Properties

Label 3024.2.ca.e.2033.18
Level $3024$
Weight $2$
Character 3024.2033
Analytic conductor $24.147$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3024,2,Mod(2033,3024)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3024, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3024.2033"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.ca (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2033.18
Character \(\chi\) \(=\) 3024.2033
Dual form 3024.2.ca.e.2609.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.793002 - 1.37352i) q^{5} +(-2.62988 + 0.289398i) q^{7} +(3.42298 - 1.97626i) q^{11} +(-5.09214 + 2.93995i) q^{13} +(-3.19652 + 5.53653i) q^{17} +(6.37856 - 3.68267i) q^{19} +(2.10532 + 1.21551i) q^{23} +(1.24230 + 2.15172i) q^{25} +(-4.34058 - 2.50604i) q^{29} -0.987677i q^{31} +(-1.68800 + 3.84168i) q^{35} +(0.183332 + 0.317540i) q^{37} +(5.58681 + 9.67664i) q^{41} +(-1.26688 + 2.19430i) q^{43} -1.08656 q^{47} +(6.83250 - 1.52216i) q^{49} +(6.89030 + 3.97812i) q^{53} -6.26871i q^{55} -5.46840 q^{59} -14.4066i q^{61} +9.32554i q^{65} +11.4100 q^{67} +9.65277i q^{71} +(7.64694 + 4.41497i) q^{73} +(-8.43010 + 6.18792i) q^{77} +10.6131 q^{79} +(-2.96819 + 5.14105i) q^{83} +(5.06969 + 8.78096i) q^{85} +(4.70952 + 8.15712i) q^{89} +(12.5409 - 9.20535i) q^{91} -11.6814i q^{95} +(-10.4826 - 6.05213i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 12 q^{23} - 24 q^{25} - 18 q^{29} - 6 q^{41} + 6 q^{43} + 36 q^{47} + 6 q^{49} - 12 q^{53} + 36 q^{77} + 12 q^{79} - 18 q^{89} - 6 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.793002 1.37352i 0.354641 0.614257i −0.632415 0.774630i \(-0.717936\pi\)
0.987057 + 0.160373i \(0.0512696\pi\)
\(6\) 0 0
\(7\) −2.62988 + 0.289398i −0.994000 + 0.109382i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.42298 1.97626i 1.03207 0.595865i 0.114492 0.993424i \(-0.463476\pi\)
0.917576 + 0.397559i \(0.130143\pi\)
\(12\) 0 0
\(13\) −5.09214 + 2.93995i −1.41231 + 0.815395i −0.995605 0.0936493i \(-0.970147\pi\)
−0.416700 + 0.909044i \(0.636813\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.19652 + 5.53653i −0.775269 + 1.34281i 0.159374 + 0.987218i \(0.449053\pi\)
−0.934643 + 0.355588i \(0.884281\pi\)
\(18\) 0 0
\(19\) 6.37856 3.68267i 1.46334 0.844862i 0.464179 0.885741i \(-0.346349\pi\)
0.999164 + 0.0408799i \(0.0130161\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.10532 + 1.21551i 0.438990 + 0.253451i 0.703169 0.711022i \(-0.251768\pi\)
−0.264179 + 0.964474i \(0.585101\pi\)
\(24\) 0 0
\(25\) 1.24230 + 2.15172i 0.248459 + 0.430344i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.34058 2.50604i −0.806026 0.465359i 0.0395477 0.999218i \(-0.487408\pi\)
−0.845574 + 0.533858i \(0.820742\pi\)
\(30\) 0 0
\(31\) 0.987677i 0.177392i −0.996059 0.0886960i \(-0.971730\pi\)
0.996059 0.0886960i \(-0.0282700\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.68800 + 3.84168i −0.285325 + 0.649362i
\(36\) 0 0
\(37\) 0.183332 + 0.317540i 0.0301396 + 0.0522033i 0.880702 0.473671i \(-0.157071\pi\)
−0.850562 + 0.525874i \(0.823738\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.58681 + 9.67664i 0.872513 + 1.51124i 0.859389 + 0.511323i \(0.170844\pi\)
0.0131240 + 0.999914i \(0.495822\pi\)
\(42\) 0 0
\(43\) −1.26688 + 2.19430i −0.193197 + 0.334627i −0.946308 0.323266i \(-0.895219\pi\)
0.753111 + 0.657894i \(0.228552\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.08656 −0.158491 −0.0792456 0.996855i \(-0.525251\pi\)
−0.0792456 + 0.996855i \(0.525251\pi\)
\(48\) 0 0
\(49\) 6.83250 1.52216i 0.976071 0.217451i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.89030 + 3.97812i 0.946455 + 0.546436i 0.891978 0.452079i \(-0.149317\pi\)
0.0544773 + 0.998515i \(0.482651\pi\)
\(54\) 0 0
\(55\) 6.26871i 0.845273i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −5.46840 −0.711925 −0.355963 0.934500i \(-0.615847\pi\)
−0.355963 + 0.934500i \(0.615847\pi\)
\(60\) 0 0
\(61\) 14.4066i 1.84458i −0.386503 0.922288i \(-0.626317\pi\)
0.386503 0.922288i \(-0.373683\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 9.32554i 1.15669i
\(66\) 0 0
\(67\) 11.4100 1.39396 0.696978 0.717092i \(-0.254527\pi\)
0.696978 + 0.717092i \(0.254527\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 9.65277i 1.14557i 0.819705 + 0.572787i \(0.194138\pi\)
−0.819705 + 0.572787i \(0.805862\pi\)
\(72\) 0 0
\(73\) 7.64694 + 4.41497i 0.895007 + 0.516733i 0.875577 0.483079i \(-0.160481\pi\)
0.0194302 + 0.999811i \(0.493815\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −8.43010 + 6.18792i −0.960699 + 0.705179i
\(78\) 0 0
\(79\) 10.6131 1.19406 0.597032 0.802217i \(-0.296346\pi\)
0.597032 + 0.802217i \(0.296346\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −2.96819 + 5.14105i −0.325801 + 0.564303i −0.981674 0.190568i \(-0.938967\pi\)
