Properties

Label 3024.2.df.e.1601.18
Level $3024$
Weight $2$
Character 3024.1601
Analytic conductor $24.147$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3024,2,Mod(17,3024)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3024, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3024.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.df (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1601.18
Character \(\chi\) \(=\) 3024.1601
Dual form 3024.2.df.e.17.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.58600 q^{5} +(1.06431 + 2.42224i) q^{7} +3.95252i q^{11} +(5.09214 - 2.93995i) q^{13} +(3.19652 + 5.53653i) q^{17} +(6.37856 + 3.68267i) q^{19} -2.43102i q^{23} -2.48459 q^{25} +(-4.34058 - 2.50604i) q^{29} +(-0.855353 - 0.493838i) q^{31} +(1.68800 + 3.84168i) q^{35} +(0.183332 - 0.317540i) q^{37} +(-5.58681 - 9.67664i) q^{41} +(-1.26688 + 2.19430i) q^{43} +(-0.543280 - 0.940989i) q^{47} +(-4.73448 + 5.15604i) q^{49} +(-6.89030 + 3.97812i) q^{53} +6.26871i q^{55} +(-2.73420 + 4.73577i) q^{59} +(12.4765 - 7.20330i) q^{61} +(8.07615 - 4.66277i) q^{65} +(-5.70501 + 9.88137i) q^{67} +9.65277i q^{71} +(7.64694 - 4.41497i) q^{73} +(-9.57394 + 4.20672i) q^{77} +(-5.30654 - 9.19120i) q^{79} +(2.96819 - 5.14105i) q^{83} +(5.06969 + 8.78096i) q^{85} +(-4.70952 + 8.15712i) q^{89} +(12.5409 + 9.20535i) q^{91} +(10.1164 + 5.84072i) q^{95} +(10.4826 + 6.05213i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 48 q^{25} - 18 q^{29} - 18 q^{31} + 6 q^{41} + 6 q^{43} + 18 q^{47} - 12 q^{49} + 12 q^{53} + 18 q^{61} + 36 q^{65} + 12 q^{77} - 6 q^{79} + 18 q^{89} - 6 q^{91} - 54 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.58600 0.709283 0.354641 0.935002i \(-0.384603\pi\)
0.354641 + 0.935002i \(0.384603\pi\)
\(6\) 0 0
\(7\) 1.06431 + 2.42224i 0.402272 + 0.915520i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.95252i 1.19173i 0.803085 + 0.595865i \(0.203191\pi\)
−0.803085 + 0.595865i \(0.796809\pi\)
\(12\) 0 0
\(13\) 5.09214 2.93995i 1.41231 0.815395i 0.416700 0.909044i \(-0.363187\pi\)
0.995605 + 0.0936493i \(0.0298532\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.19652 + 5.53653i 0.775269 + 1.34281i 0.934643 + 0.355588i \(0.115719\pi\)
−0.159374 + 0.987218i \(0.550947\pi\)
\(18\) 0 0
\(19\) 6.37856 + 3.68267i 1.46334 + 0.844862i 0.999164 0.0408799i \(-0.0130161\pi\)
0.464179 + 0.885741i \(0.346349\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.43102i 0.506903i −0.967348 0.253451i \(-0.918434\pi\)
0.967348 0.253451i \(-0.0815658\pi\)
\(24\) 0 0
\(25\) −2.48459 −0.496918
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.34058 2.50604i −0.806026 0.465359i 0.0395477 0.999218i \(-0.487408\pi\)
−0.845574 + 0.533858i \(0.820742\pi\)
\(30\) 0 0
\(31\) −0.855353 0.493838i −0.153626 0.0886960i 0.421216 0.906960i \(-0.361603\pi\)
−0.574842 + 0.818264i \(0.694937\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.68800 + 3.84168i 0.285325 + 0.649362i
\(36\) 0 0
\(37\) 0.183332 0.317540i 0.0301396 0.0522033i −0.850562 0.525874i \(-0.823738\pi\)
0.880702 + 0.473671i \(0.157071\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −5.58681 9.67664i −0.872513 1.51124i −0.859389 0.511323i \(-0.829156\pi\)
−0.0131240 0.999914i \(-0.504178\pi\)
\(42\) 0 0
\(43\) −1.26688 + 2.19430i −0.193197 + 0.334627i −0.946308 0.323266i \(-0.895219\pi\)
0.753111 + 0.657894i \(0.228552\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.543280 0.940989i −0.0792456 0.137257i 0.823679 0.567056i \(-0.191918\pi\)
−0.902925 + 0.429799i \(0.858584\pi\)
\(48\) 0 0
\(49\) −4.73448 + 5.15604i −0.676354 + 0.736577i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −6.89030 + 3.97812i −0.946455 + 0.546436i −0.891978 0.452079i \(-0.850683\pi\)
−0.0544773 + 0.998515i \(0.517349\pi\)
\(54\) 0 0
\(55\) 6.26871i 0.845273i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.73420 + 4.73577i −0.355963 + 0.616545i −0.987282 0.158977i \(-0.949180\pi\)
0.631320 + 0.775523i \(0.282514\pi\)
\(60\) 0 0
\(61\) 12.4765 7.20330i 1.59745 0.922288i 0.605473 0.795865i \(-0.292984\pi\)
0.991976 0.126423i \(-0.0403496\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 8.07615 4.66277i 1.00172 0.578345i
\(66\) 0 0
\(67\) −5.70501 + 9.88137i −0.696978 + 1.20720i 0.272531 + 0.962147i \(0.412139\pi\)
−0.969509 + 0.245055i \(0.921194\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 9.65277i 1.14557i 0.819705 + 0.572787i \(0.194138\pi\)
−0.819705 + 0.572787i \(0.805862\pi\)
\(72\) 0 0
\(73\) 7.64694 4.41497i 0.895007 0.516733i 0.0194302 0.999811i \(-0.493815\pi\)
0.875577 + 0.483079i \(0.160481\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −9.57394 + 4.20672i −1.09105 + 0.479400i
\(78\) 0 0
\(79\) −5.30654 9.19120i −0.597032 1.03409i −0.993257 0.115937i \(-0.963013\pi\)
