.6027 + 21.8285i 0.682474 + 1.18208i
\(342\) 0 0
\(343\) 6.57324 17.3145i 0.354922 0.934896i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −12.8892 22.3247i −0.691928 1.19845i −0.971205 0.238244i \(-0.923428\pi\)
0.279278 0.960210i \(-0.409905\pi\)
\(348\) 0 0
\(349\) 6.90108 + 11.9530i 0.369406 + 0.639830i 0.989473 0.144719i \(-0.0462277\pi\)
−0.620067 + 0.784549i \(0.712894\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 24.9028 1.32544 0.662721 0.748866i \(-0.269402\pi\)
0.662721 + 0.748866i \(0.269402\pi\)
\(354\) 0 0
\(355\) −4.49829 −0.238744
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 10.6980 + 18.5295i 0.564620 + 0.977951i 0.997085 + 0.0763002i \(0.0243107\pi\)
−0.432465 + 0.901651i \(0.642356\pi\)
\(360\) 0 0
\(361\) −8.31371 + 14.3998i −0.437564 + 0.757883i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −1.89594 + 3.28386i −0.0992380 + 0.171885i
\(366\) 0 0
\(367\) 11.5158 0.601121 0.300560 0.953763i \(-0.402826\pi\)
0.300560 + 0.953763i \(0.402826\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −3.48026 + 28.6355i −0.180686 + 1.48668i
\(372\) 0 0
\(373\) −1.69398 −0.0877109 −0.0438555 0.999038i \(-0.513964\pi\)
−0.0438555 + 0.999038i \(0.513964\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2.11911 −0.109140
\(378\) 0 0
\(379\) −8.50319 −0.436780 −0.218390 0.975862i \(-0.570080\pi\)
−0.218390 + 0.975862i \(0.570080\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −12.7819 −0.653124 −0.326562 0.945176i \(-0.605890\pi\)
−0.326562 + 0.945176i \(0.605890\pi\)
\(384\) 0 0
\(385\) −14.2017 + 6.04890i −0.723787 + 0.308280i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −3.55959 −0.180479 −0.0902393 0.995920i \(-0.528763\pi\)
−0.0902393 + 0.995920i \(0.528763\pi\)
\(390\) 0 0
\(391\) −5.10701 + 8.84560i −0.258273 + 0.447341i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −7.93448 + 13.7429i −0.399227 + 0.691482i
\(396\) 0 0
\(397\) 11.0411 + 19.1238i 0.554138 + 0.959795i 0.997970 + 0.0636848i \(0.0202852\pi\)
−0.443832 + 0.896110i \(0.646381\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.59853 −0.129765 −0.0648823 0.997893i \(-0.520667\pi\)
−0.0648823 + 0.997893i \(0.520667\pi\)
\(402\) 0 0
\(403\) −18.6066 −0.926859
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 4.33973 + 7.51662i 0.215112 + 0.372585i
\(408\) 0 0
\(409\) −1.51604 2.62585i −0.0749632 0.129840i 0.826107 0.563513i \(-0.190551\pi\)
−0.901070 + 0.433673i \(0.857217\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 24.0334 + 18.0642i 1.18261 + 0.888881i
\(414\) 0 0
\(415\) −15.1899 26.3096i −0.745641 1.29149i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −17.4979 + 30.3073i −0.854829 + 1.48061i 0.0219749 + 0.999759i \(0.493005\pi\)
−0.876804 + 0.480848i \(0.840329\pi\)
\(420\) 0 0
\(421\) 13.3264 + 23.0820i 0.649488 + 1.12495i 0.983245 + 0.182288i \(0.0583502\pi\)
−0.333757 + 0.942659i \(0.608316\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.983916 + 1.70419i −0.0477269 + 0.0826655i
\(426\) 0 0
\(427\) −0.287106 + 2.36230i −0.0138940 + 0.114320i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −8.77241 + 15.1943i −0.422552 + 0.731882i −0.996188 0.0872286i \(-0.972199\pi\)