0.655873 + 0.754871i \(0.272301\pi\)
\(84\) 0 0
\(85\) 5.06969 + 8.78096i 0.549885 + 0.952429i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.70952 + 8.15712i 0.499208 + 0.864653i 1.00000 0.000914461i \(-0.000291082\pi\)
−0.500792 + 0.865568i \(0.666958\pi\)
\(90\) 0 0
\(91\) 12.5409 9.20535i 1.31464 0.964983i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 11.6814i 1.19849i
\(96\) 0 0
\(97\) −10.4826 6.05213i −1.06435 0.614501i −0.137715 0.990472i \(-0.543976\pi\)
−0.926631 + 0.375971i \(0.877309\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −0.0121553 0.0210536i −0.00120950 0.00209491i 0.865420 0.501047i \(-0.167052\pi\)
−0.866630 + 0.498952i \(0.833718\pi\)
\(102\) 0 0
\(103\) 1.23623 + 0.713737i 0.121809 + 0.0703266i 0.559667 0.828718i \(-0.310929\pi\)
−0.437857 + 0.899044i \(0.644263\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 10.9445 6.31880i 1.05804 0.610862i 0.133153 0.991095i \(-0.457490\pi\)
0.924890 + 0.380234i \(0.124156\pi\)
\(108\) 0 0
\(109\) 0.0726028 0.125752i 0.00695408 0.0120448i −0.862527 0.506010i \(-0.831120\pi\)
0.869482 + 0.493965i \(0.164453\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 9.35867 5.40323i 0.880390 0.508293i 0.00960284 0.999954i \(-0.496943\pi\)
0.870787 + 0.491661i \(0.163610\pi\)
\(114\) 0 0
\(115\) 3.33905 1.92780i 0.311368 0.179769i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 6.80419 15.4855i 0.623739 1.41955i
\(120\) 0 0
\(121\) 2.31121 4.00313i 0.210110 0.363920i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.8706 1.06174
\(126\) 0 0
\(127\) 3.63647 0.322685 0.161342 0.986899i \(-0.448418\pi\)
0.161342 + 0.986899i \(0.448418\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2.50992 4.34731i 0.219293 0.379826i −0.735299 0.677743i \(-0.762958\pi\)
0.954592 + 0.297917i \(0.0962917\pi\)
\(132\) 0 0
\(133\) −15.7091 + 11.5309i −1.36215 + 0.999856i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −8.06192 + 4.65455i −0.688777 + 0.397665i −0.803154 0.595772i \(-0.796846\pi\)
0.114377 + 0.993437i \(0.463513\pi\)
\(138\) 0 0
\(139\) −3.82307 + 2.20725i −0.324269 + 0.187217i −0.653294 0.757105i \(-0.726613\pi\)
0.329025 + 0.944321i \(0.393280\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −11.6202 + 20.1268i −0.971730 + 1.68309i
\(144\) 0 0
\(145\) −6.88418 + 3.97459i −0.571700 + 0.330071i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2.50691 + 1.44736i 0.205374 + 0.118573i 0.599160 0.800630i \(-0.295502\pi\)
−0.393786 + 0.919202i \(0.628835\pi\)
\(150\) 0 0
\(151\) 1.38558 + 2.39990i 0.112757 + 0.195301i 0.916881 0.399161i \(-0.130698\pi\)
−0.804124 + 0.594462i \(0.797365\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.35659 0.783230i −0.108964 0.0629105i
\(156\) 0 0
\(157\) 0.169009i 0.0134884i 0.999977 + 0.00674418i \(0.00214676\pi\)
−0.999977 + 0.00674418i \(0.997853\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −5.88851 2.58736i −0.464079 0.203913i
\(162\) 0 0
\(163\) 3.55929 + 6.16487i 0.278785 + 0.482870i 0.971083 0.238742i \(-0.0767350\pi\)
−0.692298 + 0.721612i \(0.743402\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.19494 2.06970i −0.0924675 0.160158i 0.816081 0.577937i \(-0.196142\pi\)
−0.908549 + 0.417779i \(0.862809\pi\)
\(168\) 0 0
\(169\) 10.7866 18.6829i 0.829737 1.43715i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 7.15941 0.544320 0.272160 0.962252i \(-0.412262\pi\)
0.272160 + 0.962252i \(0.412262\pi\)
\(174\) 0 0
\(175\) −3.88979 5.29924i −0.294040 0.400585i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 8.02286 + 4.63200i 0.599657 + 0.346212i 0.768906 0.639361i \(-0.220801\pi\)
−0.169250 + 0.985573i \(0.554134\pi\)
\(180\) 0 0
\(181\) 21.5541i 1.60210i 0.598595 + 0.801052i \(0.295726\pi\)
−0.598595 + 0.801052i \(0.704274\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.581530 0.0427549
\(186\) 0 0
\(187\) 25.2686i 1.84782i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3.36134i 0.243218i 0.992578 + 0.121609i \(0.0388054\pi\)
−0.992578 + 0.121609i \(0.961195\pi\)
\(192\) 0 0
\(193\) 8.35689 0.601542 0.300771 0.953696i \(-0.402756\pi\)
0.300771 + 0.953696i \(0.402756\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.57159i 0.396959i 0.980105 + 0.198480i \(0.0636003\pi\)
−0.980105 + 0.198480i \(0.936400\pi\)
\(198\) 0 0
\(199\) 11.6605 + 6.73222i 0.826594 + 0.477234i 0.852685 0.522425i \(-0.174973\pi\)
−0.0260910 + 0.999660i \(0.508306\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 12.1404 + 5.33441i 0.852092 + 0.374402i
\(204\) 0 0
\(205\) 17.7214 1.23772
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 14.5558 25.2114i 1.00685 1.74391i
\(210\) 0 0