0.396224 0.918154i \(-0.370320\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.96819 5.14105i 0.325801 0.564303i −0.655873 0.754871i \(-0.727699\pi\)
0.981674 + 0.190568i \(0.0610328\pi\)
\(84\) 0 0
\(85\) 5.06969 + 8.78096i 0.549885 + 0.952429i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.70952 + 8.15712i −0.499208 + 0.864653i −1.00000 0.000914461i \(-0.999709\pi\)
0.500792 + 0.865568i \(0.333042\pi\)
\(90\) 0 0
\(91\) 12.5409 + 9.20535i 1.31464 + 0.964983i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 10.1164 + 5.84072i 1.03792 + 0.599246i
\(96\) 0 0
\(97\) 10.4826 + 6.05213i 1.06435 + 0.614501i 0.926631 0.375971i \(-0.122691\pi\)
0.137715 + 0.990472i \(0.456024\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −0.0243106 −0.00241900 −0.00120950 0.999999i \(-0.500385\pi\)
−0.00120950 + 0.999999i \(0.500385\pi\)
\(102\) 0 0
\(103\) 1.42747i 0.140653i 0.997524 + 0.0703266i \(0.0224041\pi\)
−0.997524 + 0.0703266i \(0.977596\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −10.9445 6.31880i −1.05804 0.610862i −0.133153 0.991095i \(-0.542510\pi\)
−0.924890 + 0.380234i \(0.875844\pi\)
\(108\) 0 0
\(109\) 0.0726028 + 0.125752i 0.00695408 + 0.0120448i 0.869482 0.493965i \(-0.164453\pi\)
−0.862527 + 0.506010i \(0.831120\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 9.35867 5.40323i 0.880390 0.508293i 0.00960284 0.999954i \(-0.496943\pi\)
0.870787 + 0.491661i \(0.163610\pi\)
\(114\) 0 0
\(115\) 3.85561i 0.359537i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −10.0087 + 13.6353i −0.917496 + 1.24995i
\(120\) 0 0
\(121\) −4.62241 −0.420219
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.8706 −1.06174
\(126\) 0 0
\(127\) 3.63647 0.322685 0.161342 0.986899i \(-0.448418\pi\)
0.161342 + 0.986899i \(0.448418\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 5.01984 0.438585 0.219293 0.975659i \(-0.429625\pi\)
0.219293 + 0.975659i \(0.429625\pi\)
\(132\) 0 0
\(133\) −2.13151 + 19.3699i −0.184825 + 1.67958i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 9.30911i 0.795331i −0.917531 0.397665i \(-0.869820\pi\)
0.917531 0.397665i \(-0.130180\pi\)
\(138\) 0 0
\(139\) 3.82307 2.20725i 0.324269 0.187217i −0.329025 0.944321i \(-0.606720\pi\)
0.653294 + 0.757105i \(0.273387\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 11.6202 + 20.1268i 0.971730 + 1.68309i
\(144\) 0 0
\(145\) −6.88418 3.97459i −0.571700 0.330071i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2.89473i 0.237145i −0.992945 0.118573i \(-0.962168\pi\)
0.992945 0.118573i \(-0.0378318\pi\)
\(150\) 0 0
\(151\) −2.77117 −0.225515 −0.112757 0.993623i \(-0.535968\pi\)
−0.112757 + 0.993623i \(0.535968\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.35659 0.783230i −0.108964 0.0629105i
\(156\) 0 0
\(157\) 0.146366 + 0.0845044i 0.0116813 + 0.00674418i 0.505829 0.862634i \(-0.331187\pi\)
−0.494148 + 0.869378i \(0.664520\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 5.88851 2.58736i 0.464079 0.203913i
\(162\) 0 0
\(163\) 3.55929 6.16487i 0.278785 0.482870i −0.692298 0.721612i \(-0.743402\pi\)
0.971083 + 0.238742i \(0.0767350\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.19494 + 2.06970i 0.0924675 + 0.160158i 0.908549 0.417779i \(-0.137191\pi\)
−0.816081 + 0.577937i \(0.803858\pi\)
\(168\) 0 0
\(169\) 10.7866 18.6829i 0.829737 1.43715i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3.57971 + 6.20023i 0.272160 + 0.471395i 0.969415 0.245429i \(-0.0789287\pi\)
−0.697255 + 0.716823i \(0.745595\pi\)
\(174\) 0 0
\(175\) −2.64438 6.01827i −0.199896 0.454939i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −8.02286 + 4.63200i −0.599657 + 0.346212i −0.768906 0.639361i \(-0.779199\pi\)
0.169250 + 0.985573i \(0.445866\pi\)
\(180\) 0 0
\(181\) 21.5541i 1.60210i −0.598595 0.801052i \(-0.704274\pi\)
0.598595 0.801052i \(-0.295726\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.290765 0.503620i 0.0213775 0.0370269i
\(186\) 0 0
\(187\) −21.8832 + 12.6343i −1.60026 + 0.923911i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2.91100 1.68067i 0.210633 0.121609i −0.390973 0.920402i \(-0.627861\pi\)
0.601605 + 0.798793i \(0.294528\pi\)
\(192\) 0 0
\(193\) −4.17845 + 7.23728i −0.300771 + 0.520951i −0.976311 0.216373i \(-0.930577\pi\)
0.675540 + 0.737324i \(0.263911\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.57159i 0.396959i 0.980105 + 0.198480i \(0.0636003\pi\)
−0.980105 + 0.198480i \(0.936400\pi\)
\(198\) 0 0
\(199\) 11.6605 6.73222i 0.826594 0.477234i −0.0260910 0.999660i \(-0.508306\pi\)
0.852685 + 0.522425i \(0.174973\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1.45048 13.1811i 0.101804 0.925134i
\(204\) 0 0