0.573636 + 0.819110i \(0.305532\pi\)
\(432\) 0 0
\(433\) −18.0202 −0.865997 −0.432998 0.901395i \(-0.642544\pi\)
−0.432998 + 0.901395i \(0.642544\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 21.3549 + 36.9878i 1.02154 + 1.76937i
\(438\) 0 0
\(439\) 18.7159 32.4169i 0.893263 1.54718i 0.0573222 0.998356i \(-0.481744\pi\)
0.835940 0.548820i \(-0.184923\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −3.67162 + 6.35944i −0.174444 + 0.302146i −0.939969 0.341261i \(-0.889146\pi\)
0.765525 + 0.643407i \(0.222479\pi\)
\(444\) 0 0
\(445\) 4.92863 + 8.53664i 0.233639 + 0.404675i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 40.3618 1.90479 0.952395 0.304866i \(-0.0986115\pi\)
0.952395 + 0.304866i \(0.0986115\pi\)
\(450\) 0 0
\(451\) −16.3003 + 28.2330i −0.767553 + 1.32944i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1.37480 11.3118i 0.0644514 0.530305i
\(456\) 0 0
\(457\) 13.7360 23.7914i 0.642543 1.11292i −0.342321 0.939583i \(-0.611213\pi\)
0.984863 0.173333i \(-0.0554538\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 3.36325 + 5.82532i 0.156642 + 0.271312i 0.933656 0.358172i \(-0.116600\pi\)
−0.777014 + 0.629484i \(0.783266\pi\)
\(462\) 0 0
\(463\) −1.89569 + 3.28344i −0.0881004 + 0.152594i −0.906708 0.421759i \(-0.861413\pi\)
0.818608 + 0.574353i \(0.194746\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 10.2166 + 17.6957i 0.472769 + 0.818860i 0.999514 0.0311635i \(-0.00992126\pi\)
−0.526746 + 0.850023i \(0.676588\pi\)
\(468\) 0 0
\(469\) 3.44233 + 2.58735i 0.158952 + 0.119473i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 9.14987 + 15.8480i 0.420712 + 0.728694i
\(474\) 0 0
\(475\) 4.11423 + 7.12606i 0.188774 + 0.326966i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 27.9079 1.27514 0.637572 0.770391i \(-0.279939\pi\)
0.637572 + 0.770391i \(0.279939\pi\)
\(480\) 0 0
\(481\) −6.40715 −0.292141
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.75627 + 3.04194i 0.0797480 + 0.138128i
\(486\) 0 0
\(487\) 5.89480 10.2101i 0.267119 0.462663i −0.700998 0.713163i \(-0.747262\pi\)
0.968117 + 0.250500i \(0.0805951\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 13.2596 22.9662i 0.598396 1.03645i −0.394662 0.918826i \(-0.629138\pi\)
0.993058 0.117626i \(-0.0375283\pi\)
\(492\) 0 0
\(493\) −1.33656 −0.0601957
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −5.75380 + 2.45070i −0.258093 + 0.109929i
\(498\) 0 0
\(499\) −42.3329 −1.89508 −0.947540 0.319637i \(-0.896439\pi\)
−0.947540 + 0.319637i \(0.896439\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 11.0768 0.493890 0.246945 0.969029i \(-0.420573\pi\)
0.246945 + 0.969029i \(0.420573\pi\)
\(504\) 0 0
\(505\) 15.3449 0.682839
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −24.7262 −1.09597 −0.547984 0.836489i \(-0.684605\pi\)
−0.547984 + 0.836489i \(0.684605\pi\)
\(510\) 0 0
\(511\) −0.636042 + 5.23334i −0.0281368 + 0.231509i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 33.8709 1.49253
\(516\) 0 0
\(517\) −1.48185 + 2.56665i −0.0651719 + 0.112881i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −6.42298 + 11.1249i −0.281396 + 0.487392i −0.971729 0.236100i \(-0.924131\pi\)