\(211\) −7.23362 12.5290i −0.497983 0.862532i 0.502014 0.864859i \(-0.332592\pi\)
−0.999997 + 0.00232753i \(0.999259\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2.00928 + 3.48017i 0.137031 + 0.237345i
\(216\) 0 0
\(217\) 0.285831 + 2.59747i 0.0194035 + 0.176328i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 37.5904i 2.52860i
\(222\) 0 0
\(223\) −18.3399 10.5885i −1.22813 0.709060i −0.261490 0.965206i \(-0.584214\pi\)
−0.966638 + 0.256146i \(0.917547\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4.23836 + 7.34106i 0.281310 + 0.487243i 0.971708 0.236187i \(-0.0758978\pi\)
−0.690398 + 0.723430i \(0.742564\pi\)
\(228\) 0 0
\(229\) 17.1285 + 9.88915i 1.13188 + 0.653494i 0.944408 0.328776i \(-0.106636\pi\)
0.187476 + 0.982269i \(0.439969\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −23.7957 + 13.7385i −1.55891 + 0.900037i −0.561548 + 0.827444i \(0.689794\pi\)
−0.997362 + 0.0725933i \(0.976873\pi\)
\(234\) 0 0
\(235\) −0.861645 + 1.49241i −0.0562075 + 0.0973543i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0.979306 0.565402i 0.0633460 0.0365728i −0.467992 0.883732i \(-0.655023\pi\)
0.531339 + 0.847160i \(0.321689\pi\)
\(240\) 0 0
\(241\) −1.26288 + 0.729123i −0.0813491 + 0.0469669i −0.540123 0.841586i \(-0.681622\pi\)
0.458774 + 0.888553i \(0.348289\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 3.32747 10.5916i 0.212584 0.676676i
\(246\) 0 0
\(247\) −21.6537 + 37.5053i −1.37779 + 2.38640i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1.61932 −0.102210 −0.0511052 0.998693i \(-0.516274\pi\)
−0.0511052 + 0.998693i \(0.516274\pi\)
\(252\) 0 0
\(253\) 9.60865 0.604091
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4.47759 + 7.75542i −0.279305 + 0.483770i −0.971212 0.238216i \(-0.923437\pi\)
0.691908 + 0.721986i \(0.256771\pi\)
\(258\) 0 0
\(259\) −0.574035 0.782035i −0.0356688 0.0485933i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −2.35287 + 1.35843i −0.145084 + 0.0837643i −0.570785 0.821100i \(-0.693361\pi\)
0.425701 + 0.904864i \(0.360028\pi\)
\(264\) 0 0
\(265\) 10.9280 6.30931i 0.671304 0.387578i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −8.87918 + 15.3792i −0.541373 + 0.937686i 0.457452 + 0.889234i \(0.348762\pi\)
−0.998826 + 0.0484519i \(0.984571\pi\)
\(270\) 0 0
\(271\) −2.76570 + 1.59678i −0.168004 + 0.0969973i −0.581644 0.813443i \(-0.697590\pi\)
0.413640 + 0.910440i \(0.364257\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 8.50471 + 4.91020i 0.512853 + 0.296096i
\(276\) 0 0
\(277\) −3.31771 5.74644i −0.199342 0.345270i 0.748973 0.662600i \(-0.230547\pi\)
−0.948315 + 0.317330i \(0.897214\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6.88306 + 3.97394i 0.410609 + 0.237065i 0.691051 0.722806i \(-0.257148\pi\)
−0.280442 + 0.959871i \(0.590481\pi\)
\(282\) 0 0
\(283\) 25.3795i 1.50866i −0.656497 0.754328i \(-0.727963\pi\)
0.656497 0.754328i \(-0.272037\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −17.4930 23.8315i −1.03258 1.40673i
\(288\) 0 0
\(289\) −11.9354 20.6728i −0.702085 1.21605i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 4.29543 + 7.43990i 0.250942 + 0.434644i 0.963785 0.266679i \(-0.0859265\pi\)
−0.712844 + 0.701323i \(0.752593\pi\)
\(294\) 0 0
\(295\) −4.33645 + 7.51096i −0.252478 + 0.437305i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −14.2941 −0.826651
\(300\) 0 0
\(301\) 2.69671 6.13737i 0.155436 0.353752i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −19.7878 11.4245i −1.13304 0.654163i
\(306\) 0 0
\(307\) 24.2144i 1.38199i −0.722861 0.690994i \(-0.757173\pi\)
0.722861 0.690994i \(-0.242827\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 25.4018 1.44040 0.720201 0.693766i \(-0.244050\pi\)
0.720201 + 0.693766i \(0.244050\pi\)
\(312\) 0 0
\(313\) 23.1410i 1.30800i 0.756493 + 0.654002i \(0.226911\pi\)
−0.756493 + 0.654002i \(0.773089\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.02945i 0.338648i −0.985560 0.169324i \(-0.945842\pi\)
0.985560 0.169324i \(-0.0541584\pi\)
\(318\) 0 0
\(319\) −19.8103 −1.10917
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 47.0868i 2.61998i
\(324\) 0 0
\(325\) −12.6519 7.30457i −0.701800 0.405184i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 2.85752 0.314448i 0.157540 0.0173361i
\(330\) 0 0
\(331\) 17.4188 0.957424 0.478712 0.877972i \(-0.341104\pi\)
0.478712 + 0.877972i \(0.341104\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 9.04818 15.6719i 0.494355 0.856247i
\(336\) 0 0
\(337\) −0.760462 1.31716i −0.0414250 0.0717502i 0.844570 0.535446i \(-0.179856\pi\)
−0.885995 + 0.463696i \(0.846523\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.95191 3.38080i −0.105702 0.183081i
\(342\) 0 0
