Properties

Label 3024.2.r.m.2017.1
Level $3024$
Weight $2$
Character 3024.2017
Analytic conductor $24.147$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3024,2,Mod(1009,3024)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3024, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3024.1009"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.r (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,3,0,-4,0,0,0,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.2091141441.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + x^{6} + 3x^{5} - 15x^{4} + 9x^{3} + 9x^{2} - 27x + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2017.1
Root \(1.65525 + 0.510048i\) of defining polynomial
Character \(\chi\) \(=\) 3024.2017
Dual form 3024.2.r.m.1009.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.15525 - 2.00095i) q^{5} +(-0.500000 + 0.866025i) q^{7} +(-0.655250 + 1.13493i) q^{11} +(1.93281 + 3.34772i) q^{13} +0.326936 q^{17} -3.08232 q^{19} +(-1.81872 - 3.15011i) q^{23} +(-0.169204 + 0.293069i) q^{25} +(4.75152 - 8.22988i) q^{29} +(3.24904 + 5.62751i) q^{31} +2.31050 q^{35} -2.31050 q^{37} +(-4.74904 - 8.22558i) q^{41} +(0.0493786 - 0.0855263i) q^{43} +(-0.108354 + 0.187674i) q^{47} +(-0.500000 - 0.866025i) q^{49} -13.7921 q^{53} +3.02791 q^{55} +(1.22493 + 2.12163i) q^{59} +(7.68433 - 13.3097i) q^{61} +(4.46575 - 7.73490i) q^{65} +(-2.93529 - 5.08407i) q^{67} -1.77182 q^{71} -5.99504 q^{73} +(-0.655250 - 1.13493i) q^{77} +(-7.29594 + 12.6369i) q^{79} +(3.04116 - 5.26744i) q^{83} +(-0.377692 - 0.654183i) q^{85} -5.52224 q^{89} -3.86561 q^{91} +(3.56085 + 6.16757i) q^{95} +(2.99178 - 5.18192i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 3 q^{5} - 4 q^{7} + 7 q^{11} + 3 q^{13} - 6 q^{17} + 8 q^{19} + 2 q^{23} - 5 q^{25} + 9 q^{29} - 3 q^{31} - 6 q^{35} + 6 q^{37} - 9 q^{41} - 8 q^{43} + 3 q^{47} - 4 q^{49} - 12 q^{53} + 56 q^{55}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.15525 2.00095i −0.516643 0.894853i −0.999813 0.0193259i \(-0.993848\pi\)
0.483170 0.875527i \(-0.339485\pi\)
\(6\) 0 0
\(7\) −0.500000 + 0.866025i −0.188982 + 0.327327i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.655250 + 1.13493i −0.197565 + 0.342193i −0.947738 0.319048i \(-0.896637\pi\)
0.750173 + 0.661241i \(0.229970\pi\)
\(12\) 0 0
\(13\) 1.93281 + 3.34772i 0.536064 + 0.928490i 0.999111 + 0.0421566i \(0.0134228\pi\)
−0.463047 + 0.886334i \(0.653244\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.326936 0.0792936 0.0396468 0.999214i \(-0.487377\pi\)
0.0396468 + 0.999214i \(0.487377\pi\)
\(18\) 0 0
\(19\) −3.08232 −0.707133 −0.353566 0.935409i \(-0.615031\pi\)
−0.353566 + 0.935409i \(0.615031\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.81872 3.15011i −0.379229 0.656844i 0.611721 0.791073i \(-0.290477\pi\)
−0.990950 + 0.134230i \(0.957144\pi\)
\(24\) 0 0
\(25\) −0.169204 + 0.293069i −0.0338407 + 0.0586139i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.75152 8.22988i 0.882336 1.52825i 0.0335990 0.999435i \(-0.489303\pi\)
0.848737 0.528815i \(-0.177364\pi\)
\(30\) 0 0
\(31\) 3.24904 + 5.62751i 0.583545 + 1.01073i 0.995055 + 0.0993246i \(0.0316682\pi\)
−0.411510 + 0.911405i \(0.634998\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.31050 0.390546
\(36\) 0 0
\(37\) −2.31050 −0.379844 −0.189922 0.981799i \(-0.560823\pi\)
−0.189922 + 0.981799i \(0.560823\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.74904 8.22558i −0.741676 1.28462i −0.951732 0.306931i \(-0.900698\pi\)
0.210056 0.977689i \(-0.432635\pi\)
\(42\) 0 0
\(43\) 0.0493786 0.0855263i 0.00753017 0.0130426i −0.862236 0.506507i \(-0.830936\pi\)
0.869766 + 0.493465i \(0.164270\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.108354 + 0.187674i −0.0158050 + 0.0273750i −0.873820 0.486250i \(-0.838364\pi\)
0.858015 + 0.513625i \(0.171698\pi\)
\(48\) 0 0
\(49\) −0.500000 0.866025i −0.0714286 0.123718i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −13.7921 −1.89450 −0.947249 0.320500i \(-0.896149\pi\)
−0.947249 + 0.320500i \(0.896149\pi\)
\(54\) 0 0
\(55\) 3.02791 0.408283
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.22493 + 2.12163i 0.159472 + 0.276213i 0.934678 0.355495i \(-0.115688\pi\)
−0.775207 + 0.631708i \(0.782354\pi\)
\(60\) 0 0
\(61\) 7.68433 13.3097i 0.983878 1.70413i 0.337057 0.941484i \(-0.390568\pi\)
0.646821 0.762642i \(-0.276098\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.46575 7.73490i 0.553908 0.959397i
\(66\) 0 0
\(67\) −2.93529 5.08407i −0.358603 0.621118i 0.629125 0.777304i \(-0.283413\pi\)
−0.987728 + 0.156186i \(0.950080\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −1.77182 −0.210277 −0.105138 0.994458i \(-0.533529\pi\)