\(205\) −8.86070 15.3472i −0.618858 1.07189i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −14.5558 + 25.2114i −1.00685 + 1.74391i
\(210\) 0 0
\(211\) −7.23362 12.5290i −0.497983 0.862532i 0.502014 0.864859i \(-0.332592\pi\)
−0.999997 + 0.00232753i \(0.999259\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2.00928 + 3.48017i −0.137031 + 0.237345i
\(216\) 0 0
\(217\) 0.285831 2.59747i 0.0194035 0.176328i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 32.5542 + 18.7952i 2.18983 + 1.26430i
\(222\) 0 0
\(223\) 18.3399 + 10.5885i 1.22813 + 0.709060i 0.966638 0.256146i \(-0.0824529\pi\)
0.261490 + 0.965206i \(0.415786\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 8.47672 0.562620 0.281310 0.959617i \(-0.409231\pi\)
0.281310 + 0.959617i \(0.409231\pi\)
\(228\) 0 0
\(229\) 19.7783i 1.30699i 0.756932 + 0.653494i \(0.226697\pi\)
−0.756932 + 0.653494i \(0.773303\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 23.7957 + 13.7385i 1.55891 + 0.900037i 0.997362 + 0.0725933i \(0.0231275\pi\)
0.561548 + 0.827444i \(0.310206\pi\)
\(234\) 0 0
\(235\) −0.861645 1.49241i −0.0562075 0.0973543i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0.979306 0.565402i 0.0633460 0.0365728i −0.467992 0.883732i \(-0.655023\pi\)
0.531339 + 0.847160i \(0.321689\pi\)
\(240\) 0 0
\(241\) 1.45825i 0.0939339i 0.998896 + 0.0469669i \(0.0149555\pi\)
−0.998896 + 0.0469669i \(0.985044\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −7.50890 + 8.17750i −0.479726 + 0.522441i
\(246\) 0 0
\(247\) 43.3074 2.75558
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1.61932 0.102210 0.0511052 0.998693i \(-0.483726\pi\)
0.0511052 + 0.998693i \(0.483726\pi\)
\(252\) 0 0
\(253\) 9.60865 0.604091
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −8.95518 −0.558609 −0.279305 0.960203i \(-0.590104\pi\)
−0.279305 + 0.960203i \(0.590104\pi\)
\(258\) 0 0
\(259\) 0.964280 + 0.106112i 0.0599174 + 0.00659345i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2.71686i 0.167529i −0.996486 0.0837643i \(-0.973306\pi\)
0.996486 0.0837643i \(-0.0266943\pi\)
\(264\) 0 0
\(265\) −10.9280 + 6.30931i −0.671304 + 0.387578i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 8.87918 + 15.3792i 0.541373 + 0.937686i 0.998826 + 0.0484519i \(0.0154288\pi\)
−0.457452 + 0.889234i \(0.651238\pi\)
\(270\) 0 0
\(271\) −2.76570 1.59678i −0.168004 0.0969973i 0.413640 0.910440i \(-0.364257\pi\)
−0.581644 + 0.813443i \(0.697590\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 9.82039i 0.592192i
\(276\) 0 0
\(277\) 6.63542 0.398684 0.199342 0.979930i \(-0.436120\pi\)
0.199342 + 0.979930i \(0.436120\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6.88306 + 3.97394i 0.410609 + 0.237065i 0.691051 0.722806i \(-0.257148\pi\)
−0.280442 + 0.959871i \(0.590481\pi\)
\(282\) 0 0
\(283\) −21.9793 12.6898i −1.30653 0.754328i −0.325019 0.945708i \(-0.605371\pi\)
−0.981516 + 0.191379i \(0.938704\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 17.4930 23.8315i 1.03258 1.40673i
\(288\) 0 0
\(289\) −11.9354 + 20.6728i −0.702085 + 1.21605i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −4.29543 7.43990i −0.250942 0.434644i 0.712844 0.701323i \(-0.247407\pi\)
−0.963785 + 0.266679i \(0.914074\pi\)
\(294\) 0 0
\(295\) −4.33645 + 7.51096i −0.252478 + 0.437305i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −7.14707 12.3791i −0.413326 0.715901i
\(300\) 0 0
\(301\) −6.66347 0.733263i −0.384076 0.0422646i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 19.7878 11.4245i 1.13304 0.654163i
\(306\) 0 0
\(307\) 24.2144i 1.38199i 0.722861 + 0.690994i \(0.242827\pi\)
−0.722861 + 0.690994i \(0.757173\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 12.7009 21.9986i 0.720201 1.24742i −0.240718 0.970595i \(-0.577383\pi\)
0.960919 0.276830i \(-0.0892837\pi\)
\(312\) 0 0
\(313\) −20.0407 + 11.5705i −1.13276 + 0.654002i −0.944629 0.328141i \(-0.893578\pi\)
−0.188136 + 0.982143i \(0.560245\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −5.22166 + 3.01472i −0.293277 + 0.169324i −0.639419 0.768859i \(-0.720825\pi\)
0.346142 + 0.938182i \(0.387492\pi\)
\(318\) 0 0
\(319\) 9.90516 17.1562i 0.554583 0.960565i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 47.0868i 2.61998i
\(324\) 0 0
\(325\) −12.6519 + 7.30457i −0.701800 + 0.405184i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.70108 2.31746i 0.0937836 0.127766i
\(330\) 0 0
\(331\) −8.70940 15.0851i −0.478712 0.829153i 0.520990 0.853563i \(-0.325563\pi\)
−0.999702 + 0.0244093i \(0.992230\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −9.04818 + 15.6719i −0.494355 + 0.856247i
\(336\) 0 0
\(337\) −0.760462 1.31716i −0.0414250 0.0717502i 0.844570 0.535446i \(-0.179856\pi\)
−0.885995 + 0.463696i \(0.846523\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1.95191 3.38080i 0.105702 0.183081i
