L(s) = 1 | + 1.90·5-s + (2.43 − 1.03i)7-s − 3.06·11-s + (1.13 − 1.96i)13-s + (0.713 − 1.23i)17-s + (−2.98 − 5.16i)19-s − 7.15·23-s − 1.37·25-s + (−0.468 − 0.810i)29-s + (−4.11 − 7.11i)31-s + (4.63 − 1.97i)35-s + (−1.41 − 2.45i)37-s + (5.31 − 9.20i)41-s + (−2.98 − 5.16i)43-s + (0.483 − 0.837i)47-s + ⋯ |
L(s) = 1 | + 0.851·5-s + (0.920 − 0.391i)7-s − 0.924·11-s + (0.313 − 0.543i)13-s + (0.173 − 0.299i)17-s + (−0.684 − 1.18i)19-s − 1.49·23-s − 0.275·25-s + (−0.0869 − 0.150i)29-s + (−0.738 − 1.27i)31-s + (0.782 − 0.333i)35-s + (−0.232 − 0.403i)37-s + (0.830 − 1.43i)41-s + (−0.455 − 0.788i)43-s + (0.0705 − 0.122i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.282 + 0.959i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.282 + 0.959i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.642124664\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.642124664\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-2.43 + 1.03i)T \) |
good | 5 | \( 1 - 1.90T + 5T^{2} \) |
| 11 | \( 1 + 3.06T + 11T^{2} \) |
| 13 | \( 1 + (-1.13 + 1.96i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.713 + 1.23i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2.98 + 5.16i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + 7.15T + 23T^{2} \) |
| 29 | \( 1 + (0.468 + 0.810i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (4.11 + 7.11i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1.41 + 2.45i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-5.31 + 9.20i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (2.98 + 5.16i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.483 + 0.837i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (5.45 - 9.44i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-5.68 - 9.84i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.449 - 0.778i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.813 - 1.40i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 2.36T + 71T^{2} \) |
| 73 | \( 1 + (0.996 - 1.72i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (4.16 - 7.22i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (7.98 + 13.8i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-2.58 - 4.48i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-0.922 - 1.59i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.505568046824322435724346335559, −7.68044178617209322943543965180, −7.20754503885451419265259744048, −5.90506397288971646133413079659, −5.63018268677309014460327758126, −4.64319638082272378099343752709, −3.85636909302598041982995014456, −2.50145597122954899804131503559, −1.93058172251229350548771134690, −0.46304735046014043392314662674,
1.65509976602178071126935339589, 2.04528050264768096572331495373, 3.32163977642385015716527933183, 4.38073776795982465304269523787, 5.18824392341982852051517661891, 5.91275397042632709000468535380, 6.44774863343495796857634289818, 7.68846311041645697533717053264, 8.182424061971468352643948638470, 8.811087994252212388329350345249