0.690333 + 0.723492i \(0.257464\pi\)
\(522\) 0 0
\(523\) 1.70453 + 2.95234i 0.0745340 + 0.129097i 0.900884 0.434061i \(-0.142920\pi\)
−0.826350 + 0.563158i \(0.809586\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −11.7355 −0.511206
\(528\) 0 0
\(529\) 28.2002 1.22609
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −12.0329 20.8416i −0.521202 0.902748i
\(534\) 0 0
\(535\) 16.6704 + 28.8741i 0.720726 + 1.24833i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −14.8701 + 15.4744i −0.640500 + 0.666530i
\(540\) 0 0
\(541\) −22.9553 39.7598i −0.986926 1.70941i −0.633043 0.774117i \(-0.718194\pi\)
−0.353884 0.935289i \(-0.615139\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2.12073 3.67321i 0.0908421 0.157343i
\(546\) 0 0
\(547\) 12.5502 + 21.7376i 0.536608 + 0.929432i 0.999084 + 0.0428004i \(0.0136280\pi\)
−0.462476 + 0.886632i \(0.653039\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2.79441 + 4.84006i −0.119046 + 0.206194i
\(552\) 0 0
\(553\) −2.66183 + 21.9015i −0.113192 + 0.931345i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −0.836144 + 1.44824i −0.0354285 + 0.0613640i −0.883196 0.469004i \(-0.844613\pi\)
0.847767 + 0.530368i \(0.177946\pi\)
\(558\) 0 0
\(559\) −13.5088 −0.571363
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 11.3764 + 19.7046i 0.479460 + 0.830449i 0.999722 0.0235574i \(-0.00749926\pi\)
−0.520263 + 0.854006i \(0.674166\pi\)
\(564\) 0 0
\(565\) 14.4628 25.0504i 0.608456 1.05388i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −13.0292 + 22.5673i −0.546214 + 0.946071i 0.452315 + 0.891858i \(0.350598\pi\)
−0.998529 + 0.0542125i \(0.982735\pi\)
\(570\) 0 0
\(571\) 6.24174 + 10.8110i 0.261209 + 0.452427i 0.966563 0.256428i \(-0.0825455\pi\)
−0.705355 + 0.708855i \(0.749212\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 9.86421 0.411366
\(576\) 0 0
\(577\) −10.3756 + 17.9710i −0.431941 + 0.748143i −0.997040 0.0768793i \(-0.975504\pi\)
0.565100 + 0.825023i \(0.308838\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −33.7631 25.3773i −1.40073 1.05283i
\(582\) 0 0
\(583\) 16.7133 28.9483i 0.692195 1.19892i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8.67294 + 15.0220i 0.357971 + 0.620023i 0.987622 0.156855i \(-0.0501355\pi\)
−0.629651 + 0.776878i \(0.716802\pi\)
\(588\) 0 0
\(589\) −24.5359 + 42.4975i −1.01099 + 1.75108i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 14.0203 + 24.2839i 0.575745 + 0.997220i 0.995960 + 0.0897956i \(0.0286214\pi\)
−0.420215 + 0.907425i \(0.638045\pi\)
\(594\) 0 0
\(595\) 0.867109 7.13455i 0.0355480 0.292488i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −11.6047 20.0999i −0.474155 0.821260i 0.525407 0.850851i \(-0.323913\pi\)
−0.999562 + 0.0295906i \(0.990580\pi\)
\(600\) 0 0
\(601\) −0.348014 0.602779i −0.0141958 0.0245878i 0.858840 0.512244i \(-0.171185\pi\)
−0.873036 + 0.487656i \(0.837852\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −3.04572 −0.123826
\(606\) 0 0
\(607\) 1.71065 0.0694333 0.0347166 0.999397i \(-0.488947\pi\)