\(342\) 0 0
\(343\) −17.5281 5.98040i −0.946429 0.322911i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −19.0030 10.9714i −1.02013 0.588975i −0.105992 0.994367i \(-0.533802\pi\)
−0.914143 + 0.405392i \(0.867135\pi\)
\(348\) 0 0
\(349\) 4.95655 + 2.86167i 0.265318 + 0.153182i 0.626758 0.779214i \(-0.284381\pi\)
−0.361440 + 0.932395i \(0.617715\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −3.84540 −0.204670 −0.102335 0.994750i \(-0.532631\pi\)
−0.102335 + 0.994750i \(0.532631\pi\)
\(354\) 0 0
\(355\) 15.3093i 0.812535i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −10.8763 6.27946i −0.574031 0.331417i 0.184727 0.982790i \(-0.440860\pi\)
−0.758758 + 0.651373i \(0.774193\pi\)
\(360\) 0 0
\(361\) 17.6241 + 30.5258i 0.927582 + 1.60662i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 12.1281 7.00215i 0.634813 0.366509i
\(366\) 0 0
\(367\) 1.22224i 0.0638006i −0.999491 0.0319003i \(-0.989844\pi\)
0.999491 0.0319003i \(-0.0101559\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −16.9694 12.4560i −0.881006 0.646683i
\(372\) 0 0
\(373\) 13.1525 0.681010 0.340505 0.940243i \(-0.389402\pi\)
0.340505 + 0.940243i \(0.389402\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −29.4705 −1.51781
\(378\) 0 0
\(379\) −22.9852 −1.18067 −0.590336 0.807157i \(-0.701005\pi\)
−0.590336 + 0.807157i \(0.701005\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −27.9366 −1.42749 −0.713746 0.700404i \(-0.753003\pi\)
−0.713746 + 0.700404i \(0.753003\pi\)
\(384\) 0 0
\(385\) −15.1843 + 6.67187i −0.773864 + 0.340030i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 14.3116i 0.725627i 0.931862 + 0.362814i \(0.118184\pi\)
−0.931862 + 0.362814i \(0.881816\pi\)
\(390\) 0 0
\(391\) 13.4594 7.77080i 0.680672 0.392986i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −8.41619 14.5773i −0.423465 0.733462i
\(396\) 0 0
\(397\) −3.97038 2.29230i −0.199267 0.115047i 0.397046 0.917799i \(-0.370035\pi\)
−0.596314 + 0.802751i \(0.703369\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 11.0739i 0.553003i 0.961013 + 0.276502i \(0.0891751\pi\)
−0.961013 + 0.276502i \(0.910825\pi\)
\(402\) 0 0
\(403\) −5.80744 −0.289289
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.25508 + 0.724623i 0.0622122 + 0.0359182i
\(408\) 0 0
\(409\) 5.31691 + 3.06972i 0.262904 + 0.151788i 0.625659 0.780097i \(-0.284830\pi\)
−0.362754 + 0.931885i \(0.618164\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −14.3812 1.58254i −0.707653 0.0778718i
\(414\) 0 0
\(415\) 4.70756 8.15372i 0.231085 0.400251i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −8.83059 15.2950i −0.431402 0.747211i 0.565592 0.824685i \(-0.308648\pi\)
−0.996994 + 0.0774744i \(0.975314\pi\)
\(420\) 0 0
\(421\) 11.3569 19.6707i 0.553501 0.958693i −0.444517 0.895770i \(-0.646625\pi\)
0.998018 0.0629223i \(-0.0200420\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −7.94204 13.7560i −0.385245 0.667265i
\(426\) 0 0
\(427\) 30.7270 + 22.5545i 1.48698 + 1.09149i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 18.4152 10.6320i 0.887031 0.512128i 0.0140610 0.999901i \(-0.495524\pi\)
0.872970 + 0.487773i \(0.162191\pi\)
\(432\) 0 0
\(433\) 16.1075i 0.774079i −0.922063 0.387039i \(-0.873498\pi\)
0.922063 0.387039i \(-0.126502\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.95263 15.5064i 0.428262 0.741772i
\(438\) 0 0
\(439\) 11.2480 6.49401i 0.536836 0.309942i −0.206960 0.978349i \(-0.566357\pi\)
0.743796 + 0.668407i \(0.233024\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 15.4357 8.91183i 0.733374 0.423414i −0.0862809 0.996271i \(-0.527498\pi\)
0.819655 + 0.572857i \(0.194165\pi\)
\(444\) 0 0
\(445\) −7.46931 + 12.9372i −0.354079 + 0.613284i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 5.71118i 0.269527i −0.990878 0.134764i \(-0.956972\pi\)
0.990878 0.134764i \(-0.0430275\pi\)
\(450\) 0 0
\(451\) 38.2471 22.0820i 1.80099 1.03980i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 19.8899 + 14.5997i 0.932452 + 0.684446i
\(456\) 0 0
\(457\) 4.75884 + 8.24255i 0.222609 + 0.385570i 0.955599 0.294669i \(-0.0952093\pi\)
−0.732990 + 0.680239i \(0.761876\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 20.1348 34.8746i 0.937773 1.62427i 0.168160 0.985760i \(-0.446218\pi\)
0.769613 0.638510i \(-0.220449\pi\)
\(462\) 0 0
\(463\) −6.92014 11.9860i −0.321606 0.557038i 0.659213 0.751956i \(-0.270889\pi\)
−0.980820 + 0.194917i \(0.937556\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −10.5793 + 18.3238i −0.489549 + 0.847924i −0.999928 0.0120256i \(-0.996172\pi\)
0.510378 + 0.859950i \(0.329505\pi\)
\(468\) 0 0
\(469\) −30.0070 3.30203i −1.38559 0.152474i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −8.67301 5.00736i −0.398785 0.230239i