\(343\) −17.5281 + 5.98040i −0.946429 + 0.322911i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 21.9428i 1.17795i 0.808151 + 0.588975i \(0.200468\pi\)
−0.808151 + 0.588975i \(0.799532\pi\)
\(348\) 0 0
\(349\) −4.95655 2.86167i −0.265318 0.153182i 0.361440 0.932395i \(-0.382285\pi\)
−0.626758 + 0.779214i \(0.715619\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1.92270 3.33022i −0.102335 0.177250i 0.810311 0.586000i \(-0.199298\pi\)
−0.912646 + 0.408750i \(0.865965\pi\)
\(354\) 0 0
\(355\) 13.2583 + 7.65467i 0.703676 + 0.406268i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 10.8763 6.27946i 0.574031 0.331417i −0.184727 0.982790i \(-0.559140\pi\)
0.758758 + 0.651373i \(0.225807\pi\)
\(360\) 0 0
\(361\) 17.6241 30.5258i 0.927582 1.60662i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 12.1281 7.00215i 0.634813 0.366509i
\(366\) 0 0
\(367\) 1.05849 0.611122i 0.0552530 0.0319003i −0.472119 0.881535i \(-0.656511\pi\)
0.527372 + 0.849634i \(0.323177\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −19.2719 8.46792i −1.00055 0.439632i
\(372\) 0 0
\(373\) −6.57624 + 11.3904i −0.340505 + 0.589772i −0.984527 0.175235i \(-0.943931\pi\)
0.644022 + 0.765007i \(0.277265\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 29.4705 1.51781
\(378\) 0 0
\(379\) −22.9852 −1.18067 −0.590336 0.807157i \(-0.701005\pi\)
−0.590336 + 0.807157i \(0.701005\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −13.9683 + 24.1938i −0.713746 + 1.23625i 0.249695 + 0.968325i \(0.419670\pi\)
−0.963441 + 0.267920i \(0.913664\pi\)
\(384\) 0 0
\(385\) 1.81415 + 16.4859i 0.0924576 + 0.840201i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 12.3942 7.15580i 0.628412 0.362814i −0.151725 0.988423i \(-0.548483\pi\)
0.780137 + 0.625609i \(0.215150\pi\)
\(390\) 0 0
\(391\) −13.4594 + 7.77080i −0.680672 + 0.392986i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 8.41619 14.5773i 0.423465 0.733462i
\(396\) 0 0
\(397\) −3.97038 + 2.29230i −0.199267 + 0.115047i −0.596314 0.802751i \(-0.703369\pi\)
0.397046 + 0.917799i \(0.370035\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −9.59026 5.53694i −0.478915 0.276502i 0.241049 0.970513i \(-0.422508\pi\)
−0.719964 + 0.694011i \(0.755842\pi\)
\(402\) 0 0
\(403\) 2.90372 + 5.02939i 0.144645 + 0.250532i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.25508 + 0.724623i 0.0622122 + 0.0359182i
\(408\) 0 0
\(409\) 6.13944i 0.303576i 0.988413 + 0.151788i \(0.0485031\pi\)
−0.988413 + 0.151788i \(0.951497\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 14.3812 1.58254i 0.707653 0.0778718i
\(414\) 0 0
\(415\) 4.70756 + 8.15372i 0.231085 + 0.400251i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 8.83059 + 15.2950i 0.431402 + 0.747211i 0.996994 0.0774744i \(-0.0246856\pi\)
−0.565592 + 0.824685i \(0.691352\pi\)
\(420\) 0 0
\(421\) 11.3569 19.6707i 0.553501 0.958693i −0.444517 0.895770i \(-0.646625\pi\)
0.998018 0.0629223i \(-0.0200420\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −15.8841 −0.770491
\(426\) 0 0
\(427\) 4.16923 + 37.8876i 0.201763 + 1.83351i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −18.4152 10.6320i −0.887031 0.512128i −0.0140610 0.999901i \(-0.504476\pi\)
−0.872970 + 0.487773i \(0.837809\pi\)
\(432\) 0 0
\(433\) 16.1075i 0.774079i 0.922063 + 0.387039i \(0.126502\pi\)
−0.922063 + 0.387039i \(0.873498\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 17.9053 0.856525
\(438\) 0 0
\(439\) 12.9880i 0.619884i −0.950755 0.309942i \(-0.899690\pi\)
0.950755 0.309942i \(-0.100310\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 17.8237i 0.846828i 0.905936 + 0.423414i \(0.139168\pi\)
−0.905936 + 0.423414i \(0.860832\pi\)
\(444\) 0 0
\(445\) 14.9386 0.708159
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 5.71118i 0.269527i −0.990878 0.134764i \(-0.956972\pi\)
0.990878 0.134764i \(-0.0430275\pi\)
\(450\) 0 0
\(451\) 38.2471 + 22.0820i 1.80099 + 1.03980i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2.69879 24.5250i −0.126521 1.14975i
\(456\) 0 0
\(457\) −9.51768 −0.445218 −0.222609 0.974908i \(-0.571457\pi\)
−0.222609 + 0.974908i \(0.571457\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −20.1348 + 34.8746i −0.937773 + 1.62427i −0.168160 + 0.985760i \(0.553782\pi\)
−0.769613 + 0.638510i \(0.779551\pi\)
\(462\) 0 0
\(463\) −6.92014 11.9860i −0.321606 0.557038i 0.659213 0.751956i \(-0.270889\pi\)
−0.980820 + 0.194917i \(0.937556\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 10.5793 + 18.3238i 0.489549 + 0.847924i 0.999928 0.0120256i \(-0.00382796\pi\)
−0.510378 + 0.859950i \(0.670495\pi\)
\(468\) 0 0
\(469\) −30.0070 + 3.30203i −1.38559 + 0.152474i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 10.0147i 0.460478i
\(474\) 0 0