−0.105138 + 0.994458i \(0.533529\pi\)
\(72\) 0 0
\(73\) −5.99504 −0.701666 −0.350833 0.936438i \(-0.614101\pi\)
−0.350833 + 0.936438i \(0.614101\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.655250 1.13493i −0.0746726 0.129337i
\(78\) 0 0
\(79\) −7.29594 + 12.6369i −0.820857 + 1.42177i 0.0841876 + 0.996450i \(0.473171\pi\)
−0.905045 + 0.425316i \(0.860163\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.04116 5.26744i 0.333811 0.578177i −0.649445 0.760409i \(-0.724999\pi\)
0.983256 + 0.182231i \(0.0583320\pi\)
\(84\) 0 0
\(85\) −0.377692 0.654183i −0.0409665 0.0709561i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −5.52224 −0.585356 −0.292678 0.956211i \(-0.594546\pi\)
−0.292678 + 0.956211i \(0.594546\pi\)
\(90\) 0 0
\(91\) −3.86561 −0.405226
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.56085 + 6.16757i 0.365336 + 0.632780i
\(96\) 0 0
\(97\) 2.99178 5.18192i 0.303769 0.526144i −0.673217 0.739445i \(-0.735088\pi\)
0.976987 + 0.213301i \(0.0684214\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −3.85105 + 6.67022i −0.383194 + 0.663712i −0.991517 0.129978i \(-0.958509\pi\)
0.608323 + 0.793690i \(0.291843\pi\)
\(102\) 0 0
\(103\) 2.03046 + 3.51686i 0.200067 + 0.346526i 0.948550 0.316628i \(-0.102551\pi\)
−0.748483 + 0.663154i \(0.769217\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −14.0774 −1.36091 −0.680455 0.732790i \(-0.738218\pi\)
−0.680455 + 0.732790i \(0.738218\pi\)
\(108\) 0 0
\(109\) −6.67306 −0.639164 −0.319582 0.947559i \(-0.603542\pi\)
−0.319582 + 0.947559i \(0.603542\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −3.84918 6.66697i −0.362100 0.627176i 0.626206 0.779658i \(-0.284607\pi\)
−0.988306 + 0.152482i \(0.951273\pi\)
\(114\) 0 0
\(115\) −4.20215 + 7.27833i −0.391852 + 0.678708i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.163468 + 0.283135i −0.0149851 + 0.0259549i
\(120\) 0 0
\(121\) 4.64130 + 8.03896i 0.421936 + 0.730815i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −10.7706 −0.963352
\(126\) 0 0
\(127\) −14.9847 −1.32968 −0.664838 0.746987i \(-0.731500\pi\)
−0.664838 + 0.746987i \(0.731500\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −5.20788 9.02032i −0.455015 0.788109i 0.543674 0.839296i \(-0.317033\pi\)
−0.998689 + 0.0511876i \(0.983699\pi\)
\(132\) 0 0
\(133\) 1.54116 2.66937i 0.133636 0.231464i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.13170 5.42426i 0.267559 0.463426i −0.700672 0.713484i \(-0.747116\pi\)
0.968231 + 0.250058i \(0.0804496\pi\)
\(138\) 0 0
\(139\) −10.0798 17.4588i −0.854961 1.48084i −0.876681 0.481071i \(-0.840248\pi\)
0.0217207 0.999764i \(-0.493086\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −5.06588 −0.423631
\(144\) 0 0
\(145\) −21.9568 −1.82341
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 8.50878 + 14.7376i 0.697067 + 1.20736i 0.969479 + 0.245174i \(0.0788452\pi\)
−0.272412 + 0.962181i \(0.587821\pi\)
\(150\) 0 0
\(151\) −8.19641 + 14.1966i −0.667014 + 1.15530i 0.311721 + 0.950174i \(0.399095\pi\)
−0.978735 + 0.205129i \(0.934239\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 7.50691 13.0023i 0.602969 1.04437i
\(156\) 0 0
\(157\) −10.2274 17.7144i −0.816238 1.41377i −0.908435 0.418025i \(-0.862722\pi\)
0.0921971 0.995741i \(-0.470611\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.63744 0.286670
\(162\) 0 0
\(163\) −16.8810 −1.32222 −0.661110 0.750289i \(-0.729914\pi\)
−0.661110 + 0.750289i \(0.729914\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.60587 + 2.78145i 0.124266 + 0.215235i 0.921446 0.388507i \(-0.127009\pi\)
−0.797180 + 0.603742i \(0.793676\pi\)
\(168\) 0 0
\(169\) −0.971485 + 1.68266i −0.0747296 + 0.129435i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0.306072 0.530133i 0.0232703 0.0403053i −0.854156 0.520017i \(-0.825926\pi\)
0.877426 + 0.479712i \(0.159259\pi\)
\(174\) 0 0
\(175\) −0.169204 0.293069i −0.0127906 0.0221540i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 4.38135 0.327477 0.163739 0.986504i \(-0.447645\pi\)
0.163739 + 0.986504i \(0.447645\pi\)
\(180\) 0 0
\(181\) −3.50192 −0.260295 −0.130148 0.991495i \(-0.541545\pi\)
−0.130148 + 0.991495i \(0.541545\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.66920 + 4.62320i 0.196244 + 0.339904i
\(186\) 0 0
\(187\) −0.214225 + 0.371048i −0.0156657 + 0.0271337i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2.71533 4.70309i 0.196474 0.340303i −0.750909 0.660406i \(-0.770384\pi\)
0.947383 + 0.320103i \(0.103717\pi\)
\(192\) 0 0
\(193\) 4.54193 + 7.86686i 0.326935 + 0.566269i 0.981902 0.189389i \(-0.0606507\pi\)
−0.654967 + 0.755658i \(0.727317\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.58040 0.611329 0.305664 0.952139i \(-0.401121\pi\)