0.0347166 + 0.999397i \(0.488947\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.09390 1.89469i −0.0442545 0.0766511i
\(612\) 0 0
\(613\) 1.77253 3.07010i 0.0715916 0.124000i −0.828007 0.560717i \(-0.810525\pi\)
0.899599 + 0.436717i \(0.143859\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −5.58526 + 9.67395i −0.224854 + 0.389458i −0.956276 0.292467i \(-0.905524\pi\)
0.731422 + 0.681925i \(0.238857\pi\)
\(618\) 0 0
\(619\) −19.2172 −0.772403 −0.386201 0.922415i \(-0.626213\pi\)
−0.386201 + 0.922415i \(0.626213\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 10.9551 + 8.23414i 0.438906 + 0.329894i
\(624\) 0 0
\(625\) −16.2067 −0.648270
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −4.04111 −0.161130
\(630\) 0 0
\(631\) 23.1101 0.920000 0.460000 0.887919i \(-0.347849\pi\)
0.460000 + 0.887919i \(0.347849\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 32.2185 1.27855
\(636\) 0 0
\(637\) −4.40423 15.2180i −0.174502 0.602960i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 20.3938 0.805506 0.402753 0.915309i \(-0.368053\pi\)
0.402753 + 0.915309i \(0.368053\pi\)
\(642\) 0 0
\(643\) 1.31644 2.28015i 0.0519154 0.0899202i −0.838900 0.544286i \(-0.816801\pi\)
0.890815 + 0.454366i \(0.150134\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 3.63856 6.30217i 0.143047 0.247764i −0.785596 0.618740i \(-0.787643\pi\)
0.928642 + 0.370976i \(0.120977\pi\)
\(648\) 0 0
\(649\) −17.4196 30.1717i −0.683781 1.18434i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −22.8671 −0.894858 −0.447429 0.894319i \(-0.647660\pi\)
−0.447429 + 0.894319i \(0.647660\pi\)
\(654\) 0 0
\(655\) 4.53589 0.177232
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −3.59545 6.22750i −0.140059 0.242589i 0.787460 0.616366i \(-0.211396\pi\)
−0.927519 + 0.373777i \(0.878062\pi\)
\(660\) 0 0
\(661\) 17.2064 + 29.8023i 0.669250 + 1.15918i 0.978114 + 0.208069i \(0.0667179\pi\)
−0.308864 + 0.951106i \(0.599949\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −24.0233 18.0566i −0.931583 0.700204i
\(666\) 0 0
\(667\) 3.34991 + 5.80222i 0.129709 + 0.224663i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.37877 2.38811i 0.0532270 0.0921919i
\(672\) 0 0
\(673\) 3.46705 + 6.00511i 0.133645 + 0.231480i 0.925079 0.379775i \(-0.123998\pi\)
−0.791434 + 0.611255i \(0.790665\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 17.3014 29.9668i 0.664945 1.15172i −0.314355 0.949306i \(-0.601788\pi\)
0.979300 0.202413i \(-0.0648784\pi\)
\(678\) 0 0
\(679\) 3.90373 + 2.93415i 0.149811 + 0.112602i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −19.1618 + 33.1892i −0.733206 + 1.26995i 0.222300 + 0.974978i \(0.428643\pi\)
−0.955506 + 0.294971i \(0.904690\pi\)
\(684\) 0 0
\(685\) −20.8988 −0.798502
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 12.3377 + 21.3696i 0.470030 + 0.814116i
\(690\) 0 0
\(691\) −3.94953 + 6.84079i −0.150247 + 0.260236i −0.931318 0.364206i \(-0.881340\pi\)
0.781071 + 0.624442i \(0.214674\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 7.04916 12.2095i 0.267390 0.463133i
\(696\) 0 0
\(697\) −7.58936 13.1452i −0.287467 0.497908i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 25.9291 0.979329 0.489664 0.871911i \(-0.337119\pi\)