\(475\) 15.8481 + 9.14992i 0.727162 + 0.419827i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −1.17063 2.02760i −0.0534876 0.0926433i 0.838042 0.545606i \(-0.183700\pi\)
−0.891530 + 0.452963i \(0.850367\pi\)
\(480\) 0 0
\(481\) −1.86710 1.07797i −0.0851325 0.0491513i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −16.6254 + 9.59871i −0.754923 + 0.435855i
\(486\) 0 0
\(487\) 8.83818 15.3082i 0.400496 0.693679i −0.593290 0.804989i \(-0.702171\pi\)
0.993786 + 0.111310i \(0.0355045\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 2.01875 1.16553i 0.0911051 0.0525995i −0.453755 0.891126i \(-0.649916\pi\)
0.544860 + 0.838527i \(0.316583\pi\)
\(492\) 0 0
\(493\) 27.7495 16.0212i 1.24977 0.721558i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −2.79349 25.3856i −0.125305 1.13870i
\(498\) 0 0
\(499\) 15.8044 27.3740i 0.707501 1.22543i −0.258280 0.966070i \(-0.583156\pi\)
0.965781 0.259358i \(-0.0835109\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −38.9500 −1.73670 −0.868348 0.495956i \(-0.834818\pi\)
−0.868348 + 0.495956i \(0.834818\pi\)
\(504\) 0 0
\(505\) −0.0385567 −0.00171575
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −6.89778 + 11.9473i −0.305739 + 0.529555i −0.977426 0.211280i \(-0.932237\pi\)
0.671687 + 0.740835i \(0.265570\pi\)
\(510\) 0 0
\(511\) −21.3882 9.39781i −0.946158 0.415734i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 1.96066 1.13199i 0.0863972 0.0498814i
\(516\) 0 0
\(517\) −3.71928 + 2.14733i −0.163574 + 0.0944393i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 2.27458 3.93969i 0.0996512 0.172601i −0.811889 0.583812i \(-0.801561\pi\)
0.911540 + 0.411211i \(0.134894\pi\)
\(522\) 0 0
\(523\) −32.6301 + 18.8390i −1.42681 + 0.823772i −0.996868 0.0790830i \(-0.974801\pi\)
−0.429946 + 0.902855i \(0.641467\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.46830 + 3.15713i 0.238203 + 0.137527i
\(528\) 0 0
\(529\) −8.54507 14.8005i −0.371525 0.643500i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −56.8976 32.8498i −2.46451 1.42288i
\(534\) 0 0
\(535\) 20.0433i 0.866547i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 20.3793 18.7131i 0.877800 0.806031i
\(540\) 0 0
\(541\) −1.53417 2.65727i −0.0659593 0.114245i 0.831160 0.556034i \(-0.187677\pi\)
−0.897119 + 0.441789i \(0.854344\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −0.115148 0.199443i −0.00493241 0.00854319i
\(546\) 0 0
\(547\) 7.22022 12.5058i 0.308714 0.534709i −0.669367 0.742932i \(-0.733435\pi\)
0.978081 + 0.208223i \(0.0667679\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −36.9156 −1.57266
\(552\) 0 0
\(553\) −27.9111 + 3.07140i −1.18690 + 0.130609i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 7.14024 + 4.12242i 0.302542 + 0.174672i 0.643584 0.765375i \(-0.277447\pi\)
−0.341042 + 0.940048i \(0.610780\pi\)
\(558\) 0 0
\(559\) 14.8982i 0.630128i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −9.37245 −0.395002 −0.197501 0.980303i \(-0.563283\pi\)
−0.197501 + 0.980303i \(0.563283\pi\)
\(564\) 0 0
\(565\) 17.1391i 0.721047i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 19.0614i 0.799098i 0.916712 + 0.399549i \(0.130833\pi\)
−0.916712 + 0.399549i \(0.869167\pi\)
\(570\) 0 0
\(571\) 10.0442 0.420335 0.210167 0.977665i \(-0.432599\pi\)
0.210167 + 0.977665i \(0.432599\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 6.04009i 0.251889i
\(576\) 0 0
\(577\) −10.1403 5.85453i −0.422148 0.243727i 0.273848 0.961773i \(-0.411704\pi\)
−0.695996 + 0.718046i \(0.745037\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 6.31815 14.3793i 0.262121 0.596554i
\(582\) 0 0
\(583\) 31.4472 1.30241
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0.476262 0.824911i 0.0196575 0.0340477i −0.856029 0.516927i \(-0.827076\pi\)
0.875687 + 0.482880i \(0.160409\pi\)
\(588\) 0 0
\(589\) −3.63728 6.29996i −0.149872 0.259585i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −15.4339 26.7323i −0.633794 1.09776i −0.986769 0.162130i \(-0.948164\pi\)
0.352976 0.935632i \(-0.385170\pi\)
\(594\) 0 0
\(595\) −15.8738 21.6257i −0.650764 0.886567i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 41.2112i 1.68384i −0.539600 0.841921i \(-0.681425\pi\)
0.539600 0.841921i \(-0.318575\pi\)
\(600\) 0 0
\(601\) 14.3592 + 8.29029i 0.585724 + 0.338168i 0.763405 0.645920i \(-0.223526\pi\)
−0.177681 + 0.984088i \(0.556859\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −3.66558 6.34897i −0.149027 0.258122i
\(606\) 0 0
\(607\) −41.1061 23.7326i −1.66844 0.963277i −0.968477 0.249102i \(-0.919864\pi\)
−0.699968 0.714175i \(-0.746802\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 5.53292 3.19443i 0.223838 0.129233i
\(612\) 0 0
\(613\) 7.32074 12.6799i 0.295682 0.512136i −0.679462 0.733711i \(-0.737787\pi\)