\(474\) 0 0
\(475\) −15.8481 9.14992i −0.727162 0.419827i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −2.34127 −0.106975 −0.0534876 0.998569i \(-0.517034\pi\)
−0.0534876 + 0.998569i \(0.517034\pi\)
\(480\) 0 0
\(481\) 2.15594i 0.0983026i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 16.6254 + 9.59871i 0.754923 + 0.435855i
\(486\) 0 0
\(487\) 8.83818 + 15.3082i 0.400496 + 0.693679i 0.993786 0.111310i \(-0.0355045\pi\)
−0.593290 + 0.804989i \(0.702171\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 2.01875 1.16553i 0.0911051 0.0525995i −0.453755 0.891126i \(-0.649916\pi\)
0.544860 + 0.838527i \(0.316583\pi\)
\(492\) 0 0
\(493\) 32.0424i 1.44312i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −23.3813 + 10.2736i −1.04880 + 0.460832i
\(498\) 0 0
\(499\) −31.6088 −1.41500 −0.707501 0.706712i \(-0.750178\pi\)
−0.707501 + 0.706712i \(0.750178\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 38.9500 1.73670 0.868348 0.495956i \(-0.165182\pi\)
0.868348 + 0.495956i \(0.165182\pi\)
\(504\) 0 0
\(505\) −0.0385567 −0.00171575
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −13.7956 −0.611477 −0.305739 0.952115i \(-0.598903\pi\)
−0.305739 + 0.952115i \(0.598903\pi\)
\(510\) 0 0
\(511\) 18.8328 + 13.8238i 0.833116 + 0.611530i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2.26398i 0.0997629i
\(516\) 0 0
\(517\) 3.71928 2.14733i 0.163574 0.0944393i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −2.27458 3.93969i −0.0996512 0.172601i 0.811889 0.583812i \(-0.198439\pi\)
−0.911540 + 0.411211i \(0.865106\pi\)
\(522\) 0 0
\(523\) −32.6301 18.8390i −1.42681 0.823772i −0.429946 0.902855i \(-0.641467\pi\)
−0.996868 + 0.0790830i \(0.974801\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.31425i 0.275053i
\(528\) 0 0
\(529\) 17.0901 0.743050
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −56.8976 32.8498i −2.46451 1.42288i
\(534\) 0 0
\(535\) −17.3580 10.0216i −0.750452 0.433274i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −20.3793 18.7131i −0.877800 0.806031i
\(540\) 0 0
\(541\) −1.53417 + 2.65727i −0.0659593 + 0.114245i −0.897119 0.441789i \(-0.854344\pi\)
0.831160 + 0.556034i \(0.187677\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0.115148 + 0.199443i 0.00493241 + 0.00854319i
\(546\) 0 0
\(547\) 7.22022 12.5058i 0.308714 0.534709i −0.669367 0.742932i \(-0.733435\pi\)
0.978081 + 0.208223i \(0.0667679\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −18.4578 31.9698i −0.786329 1.36196i
\(552\) 0 0
\(553\) 16.6155 22.6360i 0.706561 0.962581i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −7.14024 + 4.12242i −0.302542 + 0.174672i −0.643584 0.765375i \(-0.722553\pi\)
0.341042 + 0.940048i \(0.389220\pi\)
\(558\) 0 0
\(559\) 14.8982i 0.630128i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −4.68623 + 8.11678i −0.197501 + 0.342082i −0.947717 0.319111i \(-0.896616\pi\)
0.750217 + 0.661192i \(0.229949\pi\)
\(564\) 0 0
\(565\) 14.8429 8.56955i 0.624445 0.360524i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 16.5077 9.53072i 0.692039 0.399549i −0.112337 0.993670i \(-0.535833\pi\)
0.804375 + 0.594121i \(0.202500\pi\)
\(570\) 0 0
\(571\) −5.02208 + 8.69850i −0.210167 + 0.364021i −0.951767 0.306822i \(-0.900734\pi\)
0.741599 + 0.670843i \(0.234068\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 6.04009i 0.251889i
\(576\) 0 0
\(577\) −10.1403 + 5.85453i −0.422148 + 0.243727i −0.695996 0.718046i \(-0.745037\pi\)
0.273848 + 0.961773i \(0.411704\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 15.6119 + 1.71797i 0.647692 + 0.0712735i
\(582\) 0 0
\(583\) −15.7236 27.2340i −0.651204 1.12792i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −0.476262 + 0.824911i −0.0196575 + 0.0340477i −0.875687 0.482880i \(-0.839591\pi\)
0.856029 + 0.516927i \(0.172924\pi\)
\(588\) 0 0
\(589\) −3.63728 6.29996i −0.149872 0.259585i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 15.4339 26.7323i 0.633794 1.09776i −0.352976 0.935632i \(-0.614830\pi\)
0.986769 0.162130i \(-0.0518365\pi\)
\(594\) 0 0
\(595\) −15.8738 + 21.6257i −0.650764 + 0.886567i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 35.6899 + 20.6056i 1.45825 + 0.841921i 0.998925 0.0463468i \(-0.0147579\pi\)
0.459325 + 0.888268i \(0.348091\pi\)
\(600\) 0 0
\(601\) −14.3592 8.29029i −0.585724 0.338168i 0.177681 0.984088i \(-0.443141\pi\)
−0.763405 + 0.645920i \(0.776474\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −7.33116 −0.298054
\(606\) 0 0
\(607\) 47.4652i 1.92655i −0.268510 0.963277i \(-0.586531\pi\)
0.268510 0.963277i \(-0.413469\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −5.53292 3.19443i −0.223838 0.129233i
\(612\) 0 0
\(613\) 7.32074 + 12.6799i 0.295682 + 0.512136i 0.975143 0.221575i \(-0.0711199\pi\)