0.489664 + 0.871911i \(0.337119\pi\)
\(702\) 0 0
\(703\) −8.44893 + 14.6340i −0.318657 + 0.551931i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 19.6278 8.36001i 0.738180 0.314410i
\(708\) 0 0
\(709\) −14.0523 + 24.3394i −0.527746 + 0.914084i 0.471731 + 0.881743i \(0.343630\pi\)
−0.999477 + 0.0323408i \(0.989704\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 29.4134 + 50.9456i 1.10154 + 1.90793i
\(714\) 0 0
\(715\) −6.60221 + 11.4354i −0.246909 + 0.427658i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −5.89461 10.2098i −0.219832 0.380760i 0.734924 0.678149i \(-0.237218\pi\)
−0.954756 + 0.297389i \(0.903884\pi\)
\(720\) 0 0
\(721\) 43.3246 18.4531i 1.61349 0.687229i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0.645394 + 1.11785i 0.0239693 + 0.0415161i
\(726\) 0 0
\(727\) 24.5207 + 42.4711i 0.909423 + 1.57517i 0.814868 + 0.579647i \(0.196809\pi\)
0.0945549 + 0.995520i \(0.469857\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −8.52027 −0.315134
\(732\) 0 0
\(733\) 15.0927 0.557461 0.278731 0.960369i \(-0.410086\pi\)
0.278731 + 0.960369i \(0.410086\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −2.49503 4.32152i −0.0919056 0.159185i
\(738\) 0 0
\(739\) −15.9556 + 27.6359i −0.586937 + 1.01660i 0.407694 + 0.913119i \(0.366333\pi\)
−0.994631 + 0.103486i \(0.967000\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 12.1582 21.0586i 0.446041 0.772565i −0.552083 0.833789i \(-0.686167\pi\)
0.998124 + 0.0612238i \(0.0195003\pi\)
\(744\) 0 0
\(745\) −33.5385 −1.22875
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 37.0541 + 27.8509i 1.35393 + 1.01765i
\(750\) 0 0
\(751\) 33.4463 1.22047 0.610237 0.792219i \(-0.291074\pi\)
0.610237 + 0.792219i \(0.291074\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 38.7574 1.41053
\(756\) 0 0
\(757\) −32.1248 −1.16759 −0.583797 0.811899i \(-0.698434\pi\)
−0.583797 + 0.811899i \(0.698434\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −33.7957 −1.22509 −0.612547 0.790435i \(-0.709855\pi\)
−0.612547 + 0.790435i \(0.709855\pi\)
\(762\) 0 0
\(763\) 0.711454 5.85382i 0.0257563 0.211923i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 25.7183 0.928634
\(768\) 0 0
\(769\) 16.8957 29.2643i 0.609276 1.05530i −0.382084 0.924128i \(-0.624793\pi\)
0.991360 0.131170i \(-0.0418733\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 12.0231 20.8247i 0.432443 0.749012i −0.564640 0.825337i \(-0.690985\pi\)
0.997083 + 0.0763245i \(0.0243185\pi\)
\(774\) 0 0
\(775\) 5.66679 + 9.81516i 0.203557 + 0.352571i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −63.4696 −2.27404
\(780\) 0 0
\(781\) 7.24703 0.259319
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −8.83219 15.2978i −0.315234 0.546002i
\(786\) 0 0
\(787\) −3.22897 5.59274i −0.115100 0.199360i 0.802719 0.596357i \(-0.203386\pi\)
−0.917820 + 0.396997i \(0.870052\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 4.85193 39.9216i 0.172515 1.41945i
\(792\) 0 0
\(793\) 1.01781 + 1.76290i 0.0361435 + 0.0626023i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −18.6987 + 32.3871i −0.662341 + 1.14721i 0.317658 + 0.948205i \(0.397104\pi\)