0.975143 + 0.221575i \(0.0711199\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 40.1960 23.2072i 1.61823 0.934286i 0.630852 0.775903i \(-0.282705\pi\)
0.987378 0.158383i \(-0.0506279\pi\)
\(618\) 0 0
\(619\) −6.70694 + 3.87225i −0.269575 + 0.155639i −0.628694 0.777653i \(-0.716410\pi\)
0.359120 + 0.933292i \(0.383077\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −14.7461 20.0893i −0.590790 0.804861i
\(624\) 0 0
\(625\) 3.20193 5.54590i 0.128077 0.221836i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −2.34409 −0.0934651
\(630\) 0 0
\(631\) −24.3088 −0.967718 −0.483859 0.875146i \(-0.660765\pi\)
−0.483859 + 0.875146i \(0.660765\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 2.88373 4.99477i 0.114437 0.198211i
\(636\) 0 0
\(637\) −30.3170 + 27.8382i −1.20120 + 1.10299i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 15.1837 8.76629i 0.599718 0.346248i −0.169212 0.985580i \(-0.554122\pi\)
0.768931 + 0.639332i \(0.220789\pi\)
\(642\) 0 0
\(643\) −7.49992 + 4.33008i −0.295768 + 0.170762i −0.640540 0.767925i \(-0.721290\pi\)
0.344772 + 0.938686i \(0.387956\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 13.3349 23.0967i 0.524249 0.908026i −0.475352 0.879796i \(-0.657679\pi\)
0.999601 0.0282305i \(-0.00898725\pi\)
\(648\) 0 0
\(649\) −18.7182 + 10.8070i −0.734755 + 0.424211i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 37.9632 + 21.9181i 1.48562 + 0.857721i 0.999866 0.0163768i \(-0.00521313\pi\)
0.485750 + 0.874098i \(0.338546\pi\)
\(654\) 0 0
\(655\) −3.98074 6.89485i −0.155540 0.269404i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −39.3555 22.7219i −1.53307 0.885120i −0.999218 0.0395437i \(-0.987410\pi\)
−0.533855 0.845576i \(-0.679257\pi\)
\(660\) 0 0
\(661\) 40.3292i 1.56862i −0.620367 0.784311i \(-0.713017\pi\)
0.620367 0.784311i \(-0.286983\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.38058 + 30.7208i 0.131093 + 1.19130i
\(666\) 0 0
\(667\) −6.09223 10.5520i −0.235892 0.408577i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −28.4712 49.3135i −1.09912 1.90373i
\(672\) 0 0
\(673\) −3.85511 + 6.67724i −0.148603 + 0.257389i −0.930712 0.365754i \(-0.880811\pi\)
0.782108 + 0.623143i \(0.214144\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −44.0576 −1.69327 −0.846635 0.532174i \(-0.821375\pi\)
−0.846635 + 0.532174i \(0.821375\pi\)
\(678\) 0 0
\(679\) 29.3194 + 12.8827i 1.12518 + 0.494393i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 3.75165 + 2.16602i 0.143553 + 0.0828804i 0.570056 0.821606i \(-0.306921\pi\)
−0.426503 + 0.904486i \(0.640255\pi\)
\(684\) 0 0
\(685\) 14.7643i 0.564114i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −46.7818 −1.78225
\(690\) 0 0
\(691\) 8.08638i 0.307621i 0.988100 + 0.153810i \(0.0491545\pi\)
−0.988100 + 0.153810i \(0.950846\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 7.00142i 0.265579i
\(696\) 0 0
\(697\) −71.4333 −2.70573
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 41.8099i 1.57914i 0.613662 + 0.789569i \(0.289696\pi\)
−0.613662 + 0.789569i \(0.710304\pi\)
\(702\) 0 0
\(703\) 2.33879 + 1.35030i 0.0882091 + 0.0509275i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0.0380598 + 0.0518506i 0.00143139 + 0.00195004i
\(708\) 0 0
\(709\) −45.2940 −1.70105 −0.850526 0.525934i \(-0.823716\pi\)
−0.850526 + 0.525934i \(0.823716\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.20053 2.07938i 0.0449602 0.0778734i
\(714\) 0 0
\(715\) 18.4297 + 31.9212i 0.689231 + 1.19378i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1.73529 3.00561i −0.0647155 0.112090i 0.831852 0.554997i \(-0.187281\pi\)
−0.896568 + 0.442907i \(0.853947\pi\)
\(720\) 0 0
\(721\) −3.45768 1.51928i −0.128771 0.0565809i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 12.4530i 0.462491i
\(726\) 0 0
\(727\) −37.7189 21.7770i −1.39892 0.807665i −0.404638 0.914477i \(-0.632603\pi\)
−0.994279 + 0.106811i \(0.965936\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −8.09920 14.0282i −0.299560 0.518853i
\(732\) 0 0
\(733\) −6.61431 3.81877i −0.244305 0.141050i 0.372849 0.927892i \(-0.378381\pi\)
−0.617154 + 0.786843i \(0.711714\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 39.0563 22.5492i 1.43866 0.830610i
\(738\) 0 0
\(739\) −22.0809 + 38.2453i −0.812260 + 1.40687i 0.0990195 + 0.995085i \(0.468429\pi\)
−0.911279 + 0.411789i \(0.864904\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 10.8720 6.27693i 0.398853 0.230278i −0.287136 0.957890i \(-0.592703\pi\)
0.685989 + 0.727612i \(0.259370\pi\)
\(744\) 0 0
\(745\) 3.97596 2.29552i 0.145668 0.0841015i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −26.9540 + 19.7850i −0.984878 + 0.722927i
\(750\) 0 0
\(751\) 9.05749 15.6880i 0.330512 0.572464i −0.652100 0.758133i \(-0.726112\pi\)