0.305664 + 0.952139i \(0.401121\pi\)
\(198\) 0 0
\(199\) 25.4905 1.80697 0.903487 0.428616i \(-0.140999\pi\)
0.903487 + 0.428616i \(0.140999\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 4.75152 + 8.22988i 0.333492 + 0.577624i
\(204\) 0 0
\(205\) −10.9727 + 19.0052i −0.766364 + 1.32738i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.01969 3.49821i 0.139705 0.241976i
\(210\) 0 0
\(211\) −8.32066 14.4118i −0.572818 0.992150i −0.996275 0.0862336i \(-0.972517\pi\)
0.423457 0.905916i \(-0.360816\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.228179 −0.0155616
\(216\) 0 0
\(217\) −6.49808 −0.441119
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0.631904 + 1.09449i 0.0425064 + 0.0736233i
\(222\) 0 0
\(223\) 9.28503 16.0821i 0.621772 1.07694i −0.367384 0.930069i \(-0.619746\pi\)
0.989156 0.146871i \(-0.0469202\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 7.84096 13.5809i 0.520423 0.901399i −0.479295 0.877654i \(-0.659108\pi\)
0.999718 0.0237449i \(-0.00755895\pi\)
\(228\) 0 0
\(229\) −5.57024 9.64794i −0.368092 0.637554i 0.621175 0.783672i \(-0.286656\pi\)
−0.989267 + 0.146118i \(0.953322\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 21.6831 1.42050 0.710252 0.703948i \(-0.248581\pi\)
0.710252 + 0.703948i \(0.248581\pi\)
\(234\) 0 0
\(235\) 0.500702 0.0326622
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 6.20271 + 10.7434i 0.401220 + 0.694934i 0.993873 0.110524i \(-0.0352529\pi\)
−0.592653 + 0.805458i \(0.701920\pi\)
\(240\) 0 0
\(241\) 8.35028 14.4631i 0.537889 0.931651i −0.461129 0.887333i \(-0.652555\pi\)
0.999017 0.0443176i \(-0.0141114\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.15525 + 2.00095i −0.0738062 + 0.127836i
\(246\) 0 0
\(247\) −5.95753 10.3187i −0.379069 0.656566i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −27.0215 −1.70558 −0.852790 0.522255i \(-0.825091\pi\)
−0.852790 + 0.522255i \(0.825091\pi\)
\(252\) 0 0
\(253\) 4.76686 0.299690
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −9.97645 17.2797i −0.622314 1.07788i −0.989054 0.147556i \(-0.952859\pi\)
0.366740 0.930324i \(-0.380474\pi\)
\(258\) 0 0
\(259\) 1.15525 2.00095i 0.0717837 0.124333i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −7.92841 + 13.7324i −0.488887 + 0.846776i −0.999918 0.0127855i \(-0.995930\pi\)
0.511032 + 0.859562i \(0.329263\pi\)
\(264\) 0 0
\(265\) 15.9334 + 27.5974i 0.978779 + 1.69530i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −0.694466 −0.0423423 −0.0211712 0.999776i \(-0.506739\pi\)
−0.0211712 + 0.999776i \(0.506739\pi\)
\(270\) 0 0
\(271\) 9.08883 0.552107 0.276053 0.961142i \(-0.410973\pi\)
0.276053 + 0.961142i \(0.410973\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.221741 0.384067i −0.0133715 0.0231601i
\(276\) 0 0
\(277\) −7.20084 + 12.4722i −0.432656 + 0.749383i −0.997101 0.0760880i \(-0.975757\pi\)
0.564445 + 0.825471i \(0.309090\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −4.68356 + 8.11216i −0.279398 + 0.483931i −0.971235 0.238122i \(-0.923468\pi\)
0.691837 + 0.722053i \(0.256801\pi\)
\(282\) 0 0
\(283\) −9.54310 16.5291i −0.567279 0.982556i −0.996834 0.0795148i \(-0.974663\pi\)
0.429555 0.903041i \(-0.358670\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 9.49808 0.560654
\(288\) 0 0
\(289\) −16.8931 −0.993713
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 9.10262 + 15.7662i 0.531781 + 0.921071i 0.999312 + 0.0370944i \(0.0118102\pi\)
−0.467531 + 0.883977i \(0.654856\pi\)
\(294\) 0 0
\(295\) 2.83019 4.90203i 0.164780 0.285407i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 7.03046 12.1771i 0.406582 0.704221i
\(300\) 0 0
\(301\) 0.0493786 + 0.0855263i 0.00284614 + 0.00492965i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −35.5093 −2.03326
\(306\) 0 0
\(307\) 26.8537 1.53262 0.766312 0.642469i \(-0.222090\pi\)
0.766312 + 0.642469i \(0.222090\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0.790243 + 1.36874i 0.0448106 + 0.0776142i 0.887561 0.460691i \(-0.152398\pi\)
−0.842750 + 0.538305i \(0.819065\pi\)
\(312\) 0 0
\(313\) −10.2617 + 17.7738i −0.580025 + 1.00463i 0.415451 + 0.909616i \(0.363624\pi\)
−0.995476 + 0.0950169i \(0.969709\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 15.9323 27.5955i 0.894845 1.54992i 0.0608495 0.998147i \(-0.480619\pi\)
0.833996 0.551771i \(-0.186048\pi\)
\(318\) 0 0
\(319\) 6.22687 + 10.7853i 0.348638 + 0.603858i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1.00772 −0.0560711
\(324\) 0 0
\(325\) −1.30815 −0.0725632
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −0.108354 0.187674i −0.00597372 0.0103468i
\(330\) 0 0
\(331\) 17.0714 29.5686i 0.938330 1.62524i 0.169744 0.985488i \(-0.445706\pi\)