−0.679462 + 0.733711i \(0.737787\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 40.1960 23.2072i 1.61823 0.934286i 0.630852 0.775903i \(-0.282705\pi\)
0.987378 0.158383i \(-0.0506279\pi\)
\(618\) 0 0
\(619\) 7.74450i 0.311278i 0.987814 + 0.155639i \(0.0497436\pi\)
−0.987814 + 0.155639i \(0.950256\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −24.7709 2.72585i −0.992425 0.109209i
\(624\) 0 0
\(625\) −6.40386 −0.256154
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.34409 0.0934651
\(630\) 0 0
\(631\) −24.3088 −0.967718 −0.483859 0.875146i \(-0.660765\pi\)
−0.483859 + 0.875146i \(0.660765\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 5.76746 0.228875
\(636\) 0 0
\(637\) −8.95014 + 40.1744i −0.354617 + 1.59177i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 17.5326i 0.692495i 0.938143 + 0.346248i \(0.112544\pi\)
−0.938143 + 0.346248i \(0.887456\pi\)
\(642\) 0 0
\(643\) 7.49992 4.33008i 0.295768 0.170762i −0.344772 0.938686i \(-0.612044\pi\)
0.640540 + 0.767925i \(0.278710\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −13.3349 23.0967i −0.524249 0.908026i −0.999601 0.0282305i \(-0.991013\pi\)
0.475352 0.879796i \(-0.342321\pi\)
\(648\) 0 0
\(649\) −18.7182 10.8070i −0.734755 0.424211i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 43.8362i 1.71544i −0.514116 0.857721i \(-0.671880\pi\)
0.514116 0.857721i \(-0.328120\pi\)
\(654\) 0 0
\(655\) 7.96148 0.311081
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −39.3555 22.7219i −1.53307 0.885120i −0.999218 0.0395437i \(-0.987410\pi\)
−0.533855 0.845576i \(-0.679257\pi\)
\(660\) 0 0
\(661\) −34.9261 20.1646i −1.35847 0.784311i −0.369050 0.929410i \(-0.620317\pi\)
−0.989417 + 0.145098i \(0.953650\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −3.38058 + 30.7208i −0.131093 + 1.19130i
\(666\) 0 0
\(667\) −6.09223 + 10.5520i −0.235892 + 0.408577i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 28.4712 + 49.3135i 1.09912 + 1.90373i
\(672\) 0 0
\(673\) −3.85511 + 6.67724i −0.148603 + 0.257389i −0.930712 0.365754i \(-0.880811\pi\)
0.782108 + 0.623143i \(0.214144\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −22.0288 38.1550i −0.846635 1.46642i −0.884194 0.467121i \(-0.845291\pi\)
0.0375585 0.999294i \(-0.488042\pi\)
\(678\) 0 0
\(679\) −3.50294 + 31.8327i −0.134431 + 1.22163i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −3.75165 + 2.16602i −0.143553 + 0.0828804i −0.570056 0.821606i \(-0.693079\pi\)
0.426503 + 0.904486i \(0.359745\pi\)
\(684\) 0 0
\(685\) 14.7643i 0.564114i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −23.3909 + 40.5142i −0.891123 + 1.54347i
\(690\) 0 0
\(691\) −7.00301 + 4.04319i −0.266407 + 0.153810i −0.627254 0.778815i \(-0.715821\pi\)
0.360847 + 0.932625i \(0.382488\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 6.06341 3.50071i 0.229998 0.132790i
\(696\) 0 0
\(697\) 35.7167 61.8631i 1.35286 2.34323i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 41.8099i 1.57914i 0.613662 + 0.789569i \(0.289696\pi\)
−0.613662 + 0.789569i \(0.710304\pi\)
\(702\) 0 0
\(703\) 2.33879 1.35030i 0.0882091 0.0509275i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −0.0258741 0.0588861i −0.000973095 0.00221464i
\(708\) 0 0
\(709\) 22.6470 + 39.2257i 0.850526 + 1.47315i 0.880735 + 0.473610i \(0.157049\pi\)
−0.0302091 + 0.999544i \(0.509617\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −1.20053 + 2.07938i −0.0449602 + 0.0778734i
\(714\) 0 0
\(715\) 18.4297 + 31.9212i 0.689231 + 1.19378i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1.73529 3.00561i 0.0647155 0.112090i −0.831852 0.554997i \(-0.812719\pi\)
0.896568 + 0.442907i \(0.146053\pi\)
\(720\) 0 0
\(721\) −3.45768 + 1.51928i −0.128771 + 0.0565809i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 10.7846 + 6.22648i 0.400529 + 0.231246i
\(726\) 0 0
\(727\) 37.7189 + 21.7770i 1.39892 + 0.807665i 0.994279 0.106811i \(-0.0340641\pi\)
0.404638 + 0.914477i \(0.367397\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −16.1984 −0.599120
\(732\) 0 0
\(733\) 7.63755i 0.282099i −0.990003 0.141050i \(-0.954952\pi\)
0.990003 0.141050i \(-0.0450477\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −39.0563 22.5492i −1.43866 0.830610i
\(738\) 0 0
\(739\) −22.0809 38.2453i −0.812260 1.40687i −0.911279 0.411789i \(-0.864904\pi\)
0.0990195 0.995085i \(-0.468429\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 10.8720 6.27693i 0.398853 0.230278i −0.287136 0.957890i \(-0.592703\pi\)
0.685989 + 0.727612i \(0.259370\pi\)
\(744\) 0 0
\(745\) 4.59105i 0.168203i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 3.65729 33.2353i 0.133635 1.21439i
\(750\) 0 0
\(751\) −18.1150 −0.661025 −0.330512 0.943802i \(-0.607222\pi\)