0.982612 + 0.185669i \(0.0594451\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 4.39509 0.159954
\(756\) 0 0
\(757\) 39.8682 1.44903 0.724517 0.689257i \(-0.242063\pi\)
0.724517 + 0.689257i \(0.242063\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −7.52844 + 13.0396i −0.272906 + 0.472687i −0.969605 0.244677i \(-0.921318\pi\)
0.696699 + 0.717364i \(0.254651\pi\)
\(762\) 0 0
\(763\) −0.154544 + 0.351722i −0.00559487 + 0.0127332i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 27.8459 16.0768i 1.00546 0.580500i
\(768\) 0 0
\(769\) 0.522559 0.301700i 0.0188440 0.0108796i −0.490548 0.871414i \(-0.663204\pi\)
0.509392 + 0.860534i \(0.329870\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.56956 2.71856i 0.0564533 0.0977799i −0.836418 0.548093i \(-0.815354\pi\)
0.892871 + 0.450313i \(0.148687\pi\)
\(774\) 0 0
\(775\) 2.12520 1.22699i 0.0763395 0.0440746i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 71.2716 + 41.1487i 2.55357 + 1.47431i
\(780\) 0 0
\(781\) 19.0764 + 33.0413i 0.682607 + 1.18231i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0.232137 + 0.134024i 0.00828532 + 0.00478353i
\(786\) 0 0
\(787\) 18.4336i 0.657088i −0.944489 0.328544i \(-0.893442\pi\)
0.944489 0.328544i \(-0.106558\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −23.0485 + 16.9182i −0.819509 + 0.601542i
\(792\) 0 0
\(793\) 42.3547 + 73.3604i 1.50406 + 2.60510i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −17.1802 29.7570i −0.608554 1.05405i −0.991479 0.130267i \(-0.958417\pi\)
0.382925 0.923779i \(-0.374917\pi\)
\(798\) 0 0
\(799\) 3.47321 6.01578i 0.122873 0.212823i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 34.9005 1.23161
\(804\) 0 0
\(805\) −8.22340 + 6.03620i −0.289837 + 0.212748i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −44.3399 25.5996i −1.55891 0.900035i −0.997362 0.0725881i \(-0.976874\pi\)
−0.561544 0.827447i \(-0.689793\pi\)
\(810\) 0 0
\(811\) 46.2446i 1.62387i −0.583751 0.811933i \(-0.698415\pi\)
0.583751 0.811933i \(-0.301585\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 11.2901 0.395475
\(816\) 0 0
\(817\) 18.6620i 0.652900i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 8.46721i 0.295508i 0.989024 + 0.147754i \(0.0472044\pi\)
−0.989024 + 0.147754i \(0.952796\pi\)
\(822\) 0 0
\(823\) 25.3246 0.882759 0.441380 0.897321i \(-0.354489\pi\)
0.441380 + 0.897321i \(0.354489\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 6.75531i 0.234905i −0.993078 0.117453i \(-0.962527\pi\)
0.993078 0.117453i \(-0.0374728\pi\)
\(828\) 0 0
\(829\) −17.0191 9.82599i −0.591098 0.341271i 0.174434 0.984669i \(-0.444191\pi\)
−0.765532 + 0.643398i \(0.777524\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −13.4127 + 42.6939i −0.464723 + 1.47926i
\(834\) 0 0
\(835\) −3.79037 −0.131171
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −16.6302 + 28.8044i −0.574140 + 0.994439i 0.421995 + 0.906598i \(0.361330\pi\)
−0.996135 + 0.0878410i \(0.972003\pi\)
\(840\) 0 0
\(841\) −1.93955 3.35940i −0.0668811 0.115841i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −17.1076 29.6312i −0.588518 1.01934i
\(846\) 0 0
\(847\) −4.91969 + 11.1966i −0.169043 + 0.384719i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0.891366i 0.0305556i
\(852\) 0 0
\(853\) 25.0891 + 14.4852i 0.859035 + 0.495964i 0.863689 0.504025i \(-0.168148\pi\)
−0.00465409 + 0.999989i \(0.501481\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 23.3225 + 40.3957i 0.796680 + 1.37989i 0.921767 + 0.387744i \(0.126746\pi\)
−0.125087 + 0.992146i \(0.539921\pi\)
\(858\) 0 0
\(859\) 12.7591 + 7.36645i 0.435334 + 0.251340i 0.701616 0.712555i \(-0.252462\pi\)
−0.266283 + 0.963895i \(0.585795\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −40.0533 + 23.1248i −1.36343 + 0.787177i −0.990079 0.140513i \(-0.955125\pi\)
−0.373352 + 0.927690i \(0.621792\pi\)
\(864\) 0 0
\(865\) 5.67743 9.83360i 0.193038 0.334352i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 36.3284 20.9742i 1.23236 0.711501i
\(870\) 0 0
\(871\) −58.1014 + 33.5449i −1.96869 + 1.13663i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −31.2182 + 3.43532i −1.05537 + 0.116135i
\(876\) 0 0
\(877\) 23.9704 41.5179i 0.809422 1.40196i −0.103843 0.994594i \(-0.533114\pi\)
0.913265 0.407367i \(-0.133553\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 22.8464 0.769715 0.384857 0.922976i \(-0.374251\pi\)
0.384857 + 0.922976i \(0.374251\pi\)
\(882\) 0 0
\(883\) 9.97054 0.335535 0.167768 0.985827i \(-0.446344\pi\)
0.167768 + 0.985827i \(0.446344\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 7.27637 12.6030i 0.244317 0.423169i −0.717623 0.696432i \(-0.754770\pi\)
0.961939 + 0.273263i \(0.0881031\pi\)
\(888\) 0 0