0.768586 0.639747i \(-0.220961\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −6.78198 + 11.7467i −0.370539 + 0.641793i
\(336\) 0 0
\(337\) −0.252833 0.437920i −0.0137727 0.0238550i 0.859057 0.511880i \(-0.171051\pi\)
−0.872830 + 0.488025i \(0.837717\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −8.51573 −0.461153
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −14.2154 24.6217i −0.763120 1.32176i −0.941235 0.337753i \(-0.890333\pi\)
0.178114 0.984010i \(-0.443000\pi\)
\(348\) 0 0
\(349\) 17.5804 30.4502i 0.941057 1.62996i 0.177599 0.984103i \(-0.443167\pi\)
0.763459 0.645856i \(-0.223500\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0.496139 0.859339i 0.0264068 0.0457380i −0.852520 0.522695i \(-0.824927\pi\)
0.878927 + 0.476957i \(0.158260\pi\)
\(354\) 0 0
\(355\) 2.04690 + 3.54533i 0.108638 + 0.188166i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −23.2914 −1.22928 −0.614638 0.788810i \(-0.710698\pi\)
−0.614638 + 0.788810i \(0.710698\pi\)
\(360\) 0 0
\(361\) −9.49930 −0.499963
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 6.92576 + 11.9958i 0.362511 + 0.627887i
\(366\) 0 0
\(367\) −5.89144 + 10.2043i −0.307531 + 0.532659i −0.977822 0.209440i \(-0.932836\pi\)
0.670291 + 0.742099i \(0.266169\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 6.89607 11.9443i 0.358026 0.620120i
\(372\) 0 0
\(373\) 6.91714 + 11.9808i 0.358156 + 0.620344i 0.987653 0.156659i \(-0.0500723\pi\)
−0.629497 + 0.777003i \(0.716739\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 36.7351 1.89195
\(378\) 0 0
\(379\) 21.5877 1.10889 0.554443 0.832222i \(-0.312931\pi\)
0.554443 + 0.832222i \(0.312931\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −8.31989 14.4105i −0.425127 0.736341i 0.571306 0.820737i \(-0.306437\pi\)
−0.996432 + 0.0843965i \(0.973104\pi\)
\(384\) 0 0
\(385\) −1.51395 + 2.62225i −0.0771582 + 0.133642i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −9.46709 + 16.3975i −0.480000 + 0.831385i −0.999737 0.0229417i \(-0.992697\pi\)
0.519736 + 0.854327i \(0.326030\pi\)
\(390\) 0 0
\(391\) −0.594604 1.02988i −0.0300704 0.0520835i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 33.7145 1.69636
\(396\) 0 0
\(397\) 16.0746 0.806761 0.403381 0.915032i \(-0.367835\pi\)
0.403381 + 0.915032i \(0.367835\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 19.4409 + 33.6726i 0.970832 + 1.68153i 0.693056 + 0.720884i \(0.256264\pi\)
0.277776 + 0.960646i \(0.410403\pi\)
\(402\) 0 0
\(403\) −12.5595 + 21.7538i −0.625635 + 1.08363i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.51395 2.62225i 0.0750439 0.129980i
\(408\) 0 0
\(409\) −6.39993 11.0850i −0.316456 0.548119i 0.663290 0.748363i \(-0.269160\pi\)
−0.979746 + 0.200244i \(0.935826\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −2.44985 −0.120549
\(414\) 0 0
\(415\) −14.0532 −0.689844
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −0.597046 1.03411i −0.0291676 0.0505197i 0.851073 0.525047i \(-0.175952\pi\)
−0.880241 + 0.474527i \(0.842619\pi\)
\(420\) 0 0
\(421\) −8.19067 + 14.1867i −0.399189 + 0.691416i −0.993626 0.112726i \(-0.964042\pi\)
0.594437 + 0.804142i \(0.297375\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.0553187 + 0.0958149i −0.00268335 + 0.00464770i
\(426\) 0 0
\(427\) 7.68433 + 13.3097i 0.371871 + 0.644099i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −26.3928 −1.27130 −0.635649 0.771978i \(-0.719267\pi\)
−0.635649 + 0.771978i \(0.719267\pi\)
\(432\) 0 0
\(433\) 23.7503 1.14137 0.570684 0.821170i \(-0.306678\pi\)
0.570684 + 0.821170i \(0.306678\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5.60587 + 9.70965i 0.268165 + 0.464476i
\(438\) 0 0
\(439\) −10.2431 + 17.7416i −0.488877 + 0.846759i −0.999918 0.0127969i \(-0.995926\pi\)
0.511042 + 0.859556i \(0.329260\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 3.89909 6.75343i 0.185252 0.320865i −0.758410 0.651778i \(-0.774023\pi\)
0.943661 + 0.330913i \(0.107357\pi\)
\(444\) 0 0
\(445\) 6.37957 + 11.0497i 0.302421 + 0.523808i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −2.35981 −0.111366 −0.0556831 0.998448i \(-0.517734\pi\)
−0.0556831 + 0.998448i \(0.517734\pi\)
\(450\) 0 0
\(451\) 12.4472 0.586117
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 4.46575 + 7.73490i 0.209358 + 0.362618i
\(456\) 0 0
\(457\) −10.1012 + 17.4959i −0.472516 + 0.818422i −0.999505 0.0314501i \(-0.989987\pi\)
0.526989 + 0.849872i \(0.323321\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −6.02197 + 10.4304i −0.280471 + 0.485790i −0.971501 0.237036i \(-0.923824\pi\)
0.691030 + 0.722826i \(0.257157\pi\)
\(462\) 0 0
\(463\) −11.6437 20.1675i −0.541130 0.937265i −0.998839 0.0481633i \(-0.984663\pi\)