−0.330512 + 0.943802i \(0.607222\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −4.39509 −0.159954
\(756\) 0 0
\(757\) 39.8682 1.44903 0.724517 0.689257i \(-0.242063\pi\)
0.724517 + 0.689257i \(0.242063\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −15.0569 −0.545812 −0.272906 0.962041i \(-0.587985\pi\)
−0.272906 + 0.962041i \(0.587985\pi\)
\(762\) 0 0
\(763\) −0.227328 + 0.309700i −0.00822984 + 0.0112119i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 32.1536i 1.16100i
\(768\) 0 0
\(769\) −0.522559 + 0.301700i −0.0188440 + 0.0108796i −0.509392 0.860534i \(-0.670130\pi\)
0.490548 + 0.871414i \(0.336796\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −1.56956 2.71856i −0.0564533 0.0977799i 0.836418 0.548093i \(-0.184646\pi\)
−0.892871 + 0.450313i \(0.851313\pi\)
\(774\) 0 0
\(775\) 2.12520 + 1.22699i 0.0763395 + 0.0440746i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 82.2974i 2.94861i
\(780\) 0 0
\(781\) −38.1528 −1.36521
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0.232137 + 0.134024i 0.00828532 + 0.00478353i
\(786\) 0 0
\(787\) −15.9640 9.21682i −0.569055 0.328544i 0.187717 0.982223i \(-0.439891\pi\)
−0.756772 + 0.653679i \(0.773225\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 23.0485 + 16.9182i 0.819509 + 0.601542i
\(792\) 0 0
\(793\) 42.3547 73.3604i 1.50406 2.60510i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 17.1802 + 29.7570i 0.608554 + 1.05405i 0.991479 + 0.130267i \(0.0415833\pi\)
−0.382925 + 0.923779i \(0.625083\pi\)
\(798\) 0 0
\(799\) 3.47321 6.01578i 0.122873 0.212823i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 17.4502 + 30.2247i 0.615806 + 1.06661i
\(804\) 0 0
\(805\) 9.33920 4.10357i 0.329164 0.144632i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 44.3399 25.5996i 1.55891 0.900035i 0.561544 0.827447i \(-0.310207\pi\)
0.997362 0.0725881i \(-0.0231258\pi\)
\(810\) 0 0
\(811\) 46.2446i 1.62387i 0.583751 + 0.811933i \(0.301585\pi\)
−0.583751 + 0.811933i \(0.698415\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 5.64505 9.77751i 0.197737 0.342491i
\(816\) 0 0
\(817\) −16.1617 + 9.33099i −0.565428 + 0.326450i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 7.33282 4.23361i 0.255917 0.147754i −0.366553 0.930397i \(-0.619462\pi\)
0.622471 + 0.782643i \(0.286129\pi\)
\(822\) 0 0
\(823\) −12.6623 + 21.9317i −0.441380 + 0.764492i −0.997792 0.0664144i \(-0.978844\pi\)
0.556413 + 0.830906i \(0.312177\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 6.75531i 0.234905i −0.993078 0.117453i \(-0.962527\pi\)
0.993078 0.117453i \(-0.0374728\pi\)
\(828\) 0 0
\(829\) −17.0191 + 9.82599i −0.591098 + 0.341271i −0.765532 0.643398i \(-0.777524\pi\)
0.174434 + 0.984669i \(0.444191\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −43.6804 9.73122i −1.51344 0.337167i
\(834\) 0 0
\(835\) 1.89519 + 3.28256i 0.0655856 + 0.113598i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 16.6302 28.8044i 0.574140 0.994439i −0.421995 0.906598i \(-0.638670\pi\)
0.996135 0.0878410i \(-0.0279967\pi\)
\(840\) 0 0
\(841\) −1.93955 3.35940i −0.0668811 0.115841i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 17.1076 29.6312i 0.588518 1.01934i
\(846\) 0 0
\(847\) −4.91969 11.1966i −0.169043 0.384719i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −0.771946 0.445683i −0.0264620 0.0152778i
\(852\) 0 0
\(853\) −25.0891 14.4852i −0.859035 0.495964i 0.00465409 0.999989i \(-0.498519\pi\)
−0.863689 + 0.504025i \(0.831852\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 46.6449 1.59336 0.796680 0.604401i \(-0.206588\pi\)
0.796680 + 0.604401i \(0.206588\pi\)
\(858\) 0 0
\(859\) 14.7329i 0.502680i 0.967899 + 0.251340i \(0.0808712\pi\)
−0.967899 + 0.251340i \(0.919129\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 40.0533 + 23.1248i 1.36343 + 0.787177i 0.990079 0.140513i \(-0.0448751\pi\)
0.373352 + 0.927690i \(0.378208\pi\)
\(864\) 0 0
\(865\) 5.67743 + 9.83360i 0.193038 + 0.334352i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 36.3284 20.9742i 1.23236 0.711501i
\(870\) 0 0
\(871\) 67.0898i 2.27325i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −12.6340 28.7534i −0.427108 0.972042i
\(876\) 0 0
\(877\) −47.9408 −1.61884 −0.809422 0.587227i \(-0.800220\pi\)
−0.809422 + 0.587227i \(0.800220\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −22.8464 −0.769715 −0.384857 0.922976i \(-0.625749\pi\)
−0.384857 + 0.922976i \(0.625749\pi\)
\(882\) 0 0
\(883\) 9.97054 0.335535 0.167768 0.985827i \(-0.446344\pi\)
0.167768 + 0.985827i \(0.446344\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 14.5527 0.488633 0.244317 0.969696i \(-0.421436\pi\)
0.244317 + 0.969696i \(0.421436\pi\)
\(888\) 0 0
\(889\) 3.87034 + 8.80840i 0.129807 + 0.295424i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 8.00288i 0.267806i