−0.979999 + 0.199003i \(0.936230\pi\)
\(798\) 0 0
\(799\) −0.689944 1.19502i −0.0244085 0.0422767i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 3.05448 5.29051i 0.107790 0.186698i
\(804\) 0 0
\(805\) −33.1455 + 14.1175i −1.16822 + 0.497578i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 20.0048 34.6493i 0.703331 1.21821i −0.263959 0.964534i \(-0.585028\pi\)
0.967290 0.253672i \(-0.0816383\pi\)
\(810\) 0 0
\(811\) 27.6946 0.972489 0.486245 0.873823i \(-0.338366\pi\)
0.486245 + 0.873823i \(0.338366\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 22.6590 + 39.2465i 0.793709 + 1.37474i
\(816\) 0 0
\(817\) −17.8137 + 30.8543i −0.623223 + 1.07945i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −0.188732 + 0.326893i −0.00658679 + 0.0114087i −0.869300 0.494285i \(-0.835430\pi\)
0.862713 + 0.505693i \(0.168763\pi\)
\(822\) 0 0
\(823\) 5.50313 + 9.53170i 0.191827 + 0.332254i 0.945856 0.324587i \(-0.105225\pi\)
−0.754029 + 0.656841i \(0.771892\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 28.2473 0.982254 0.491127 0.871088i \(-0.336585\pi\)
0.491127 + 0.871088i \(0.336585\pi\)
\(828\) 0 0
\(829\) −14.7833 + 25.6054i −0.513445 + 0.889313i 0.486433 + 0.873718i \(0.338298\pi\)
−0.999878 + 0.0155953i \(0.995036\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −2.77783 9.59828i −0.0962460 0.332561i
\(834\) 0 0
\(835\) −1.68132 + 2.91212i −0.0581843 + 0.100778i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 6.91508 + 11.9773i 0.238735 + 0.413501i 0.960352 0.278792i \(-0.0899339\pi\)
−0.721617 + 0.692293i \(0.756601\pi\)
\(840\) 0 0
\(841\) 14.0616 24.3555i 0.484884 0.839844i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 7.49581 + 12.9831i 0.257864 + 0.446633i
\(846\) 0 0
\(847\) −3.89581 + 1.65933i −0.133861 + 0.0570152i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 10.1285 + 17.5431i 0.347200 + 0.601369i
\(852\) 0 0
\(853\) 4.59367 + 7.95647i 0.157284 + 0.272424i 0.933888 0.357565i \(-0.116393\pi\)
−0.776604 + 0.629989i \(0.783059\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −40.4460 −1.38161 −0.690805 0.723041i \(-0.742744\pi\)
−0.690805 + 0.723041i \(0.742744\pi\)
\(858\) 0 0
\(859\) 12.5128 0.426933 0.213466 0.976950i \(-0.431525\pi\)
0.213466 + 0.976950i \(0.431525\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −11.8005 20.4391i −0.401694 0.695755i 0.592236 0.805764i \(-0.298245\pi\)
−0.993931 + 0.110010i \(0.964912\pi\)
\(864\) 0 0
\(865\) 0.342635 0.593462i 0.0116499 0.0201783i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 12.7830 22.1407i 0.433632 0.751073i
\(870\) 0 0
\(871\) 3.68365 0.124816
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −29.5469 + 12.5848i −0.998866 + 0.425444i
\(876\) 0 0
\(877\) −27.5467 −0.930185 −0.465092 0.885262i \(-0.653979\pi\)
−0.465092 + 0.885262i \(0.653979\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −42.0894 −1.41803 −0.709014 0.705194i \(-0.750860\pi\)
−0.709014 + 0.705194i \(0.750860\pi\)
\(882\) 0 0
\(883\) −8.58158 −0.288793 −0.144397 0.989520i \(-0.546124\pi\)