0.457709 0.889102i \(-0.348670\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 34.0682 1.57649 0.788243 0.615364i \(-0.210991\pi\)
0.788243 + 0.615364i \(0.210991\pi\)
\(468\) 0 0
\(469\) 5.87058 0.271078
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0.0647107 + 0.112082i 0.00297540 + 0.00515354i
\(474\) 0 0
\(475\) 0.521540 0.903334i 0.0239299 0.0414478i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 9.38477 16.2549i 0.428801 0.742705i −0.567966 0.823052i \(-0.692270\pi\)
0.996767 + 0.0803471i \(0.0256029\pi\)
\(480\) 0 0
\(481\) −4.46575 7.73490i −0.203621 0.352681i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −13.8250 −0.627762
\(486\) 0 0
\(487\) 13.8837 0.629132 0.314566 0.949236i \(-0.398141\pi\)
0.314566 + 0.949236i \(0.398141\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −4.54250 7.86784i −0.205000 0.355071i 0.745133 0.666916i \(-0.232386\pi\)
−0.950133 + 0.311846i \(0.899053\pi\)
\(492\) 0 0
\(493\) 1.55344 2.69064i 0.0699636 0.121180i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.885911 1.53444i 0.0397385 0.0688291i
\(498\) 0 0
\(499\) −11.8788 20.5747i −0.531769 0.921051i −0.999312 0.0370810i \(-0.988194\pi\)
0.467543 0.883970i \(-0.345139\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −22.5612 −1.00595 −0.502977 0.864300i \(-0.667762\pi\)
−0.502977 + 0.864300i \(0.667762\pi\)
\(504\) 0 0
\(505\) 17.7957 0.791899
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 3.94814 + 6.83838i 0.174998 + 0.303106i 0.940161 0.340732i \(-0.110675\pi\)
−0.765162 + 0.643837i \(0.777341\pi\)
\(510\) 0 0
\(511\) 2.99752 5.19185i 0.132602 0.229674i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 4.69138 8.12570i 0.206727 0.358061i
\(516\) 0 0
\(517\) −0.141997 0.245946i −0.00624503 0.0108167i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −9.86440 −0.432167 −0.216084 0.976375i \(-0.569328\pi\)
−0.216084 + 0.976375i \(0.569328\pi\)
\(522\) 0 0
\(523\) −22.9097 −1.00177 −0.500885 0.865514i \(-0.666992\pi\)
−0.500885 + 0.865514i \(0.666992\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.06223 + 1.83983i 0.0462714 + 0.0801444i
\(528\) 0 0
\(529\) 4.88453 8.46026i 0.212371 0.367837i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 18.3580 31.7969i 0.795172 1.37728i
\(534\) 0 0
\(535\) 16.2629 + 28.1681i 0.703105 + 1.21781i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.31050 0.0564472
\(540\) 0 0
\(541\) 29.7187 1.27771 0.638853 0.769329i \(-0.279409\pi\)
0.638853 + 0.769329i \(0.279409\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 7.70906 + 13.3525i 0.330220 + 0.571957i
\(546\) 0 0
\(547\) −1.30472 + 2.25985i −0.0557859 + 0.0966240i −0.892570 0.450909i \(-0.851100\pi\)
0.836784 + 0.547533i \(0.184433\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −14.6457 + 25.3671i −0.623929 + 1.08068i
\(552\) 0 0
\(553\) −7.29594 12.6369i −0.310255 0.537377i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −26.0406 −1.10338 −0.551688 0.834051i \(-0.686016\pi\)
−0.551688 + 0.834051i \(0.686016\pi\)
\(558\) 0 0
\(559\) 0.381757 0.0161466
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 22.3876 + 38.7765i 0.943525 + 1.63423i 0.758677 + 0.651467i \(0.225846\pi\)
0.184848 + 0.982767i \(0.440821\pi\)
\(564\) 0 0
\(565\) −8.89352 + 15.4040i −0.374153 + 0.648052i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −14.6290 + 25.3382i −0.613280 + 1.06223i 0.377404 + 0.926049i \(0.376817\pi\)
−0.990684 + 0.136183i \(0.956516\pi\)
\(570\) 0 0
\(571\) 18.2628 + 31.6321i 0.764275 + 1.32376i 0.940629 + 0.339437i \(0.110236\pi\)
−0.176354 + 0.984327i \(0.556430\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.23093 0.0513335
\(576\) 0 0
\(577\) 9.88205 0.411395 0.205698 0.978616i \(-0.434054\pi\)
0.205698 + 0.978616i \(0.434054\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 3.04116 + 5.26744i 0.126169 + 0.218530i
\(582\) 0 0
\(583\) 9.03730 15.6531i 0.374287 0.648284i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 4.05954 7.03133i 0.167555 0.290214i −0.770005 0.638038i \(-0.779746\pi\)
0.937560 + 0.347824i \(0.113079\pi\)
\(588\) 0 0
\(589\) −10.0146 17.3458i −0.412644 0.714720i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −29.6969 −1.21950 −0.609752 0.792592i \(-0.708731\pi\)
−0.609752 + 0.792592i \(0.708731\pi\)
\(594\) 0 0
\(595\) 0.755385 0.0309678
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 8.19531 + 14.1947i 0.334851 + 0.579979i 0.983456 0.181146i \(-0.0579806\pi\)
−0.648605 + 0.761125i \(0.724647\pi\)
\(600\) 0 0
\(601\) 24.4424 42.3355i 0.997028 1.72690i 0.431790 0.901974i \(-0.357882\pi\)
0.565237 0.824928i \(-0.308785\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 10.7237 18.5740i 0.435981 0.755141i