\(894\) 0 0
\(895\) −12.7243 + 7.34637i −0.425326 + 0.245562i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 2.47516 + 4.28709i 0.0825510 + 0.142983i
\(900\) 0 0
\(901\) −44.0499 25.4322i −1.46752 0.847270i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 34.1849i 1.13634i
\(906\) 0 0
\(907\) 21.9091 0.727481 0.363740 0.931500i \(-0.381500\pi\)
0.363740 + 0.931500i \(0.381500\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 44.3072 + 25.5808i 1.46796 + 0.847529i 0.999356 0.0358768i \(-0.0114224\pi\)
0.468608 + 0.883406i \(0.344756\pi\)
\(912\) 0 0
\(913\) 20.3201 + 11.7318i 0.672497 + 0.388266i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 5.34268 + 12.1592i 0.176431 + 0.401534i
\(918\) 0 0
\(919\) 28.4261 49.2355i 0.937691 1.62413i 0.167928 0.985799i \(-0.446293\pi\)
0.769763 0.638329i \(-0.220374\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 28.3786 + 49.1533i 0.934094 + 1.61790i
\(924\) 0 0
\(925\) −0.455505 + 0.788957i −0.0149769 + 0.0259407i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −5.15562 8.92980i −0.169151 0.292977i 0.768971 0.639284i \(-0.220769\pi\)
−0.938121 + 0.346306i \(0.887436\pi\)
\(930\) 0 0
\(931\) −49.1871 + 15.4526i −1.61204 + 0.506439i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −34.7069 + 20.0380i −1.13504 + 0.655314i
\(936\) 0 0
\(937\) 2.65580i 0.0867614i 0.999059 + 0.0433807i \(0.0138128\pi\)
−0.999059 + 0.0433807i \(0.986187\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1.43664 + 2.48834i −0.0468333 + 0.0811176i −0.888492 0.458893i \(-0.848246\pi\)
0.841658 + 0.540010i \(0.181580\pi\)
\(942\) 0 0
\(943\) −23.5241 + 13.5816i −0.766050 + 0.442279i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −8.03333 + 4.63804i −0.261048 + 0.150716i −0.624813 0.780775i \(-0.714825\pi\)
0.363765 + 0.931491i \(0.381491\pi\)
\(948\) 0 0
\(949\) 25.9595 44.9632i 0.842682 1.45957i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 52.9084i 1.71387i −0.515425 0.856935i \(-0.672366\pi\)
0.515425 0.856935i \(-0.327634\pi\)
\(954\) 0 0
\(955\) 4.61686 2.66555i 0.149398 0.0862551i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 22.5489 9.90780i 0.728141 0.319940i
\(960\) 0 0
\(961\) −15.0122 26.0020i −0.484266 0.838773i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −6.62703 + 11.4784i −0.213332 + 0.369501i
\(966\) 0 0
\(967\) −5.65450 9.79388i −0.181836 0.314950i 0.760669 0.649139i \(-0.224871\pi\)
−0.942506 + 0.334189i \(0.891537\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 22.5860 39.1201i 0.724819 1.25542i −0.234230 0.972181i \(-0.575257\pi\)
0.959048 0.283242i \(-0.0914099\pi\)
\(972\) 0 0
\(973\) 9.41544 + 6.91119i 0.301845 + 0.221563i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −15.2443 8.80132i −0.487710 0.281579i 0.235914 0.971774i \(-0.424192\pi\)
−0.723624 + 0.690195i \(0.757525\pi\)
\(978\) 0 0
\(979\) −32.2412 18.6145i −1.03043 0.594921i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −35.0841 −1.11901 −0.559504 0.828827i \(-0.689008\pi\)
−0.559504 + 0.828827i \(0.689008\pi\)
\(984\) 0 0
\(985\) 8.83656i 0.281556i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 5.33438 + 3.07981i 0.169624 + 0.0979322i
\(990\) 0 0
\(991\) −16.9731 29.3982i −0.539167 0.933865i −0.998949 0.0458331i \(-0.985406\pi\)
0.459782 0.888032i \(-0.347928\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 18.4937 10.6773i 0.586289 0.338494i
\(996\) 0 0
\(997\) 25.5331i 0.808642i 0.914617 + 0.404321i \(0.132492\pi\)
−0.914617 + 0.404321i \(0.867508\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.df.e.1601.18 48
3.2 odd 2 1008.2.df.e.929.7 48
4.3 odd 2 1512.2.cx.a.89.18 48
7.3 odd 6 3024.2.ca.e.2033.18 48
9.4 even 3 1008.2.ca.e.257.3 48
9.5 odd 6 3024.2.ca.e.2609.18 48
12.11 even 2 504.2.cx.a.425.18 yes 48
21.17 even 6 1008.2.ca.e.353.3 48
28.3 even 6 1512.2.bs.a.521.18 48
36.23 even 6 1512.2.bs.a.1097.18 48
36.31 odd 6 504.2.bs.a.257.22 48
63.31 odd 6 1008.2.df.e.689.7 48
63.59 even 6 inner 3024.2.df.e.17.18 48
84.59 odd 6 504.2.bs.a.353.22 yes 48
252.31 even 6 504.2.cx.a.185.18 yes 48
252.59 odd 6 1512.2.cx.a.17.18 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.22 48 36.31 odd 6
504.2.bs.a.353.22 yes 48 84.59 odd 6
504.2.cx.a.185.18 yes 48 252.31 even 6
504.2.cx.a.425.18 yes 48 12.11 even 2
1008.2.ca.e.257.3 48 9.4 even 3
1008.2.ca.e.353.3 48 21.17 even 6
1008.2.df.e.689.7 48 63.31 odd 6
1008.2.df.e.929.7 48 3.2 odd 2
1512.2.bs.a.521.18 48 28.3 even 6
1512.2.bs.a.1097.18 48 36.23 even 6
1512.2.cx.a.17.18 48 252.59 odd 6
1512.2.cx.a.89.18 48 4.3 odd 2
3024.2.ca.e.2033.18 48 7.3 odd 6
3024.2.ca.e.2609.18 48 9.5 odd 6
3024.2.df.e.17.18 48 63.59 even 6 inner
3024.2.df.e.1601.18 48 1.1 even 1 trivial