\(889\) −9.56347 + 1.05239i −0.320748 + 0.0352959i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −6.93070 + 4.00144i −0.231927 + 0.133903i
\(894\) 0 0
\(895\) 12.7243 7.34637i 0.425326 0.245562i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −2.47516 + 4.28709i −0.0825510 + 0.142983i
\(900\) 0 0
\(901\) −44.0499 + 25.4322i −1.46752 + 0.847270i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 29.6050 + 17.0924i 0.984103 + 0.568172i
\(906\) 0 0
\(907\) −10.9546 18.9739i −0.363740 0.630017i 0.624833 0.780759i \(-0.285167\pi\)
−0.988573 + 0.150742i \(0.951834\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 44.3072 + 25.5808i 1.46796 + 0.847529i 0.999356 0.0358768i \(-0.0114224\pi\)
0.468608 + 0.883406i \(0.344756\pi\)
\(912\) 0 0
\(913\) 23.4636i 0.776533i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −5.34268 + 12.1592i −0.176431 + 0.401534i
\(918\) 0 0
\(919\) 28.4261 + 49.2355i 0.937691 + 1.62413i 0.769763 + 0.638329i \(0.220374\pi\)
0.167928 + 0.985799i \(0.446293\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −28.3786 49.1533i −0.934094 1.61790i
\(924\) 0 0
\(925\) −0.455505 + 0.788957i −0.0149769 + 0.0259407i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −10.3112 −0.338301 −0.169151 0.985590i \(-0.554102\pi\)
−0.169151 + 0.985590i \(0.554102\pi\)
\(930\) 0 0
\(931\) 37.9759 34.8710i 1.24461 1.14285i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 34.7069 + 20.0380i 1.13504 + 0.655314i
\(936\) 0 0
\(937\) 2.65580i 0.0867614i −0.999059 0.0433807i \(-0.986187\pi\)
0.999059 0.0433807i \(-0.0138128\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −2.87329 −0.0936665 −0.0468333 0.998903i \(-0.514913\pi\)
−0.0468333 + 0.998903i \(0.514913\pi\)
\(942\) 0 0
\(943\) 27.1633i 0.884558i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 9.27609i 0.301432i −0.988577 0.150716i \(-0.951842\pi\)
0.988577 0.150716i \(-0.0481579\pi\)
\(948\) 0 0
\(949\) −51.9191 −1.68536
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 52.9084i 1.71387i −0.515425 0.856935i \(-0.672366\pi\)
0.515425 0.856935i \(-0.327634\pi\)
\(954\) 0 0
\(955\) 4.61686 + 2.66555i 0.149398 + 0.0862551i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 19.8548 14.5740i 0.641146 0.470619i
\(960\) 0 0
\(961\) 30.0245 0.968532
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 6.62703 11.4784i 0.213332 0.369501i
\(966\) 0 0
\(967\) −5.65450 9.79388i −0.181836 0.314950i 0.760669 0.649139i \(-0.224871\pi\)
−0.942506 + 0.334189i \(0.891537\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −22.5860 39.1201i −0.724819 1.25542i −0.959048 0.283242i \(-0.908590\pi\)
0.234230 0.972181i \(-0.424743\pi\)
\(972\) 0 0
\(973\) 9.41544 6.91119i 0.301845 0.221563i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 17.6026i 0.563158i 0.959538 + 0.281579i \(0.0908582\pi\)
−0.959538 + 0.281579i \(0.909142\pi\)
\(978\) 0 0
\(979\) 32.2412 + 18.6145i 1.03043 + 0.594921i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −17.5420 30.3837i −0.559504 0.969090i −0.997538 0.0701312i \(-0.977658\pi\)
0.438033 0.898959i \(-0.355675\pi\)
\(984\) 0 0
\(985\) 7.65268 + 4.41828i 0.243835 + 0.140778i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −5.33438 + 3.07981i −0.169624 + 0.0979322i
\(990\) 0 0
\(991\) −16.9731 + 29.3982i −0.539167 + 0.933865i 0.459782 + 0.888032i \(0.347928\pi\)
−0.998949 + 0.0458331i \(0.985406\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 18.4937 10.6773i 0.586289 0.338494i
\(996\) 0 0
\(997\) −22.1123 + 12.7666i −0.700304 + 0.404321i −0.807461 0.589921i \(-0.799159\pi\)
0.107156 + 0.994242i \(0.465825\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.ca.e.2033.18 48
3.2 odd 2 1008.2.ca.e.353.3 48
4.3 odd 2 1512.2.bs.a.521.18 48
7.5 odd 6 3024.2.df.e.1601.18 48
9.4 even 3 1008.2.df.e.689.7 48
9.5 odd 6 3024.2.df.e.17.18 48
12.11 even 2 504.2.bs.a.353.22 yes 48
21.5 even 6 1008.2.df.e.929.7 48
28.19 even 6 1512.2.cx.a.89.18 48
36.23 even 6 1512.2.cx.a.17.18 48
36.31 odd 6 504.2.cx.a.185.18 yes 48
63.5 even 6 inner 3024.2.ca.e.2609.18 48
63.40 odd 6 1008.2.ca.e.257.3 48
84.47 odd 6 504.2.cx.a.425.18 yes 48
252.103 even 6 504.2.bs.a.257.22 48
252.131 odd 6 1512.2.bs.a.1097.18 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.22 48 252.103 even 6
504.2.bs.a.353.22 yes 48 12.11 even 2
504.2.cx.a.185.18 yes 48 36.31 odd 6
504.2.cx.a.425.18 yes 48 84.47 odd 6
1008.2.ca.e.257.3 48 63.40 odd 6
1008.2.ca.e.353.3 48 3.2 odd 2
1008.2.df.e.689.7 48 9.4 even 3
1008.2.df.e.929.7 48 21.5 even 6
1512.2.bs.a.521.18 48 4.3 odd 2
1512.2.bs.a.1097.18 48 252.131 odd 6
1512.2.cx.a.17.18 48 36.23 even 6
1512.2.cx.a.89.18 48 28.19 even 6
3024.2.ca.e.2033.18 48 1.1 even 1 trivial
3024.2.ca.e.2609.18 48 63.5 even 6 inner
3024.2.df.e.17.18 48 9.5 odd 6
3024.2.df.e.1601.18 48 7.5 odd 6