\(606\) 0 0
\(607\) 23.6033 + 40.8820i 0.958027 + 1.65935i 0.727285 + 0.686335i \(0.240782\pi\)
0.230741 + 0.973015i \(0.425885\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −0.837706 −0.0338899
\(612\) 0 0
\(613\) −15.6396 −0.631679 −0.315840 0.948813i \(-0.602286\pi\)
−0.315840 + 0.948813i \(0.602286\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 15.7793 + 27.3305i 0.635251 + 1.10029i 0.986462 + 0.163990i \(0.0524365\pi\)
−0.351211 + 0.936296i \(0.614230\pi\)
\(618\) 0 0
\(619\) 7.31619 12.6720i 0.294063 0.509331i −0.680704 0.732559i \(-0.738326\pi\)
0.974766 + 0.223227i \(0.0716592\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 2.76112 4.78240i 0.110622 0.191603i
\(624\) 0 0
\(625\) 13.2888 + 23.0168i 0.531550 + 0.920672i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −0.755385 −0.0301192
\(630\) 0 0
\(631\) 36.3101 1.44548 0.722742 0.691118i \(-0.242881\pi\)
0.722742 + 0.691118i \(0.242881\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 17.3111 + 29.9836i 0.686969 + 1.18986i
\(636\) 0 0
\(637\) 1.93281 3.34772i 0.0765806 0.132641i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 5.40731 9.36574i 0.213576 0.369924i −0.739255 0.673425i \(-0.764822\pi\)
0.952831 + 0.303501i \(0.0981556\pi\)
\(642\) 0 0
\(643\) −6.97535 12.0817i −0.275081 0.476454i 0.695075 0.718937i \(-0.255371\pi\)
−0.970155 + 0.242484i \(0.922038\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −34.5634 −1.35883 −0.679414 0.733755i \(-0.737766\pi\)
−0.679414 + 0.733755i \(0.737766\pi\)
\(648\) 0 0
\(649\) −3.21053 −0.126024
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −13.7927 23.8897i −0.539751 0.934875i −0.998917 0.0465252i \(-0.985185\pi\)
0.459167 0.888350i \(-0.348148\pi\)
\(654\) 0 0
\(655\) −12.0328 + 20.8414i −0.470161 + 0.814342i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −10.3059 + 17.8503i −0.401460 + 0.695348i −0.993902 0.110264i \(-0.964830\pi\)
0.592443 + 0.805613i \(0.298164\pi\)
\(660\) 0 0
\(661\) 13.5815 + 23.5239i 0.528259 + 0.914972i 0.999457 + 0.0329446i \(0.0104885\pi\)
−0.471198 + 0.882028i \(0.656178\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −7.12170 −0.276168
\(666\) 0 0
\(667\) −34.5667 −1.33843
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 10.0703 + 17.4423i 0.388760 + 0.673352i
\(672\) 0 0
\(673\) −9.52644 + 16.5003i −0.367217 + 0.636039i −0.989129 0.147048i \(-0.953023\pi\)
0.621912 + 0.783087i \(0.286356\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −10.8695 + 18.8265i −0.417748 + 0.723560i −0.995713 0.0925013i \(-0.970514\pi\)
0.577965 + 0.816062i \(0.303847\pi\)
\(678\) 0 0
\(679\) 2.99178 + 5.18192i 0.114814 + 0.198864i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −41.0808 −1.57191 −0.785957 0.618281i \(-0.787829\pi\)
−0.785957 + 0.618281i \(0.787829\pi\)
\(684\) 0 0
\(685\) −14.4716 −0.552931
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −26.6576 46.1722i −1.01557 1.75902i
\(690\) 0 0
\(691\) 9.03599 15.6508i 0.343745 0.595384i −0.641380 0.767224i \(-0.721638\pi\)
0.985125 + 0.171839i \(0.0549710\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −23.2895 + 40.3385i −0.883420 + 1.53013i
\(696\) 0 0
\(697\) −1.55263 2.68924i −0.0588101 0.101862i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 41.5130 1.56793 0.783963 0.620808i \(-0.213195\pi\)
0.783963 + 0.620808i \(0.213195\pi\)
\(702\) 0 0
\(703\) 7.12170 0.268600
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −3.85105 6.67022i −0.144834 0.250859i
\(708\) 0 0
\(709\) −0.684536 + 1.18565i −0.0257083 + 0.0445280i −0.878593 0.477571i \(-0.841517\pi\)
0.852885 + 0.522099i \(0.174851\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 11.8182 20.4697i 0.442594 0.766596i
\(714\) 0 0
\(715\) 5.85236 + 10.1366i 0.218866 + 0.379087i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 20.1854 0.752787 0.376394 0.926460i \(-0.377164\pi\)
0.376394 + 0.926460i \(0.377164\pi\)
\(720\) 0 0
\(721\) −4.06092 −0.151237
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.60795 + 2.78505i 0.0597178 + 0.103434i
\(726\) 0 0
\(727\) 1.69393 2.93397i 0.0628243 0.108815i −0.832903 0.553420i \(-0.813323\pi\)
0.895727 + 0.444605i \(0.146656\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0.0161436 0.0279616i 0.000597094 0.00103420i
\(732\) 0 0
\(733\) 8.90603 + 15.4257i 0.328952 + 0.569761i 0.982304 0.187293i \(-0.0599713\pi\)
−0.653352 + 0.757054i \(0.726638\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 7.69339 0.283390
\(738\) 0 0
\(739\) 1.15512 0.0424918 0.0212459 0.999774i \(-0.493237\pi\)
0.0212459 + 0.999774i \(0.493237\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 13.5863 + 23.5322i 0.498435 + 0.863314i 0.999998 0.00180657i \(-0.000575048\pi\)