−0.144397 + 0.989520i \(0.546124\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 3.51907 0.118159 0.0590795 0.998253i \(-0.481183\pi\)
0.0590795 + 0.998253i \(0.481183\pi\)
\(888\) 0 0
\(889\) 41.2110 17.5529i 1.38217 0.588704i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −5.76998 −0.193085
\(894\) 0 0
\(895\) −6.80707 + 11.7902i −0.227535 + 0.394103i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −3.84891 + 6.66651i −0.128368 + 0.222341i
\(900\) 0 0
\(901\) 7.78163 + 13.4782i 0.259244 + 0.449023i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 21.0362 0.699266
\(906\) 0 0
\(907\) −37.2826 −1.23795 −0.618974 0.785412i \(-0.712451\pi\)
−0.618974 + 0.785412i \(0.712451\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −10.6458 18.4391i −0.352711 0.610914i 0.634012 0.773323i \(-0.281407\pi\)
−0.986723 + 0.162409i \(0.948074\pi\)
\(912\) 0 0
\(913\) 24.4718 + 42.3864i 0.809899 + 1.40279i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 5.80190 2.47118i 0.191595 0.0816056i
\(918\) 0 0
\(919\) −6.00453 10.4001i −0.198071 0.343069i 0.749832 0.661628i \(-0.230134\pi\)
−0.947903 + 0.318559i \(0.896801\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −2.67487 + 4.63301i −0.0880444 + 0.152497i
\(924\) 0 0
\(925\) 1.95135 + 3.37984i 0.0641601 + 0.111129i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 10.2602 17.7712i 0.336626 0.583054i −0.647170 0.762346i \(-0.724047\pi\)
0.983796 + 0.179292i \(0.0573807\pi\)
\(930\) 0 0
\(931\) −40.5657 10.0083i −1.32949 0.328008i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −4.16413 + 7.21249i −0.136182 + 0.235874i
\(936\) 0 0
\(937\) −10.9040 −0.356217 −0.178109 0.984011i \(-0.556998\pi\)
−0.178109 + 0.984011i \(0.556998\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −15.4807 26.8134i −0.504656 0.874090i −0.999986 0.00538505i \(-0.998286\pi\)
0.495329 0.868705i \(-0.335047\pi\)
\(942\) 0 0
\(943\) −38.0434 + 65.8931i −1.23886 + 2.14578i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 16.0909 27.8702i 0.522884 0.905661i −0.476762 0.879032i \(-0.658190\pi\)
0.999645 0.0266283i \(-0.00847707\pi\)
\(948\) 0 0
\(949\) 2.25481 + 3.90545i 0.0731942 + 0.126776i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −39.0934 −1.26636 −0.633179 0.774005i \(-0.718250\pi\)
−0.633179 + 0.774005i \(0.718250\pi\)
\(954\) 0 0
\(955\) 8.27967 14.3408i 0.267924 0.464057i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −26.7318 + 11.3858i −0.863216 + 0.367667i
\(960\) 0 0
\(961\) −18.2948 + 31.6876i −0.590156 + 1.02218i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1.35046 + 2.33906i 0.0434728 + 0.0752971i
\(966\) 0 0
\(967\) 12.7235 22.0377i 0.409159 0.708684i −0.585637 0.810574i \(-0.699155\pi\)
0.994796 + 0.101889i \(0.0324888\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 8.81455 + 15.2673i 0.282872 + 0.489949i 0.972091 0.234604i \(-0.0753794\pi\)
−0.689219 + 0.724553i \(0.742046\pi\)
\(972\) 0 0
\(973\) 2.36482 19.4577i 0.0758128 0.623786i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 13.6269 + 23.6025i 0.435963 + 0.755109i 0.997374 0.0724277i \(-0.0230747\pi\)
−0.561411 + 0.827537i \(0.689741\pi\)
\(978\) 0 0