−0.501564 + 0.865121i \(0.667242\pi\)
\(744\) 0 0
\(745\) 19.6595 34.0513i 0.720270 1.24754i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 7.03868 12.1913i 0.257188 0.445462i
\(750\) 0 0
\(751\) 11.2959 + 19.5651i 0.412195 + 0.713942i 0.995129 0.0985769i \(-0.0314290\pi\)
−0.582935 + 0.812519i \(0.698096\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 37.8756 1.37843
\(756\) 0 0
\(757\) 13.9989 0.508797 0.254399 0.967099i \(-0.418122\pi\)
0.254399 + 0.967099i \(0.418122\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −0.252336 0.437059i −0.00914718 0.0158434i 0.861416 0.507901i \(-0.169578\pi\)
−0.870563 + 0.492057i \(0.836245\pi\)
\(762\) 0 0
\(763\) 3.33653 5.77904i 0.120791 0.209215i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −4.73509 + 8.20141i −0.170974 + 0.296136i
\(768\) 0 0
\(769\) 4.89218 + 8.47351i 0.176417 + 0.305563i 0.940651 0.339376i \(-0.110216\pi\)
−0.764234 + 0.644939i \(0.776883\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −26.5907 −0.956403 −0.478201 0.878250i \(-0.658711\pi\)
−0.478201 + 0.878250i \(0.658711\pi\)
\(774\) 0 0
\(775\) −2.19900 −0.0789904
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 14.6381 + 25.3539i 0.524463 + 0.908397i
\(780\) 0 0
\(781\) 1.16099 2.01089i 0.0415433 0.0719551i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −23.6305 + 40.9292i −0.843408 + 1.46083i
\(786\) 0 0
\(787\) −19.1108 33.1009i −0.681227 1.17992i −0.974607 0.223924i \(-0.928113\pi\)
0.293379 0.955996i \(-0.405220\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 7.69835 0.273722
\(792\) 0 0
\(793\) 59.4093 2.10969
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 11.1866 + 19.3758i 0.396250 + 0.686325i 0.993260 0.115909i \(-0.0369780\pi\)
−0.597010 + 0.802234i \(0.703645\pi\)
\(798\) 0 0
\(799\) −0.0354246 + 0.0613573i −0.00125323 + 0.00217066i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 3.92824 6.80392i 0.138625 0.240105i
\(804\) 0 0
\(805\) −4.20215 7.27833i −0.148106 0.256527i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −5.50319 −0.193482 −0.0967409 0.995310i \(-0.530842\pi\)
−0.0967409 + 0.995310i \(0.530842\pi\)
\(810\) 0 0
\(811\) 12.3713 0.434414 0.217207 0.976126i \(-0.430305\pi\)
0.217207 + 0.976126i \(0.430305\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 19.5017 + 33.7780i 0.683116 + 1.18319i
\(816\) 0 0
\(817\) −0.152201 + 0.263619i −0.00532483 + 0.00922288i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 21.2767 36.8524i 0.742564 1.28616i −0.208761 0.977967i \(-0.566943\pi\)
0.951324 0.308191i \(-0.0997236\pi\)
\(822\) 0 0
\(823\) −8.11754 14.0600i −0.282960 0.490101i 0.689153 0.724616i \(-0.257983\pi\)
−0.972112 + 0.234516i \(0.924650\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 34.0199 1.18299 0.591494 0.806309i \(-0.298538\pi\)
0.591494 + 0.806309i \(0.298538\pi\)
\(828\) 0 0
\(829\) 38.6394 1.34200 0.671000 0.741457i \(-0.265865\pi\)
0.671000 + 0.741457i \(0.265865\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −0.163468 0.283135i −0.00566383 0.00981004i
\(834\) 0 0
\(835\) 3.71036 6.42654i 0.128402 0.222400i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 3.88612 6.73095i 0.134164 0.232378i −0.791114 0.611669i \(-0.790499\pi\)
0.925278 + 0.379291i \(0.123832\pi\)
\(840\) 0 0
\(841\) −30.6540 53.0942i −1.05703 1.83084i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 4.48923 0.154434
\(846\) 0 0
\(847\) −9.28259 −0.318954
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 4.20215 + 7.27833i 0.144048 + 0.249498i
\(852\) 0 0
\(853\) −10.0272 + 17.3676i −0.343324 + 0.594654i −0.985048 0.172282i \(-0.944886\pi\)
0.641724 + 0.766936i \(0.278219\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0.837910 1.45130i 0.0286225 0.0495756i −0.851359 0.524583i \(-0.824221\pi\)
0.879982 + 0.475007i \(0.157555\pi\)
\(858\) 0 0
\(859\) 18.7256 + 32.4336i 0.638908 + 1.10662i 0.985673 + 0.168669i \(0.0539468\pi\)
−0.346765 + 0.937952i \(0.612720\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −30.0265 −1.02211 −0.511057 0.859547i \(-0.670746\pi\)
−0.511057 + 0.859547i \(0.670746\pi\)
\(864\) 0 0
\(865\) −1.41436 −0.0480897
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −9.56132 16.5607i −0.324346 0.561783i
\(870\) 0 0
\(871\) 11.3467 19.6531i 0.384468 0.665918i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 5.38530 9.32762i 0.182056 0.315331i
\(876\) 0 0
\(877\) −11.3517 19.6617i −0.383318 0.663927i 0.608216 0.793772i \(-0.291885\pi\)
−0.991534 + 0.129845i \(0.958552\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 36.0266 1.21377 0.606883 0.794791i \(-0.292420\pi\)
0.606883 + 0.794791i \(0.292420\pi\)
\(882\) 0 0
\(883\) −47.7159 −1.60577 −0.802884 0.596135i \(-0.796702\pi\)
−0.802884 + 0.596135i \(0.796702\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 5.70962 + 9.88935i 0.191710 + 0.332052i 0.945817 0.324700i \(-0.105263\pi\)
−0.754107 + 0.656752i \(0.771930\pi\)
\(888\) 0 0
\(889\) 7.49235 12.9771i 0.251285 0.435239i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0.333980 0.578471i 0.0111762 0.0193578i
\(894\) 0 0
\(895\) −5.06155 8.76686i −0.169189 0.293044i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 61.7516 2.05953
\(900\) 0 0
\(901\) −4.50915 −0.150221
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 4.04559 + 7.00716i 0.134480 + 0.232926i
\(906\) 0 0
\(907\) 1.81546 3.14448i 0.0602815 0.104411i −0.834310 0.551296i \(-0.814133\pi\)
0.894591 + 0.446885i \(0.147467\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −1.24848 + 2.16242i −0.0413638 + 0.0716443i −0.885966 0.463750i \(-0.846504\pi\)
0.844602 + 0.535394i \(0.179837\pi\)
\(912\) 0 0
\(913\) 3.98544 + 6.90298i 0.131899 + 0.228455i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 10.4158 0.343959
\(918\) 0 0
\(919\) −0.454816 −0.0150030 −0.00750149 0.999972i \(-0.502388\pi\)
−0.00750149 + 0.999972i \(0.502388\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −3.42459 5.93156i −0.112722 0.195240i
\(924\) 0 0
\(925\) 0.390945 0.677137i 0.0128542 0.0222641i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −16.6846 + 28.8985i −0.547403 + 0.948129i 0.451049 + 0.892499i \(0.351050\pi\)
−0.998451 + 0.0556301i \(0.982283\pi\)
\(930\) 0 0
\(931\) 1.54116 + 2.66937i 0.0505095 + 0.0874850i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0.989932 0.0323742
\(936\) 0 0
\(937\) −5.28675 −0.172711 −0.0863553 0.996264i \(-0.527522\pi\)
−0.0863553 + 0.996264i \(0.527522\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 22.3084 + 38.6393i 0.727234 + 1.25961i 0.958048 + 0.286608i \(0.0925277\pi\)
−0.230814 + 0.972998i \(0.574139\pi\)
\(942\) 0 0
\(943\) −17.2743 + 29.9200i −0.562530 + 0.974330i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 14.3695 24.8887i 0.466945 0.808773i −0.532342 0.846530i \(-0.678688\pi\)
0.999287 + 0.0377568i \(0.0120212\pi\)
\(948\) 0 0
\(949\) −11.5872 20.0697i −0.376138 0.651490i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 52.6957 1.70698 0.853491 0.521107i \(-0.174481\pi\)
0.853491 + 0.521107i \(0.174481\pi\)
\(954\) 0 0
\(955\) −12.5475 −0.406029
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 3.13170 + 5.42426i 0.101128 + 0.175159i
\(960\) 0 0
\(961\) −5.61255 + 9.72122i −0.181050 + 0.313588i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 10.4941 18.1764i 0.337818 0.585118i
\(966\) 0 0
\(967\) 22.1564 + 38.3759i 0.712500 + 1.23409i 0.963916 + 0.266207i \(0.0857706\pi\)
−0.251415 + 0.967879i \(0.580896\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −49.8993 −1.60134 −0.800672 0.599103i \(-0.795524\pi\)
−0.800672 + 0.599103i \(0.795524\pi\)
\(972\) 0 0
\(973\) 20.1597 0.646290
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −16.0981 27.8827i −0.515022 0.892045i −0.999848 0.0174342i \(-0.994450\pi\)
0.484826 0.874611i \(-0.338883\pi\)
\(978\) 0 0
\(979\) 3.61845 6.26733i 0.115646 0.200305i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 6.17356 10.6929i 0.196906 0.341051i −0.750618 0.660737i \(-0.770244\pi\)
0.947524 + 0.319686i \(0.103577\pi\)
\(984\) 0 0
\(985\) −9.91251 17.1690i −0.315839 0.547049i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −0.359223 −0.0114226
\(990\) 0 0
\(991\) −6.80483 −0.216163 −0.108081 0.994142i \(-0.534471\pi\)
−0.108081 + 0.994142i \(0.534471\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −29.4479 51.0052i −0.933561 1.61698i
\(996\) 0 0
\(997\) −0.812415 + 1.40714i −0.0257295 + 0.0445647i −0.878603 0.477552i \(-0.841524\pi\)
0.852874 + 0.522117i \(0.174858\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.r.m.2017.1 8
3.2 odd 2 1008.2.r.l.673.2 8
4.3 odd 2 1512.2.r.e.505.1 8
9.2 odd 6 9072.2.a.cj.1.1 4
9.4 even 3 inner 3024.2.r.m.1009.1 8
9.5 odd 6 1008.2.r.l.337.2 8
9.7 even 3 9072.2.a.cg.1.4 4
12.11 even 2 504.2.r.e.169.3 8
36.7 odd 6 4536.2.a.y.1.4 4
36.11 even 6 4536.2.a.z.1.1 4
36.23 even 6 504.2.r.e.337.3 yes 8
36.31 odd 6 1512.2.r.e.1009.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.r.e.169.3 8 12.11 even 2
504.2.r.e.337.3 yes 8 36.23 even 6
1008.2.r.l.337.2 8 9.5 odd 6
1008.2.r.l.673.2 8 3.2 odd 2
1512.2.r.e.505.1 8 4.3 odd 2
1512.2.r.e.1009.1 8 36.31 odd 6
3024.2.r.m.1009.1 8 9.4 even 3 inner
3024.2.r.m.2017.1 8 1.1 even 1 trivial
4536.2.a.y.1.4 4 36.7 odd 6
4536.2.a.z.1.1 4 36.11 even 6
9072.2.a.cg.1.4 4 9.7 even 3
9072.2.a.cj.1.1 4 9.2 odd 6