\(979\) −7.94033 13.7531i −0.253774 0.439550i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −20.6741 −0.659402 −0.329701 0.944085i \(-0.606948\pi\)
−0.329701 + 0.944085i \(0.606948\pi\)
\(984\) 0 0
\(985\) −10.8362 −0.345269
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 21.3549 + 36.9878i 0.679047 + 1.17614i
\(990\) 0 0
\(991\) 26.0081 45.0474i 0.826175 1.43098i −0.0748425 0.997195i \(-0.523845\pi\)
0.901018 0.433782i \(-0.142821\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −4.97307 + 8.61361i −0.157657 + 0.273070i
\(996\) 0 0
\(997\) −9.28538 −0.294071 −0.147035 0.989131i \(-0.546973\pi\)
−0.147035 + 0.989131i \(0.546973\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.t.j.1873.6 14
3.2 odd 2 1008.2.t.j.193.4 14
4.3 odd 2 756.2.l.b.361.6 14
7.2 even 3 3024.2.q.j.2305.2 14
9.2 odd 6 1008.2.q.j.529.6 14
9.7 even 3 3024.2.q.j.2881.2 14
12.11 even 2 252.2.l.b.193.4 yes 14
21.2 odd 6 1008.2.q.j.625.6 14
28.3 even 6 5292.2.j.g.1765.6 14
28.11 odd 6 5292.2.j.h.1765.2 14
28.19 even 6 5292.2.i.i.1549.6 14
28.23 odd 6 756.2.i.b.37.2 14
28.27 even 2 5292.2.l.i.361.2 14
36.7 odd 6 756.2.i.b.613.2 14
36.11 even 6 252.2.i.b.25.2 14
36.23 even 6 2268.2.k.e.1621.6 14
36.31 odd 6 2268.2.k.f.1621.2 14
63.2 odd 6 1008.2.t.j.961.4 14
63.16 even 3 inner 3024.2.t.j.289.6 14
84.11 even 6 1764.2.j.g.589.7 14
84.23 even 6 252.2.i.b.121.2 yes 14
84.47 odd 6 1764.2.i.i.373.6 14
84.59 odd 6 1764.2.j.h.589.1 14
84.83 odd 2 1764.2.l.i.949.4 14
252.11 even 6 1764.2.j.g.1177.7 14
252.23 even 6 2268.2.k.e.1297.6 14
252.47 odd 6 1764.2.l.i.961.4 14
252.79 odd 6 756.2.l.b.289.6 14
252.83 odd 6 1764.2.i.i.1537.6 14
252.115 even 6 5292.2.j.g.3529.6 14
252.151 odd 6 5292.2.j.h.3529.2 14
252.187 even 6 5292.2.l.i.3313.2 14
252.191 even 6 252.2.l.b.205.4 yes 14
252.223 even 6 5292.2.i.i.2125.6 14
252.227 odd 6 1764.2.j.h.1177.1 14
252.247 odd 6 2268.2.k.f.1297.2 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.i.b.25.2 14 36.11 even 6
252.2.i.b.121.2 yes 14 84.23 even 6
252.2.l.b.193.4 yes 14 12.11 even 2
252.2.l.b.205.4 yes 14 252.191 even 6
756.2.i.b.37.2 14 28.23 odd 6
756.2.i.b.613.2 14 36.7 odd 6
756.2.l.b.289.6 14 252.79 odd 6
756.2.l.b.361.6 14 4.3 odd 2
1008.2.q.j.529.6 14 9.2 odd 6
1008.2.q.j.625.6 14 21.2 odd 6
1008.2.t.j.193.4 14 3.2 odd 2
1008.2.t.j.961.4 14 63.2 odd 6
1764.2.i.i.373.6 14 84.47 odd 6
1764.2.i.i.1537.6 14 252.83 odd 6
1764.2.j.g.589.7 14 84.11 even 6
1764.2.j.g.1177.7 14 252.11 even 6
1764.2.j.h.589.1 14 84.59 odd 6
1764.2.j.h.1177.1 14 252.227 odd 6
1764.2.l.i.949.4 14 84.83 odd 2
1764.2.l.i.961.4 14 252.47 odd 6
2268.2.k.e.1297.6 14 252.23 even 6
2268.2.k.e.1621.6 14 36.23 even 6
2268.2.k.f.1297.2 14 252.247 odd 6
2268.2.k.f.1621.2 14 36.31 odd 6
3024.2.q.j.2305.2 14 7.2 even 3
3024.2.q.j.2881.2 14 9.7 even 3
3024.2.t.j.289.6 14 63.16 even 3 inner
3024.2.t.j.1873.6 14 1.1 even 1 trivial
5292.2.i.i.1549.6 14 28.19 even 6
5292.2.i.i.2125.6 14 252.223 even 6
5292.2.j.g.1765.6 14 28.3 even 6
5292.2.j.g.3529.6 14 252.115 even 6
5292.2.j.h.1765.2 14 28.11 odd 6
5292.2.j.h.3529.2 14 252.151 odd 6
5292.2.l.i.361.2 14 28.27 even 2
5292.2.l.i.3313.2 14 252.187 even 6