Properties

Label 3024.2.ca.d.2033.7
Level $3024$
Weight $2$
Character 3024.2033
Analytic conductor $24.147$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3024,2,Mod(2033,3024)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3024.2033"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3024, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.ca (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 5 x^{14} - 17 x^{13} + 22 x^{12} - 31 x^{11} + 62 x^{10} - 52 x^{9} + 52 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{6} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2033.7
Root \(1.68042 - 0.419752i\) of defining polynomial
Character \(\chi\) \(=\) 3024.2033
Dual form 3024.2.ca.d.2609.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.48494 - 2.57199i) q^{5} +(0.200279 + 2.63816i) q^{7} +(-4.09466 + 2.36406i) q^{11} +(-3.54045 + 2.04408i) q^{13} +(0.835278 - 1.44674i) q^{17} +(4.25377 - 2.45592i) q^{19} +(4.25297 + 2.45545i) q^{23} +(-1.91009 - 3.30837i) q^{25} +(-0.238557 - 0.137731i) q^{29} +1.60327i q^{31} +(7.08273 + 3.40239i) q^{35} +(-1.69681 - 2.93896i) q^{37} +(3.55632 + 6.15972i) q^{41} +(-5.22930 + 9.05742i) q^{43} -10.9977 q^{47} +(-6.91978 + 1.05674i) q^{49} +(-0.707381 - 0.408407i) q^{53} +14.0419i q^{55} +2.74856 q^{59} +7.20310i q^{61} +12.1413i q^{65} -11.6103 q^{67} +10.4406i q^{71} +(13.6493 + 7.88042i) q^{73} +(-7.05683 - 10.3289i) q^{77} +12.3033 q^{79} +(-4.03981 + 6.99715i) q^{83} +(-2.48067 - 4.29665i) q^{85} +(-4.60872 - 7.98254i) q^{89} +(-6.10169 - 8.93089i) q^{91} -14.5875i q^{95} +(7.00772 + 4.04591i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + q^{7} - 6 q^{11} - 3 q^{13} - 9 q^{17} + 21 q^{23} - 8 q^{25} - 6 q^{29} - 15 q^{35} + q^{37} + 6 q^{41} + 2 q^{43} - 36 q^{47} - 5 q^{49} - 30 q^{59} - 14 q^{67} - 3 q^{77} - 2 q^{79} + 6 q^{85}+ \cdots - 3 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.48494 2.57199i 0.664085 1.15023i −0.315447 0.948943i \(-0.602155\pi\)
0.979532 0.201286i \(-0.0645121\pi\)
\(6\) 0 0
\(7\) 0.200279 + 2.63816i 0.0756984 + 0.997131i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.09466 + 2.36406i −1.23459 + 0.712790i −0.967983 0.251016i \(-0.919235\pi\)
−0.266605 + 0.963806i \(0.585902\pi\)
\(12\) 0 0
\(13\) −3.54045 + 2.04408i −0.981945 + 0.566926i −0.902857 0.429942i \(-0.858534\pi\)
−0.0790880 + 0.996868i \(0.525201\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.835278 1.44674i 0.202585 0.350887i −0.746776 0.665076i \(-0.768399\pi\)
0.949360 + 0.314189i \(0.101733\pi\)
\(18\) 0 0
\(19\) 4.25377 2.45592i 0.975882 0.563426i 0.0748577 0.997194i \(-0.476150\pi\)
0.901024 + 0.433768i \(0.142816\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.25297 + 2.45545i 0.886805 + 0.511997i 0.872896 0.487906i \(-0.162239\pi\)
0.0139086 + 0.999903i \(0.495573\pi\)
\(24\) 0 0
\(25\) −1.91009 3.30837i −0.382018 0.661675i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.238557 0.137731i −0.0442989 0.0255760i 0.477687 0.878530i \(-0.341475\pi\)
−0.521986 + 0.852954i \(0.674809\pi\)
\(30\) 0 0
\(31\) 1.60327i 0.287956i 0.989581 + 0.143978i \(0.0459895\pi\)
−0.989581 + 0.143978i \(0.954011\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 7.08273 + 3.40239i 1.19720 + 0.575109i
\(36\) 0 0
\(37\) −1.69681 2.93896i −0.278954 0.483162i 0.692171 0.721733i \(-0.256654\pi\)
−0.971125 + 0.238571i \(0.923321\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.55632 + 6.15972i 0.555404 + 0.961987i 0.997872 + 0.0652031i \(0.0207695\pi\)
−0.442468 + 0.896784i \(0.645897\pi\)
\(42\) 0 0
\(43\) −5.22930 + 9.05742i −0.797461 + 1.38124i 0.123804 + 0.992307i \(0.460491\pi\)
−0.921265 + 0.388936i \(0.872843\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −10.9977 −1.60418 −0.802090 0.597203i \(-0.796279\pi\)
−0.802090 + 0.597203i \(0.796279\pi\)
\(48\) 0 0
\(49\) −6.91978 + 1.05674i −0.988540 + 0.150962i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −0.707381 0.408407i −0.0971663 0.0560990i 0.450629 0.892711i \(-0.351200\pi\)
−0.547796 + 0.836612i \(0.684533\pi\)
\(54\) 0 0
\(55\) 14.0419i 1.89341i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.74856 0.357832 0.178916 0.983864i \(-0.442741\pi\)
0.178916 + 0.983864i \(0.442741\pi\)
\(60\) 0 0
\(61\) 7.20310i 0.922262i 0.887332 + 0.461131i \(0.152556\pi\)
−0.887332 + 0.461131i \(0.847444\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 12.1413i 1.50595i
\(66\) 0 0
\(67\) −11.6103 −1.41842 −0.709210 0.704998i \(-0.750948\pi\)
−0.709210 + 0.704998i \(0.750948\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 10.4406i 1.23907i 0.784968 + 0.619537i \(0.212680\pi\)
−0.784968 + 0.619537i \(0.787320\pi\)
\(72\) 0 0
\(73\) 13.6493 + 7.88042i 1.59753 + 0.922334i 0.991962 + 0.126539i \(0.0403870\pi\)
0.605567 + 0.795794i \(0.292946\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −7.05683 10.3289i −0.804201 1.17709i
\(78\) 0 0
\(79\) 12.3033 1.38422 0.692112 0.721790i \(-0.256680\pi\)
0.692112 + 0.721790i \(0.256680\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −4.03981 + 6.99715i −0.443426 + 0.768037i −0.997941 0.0641368i \(-0.979571\pi\)
0.554515 + 0.832174i \(0.312904\pi\)
\(84\) 0 0
\(85\) −2.48067 4.29665i −0.269067 0.466037i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.60872 7.98254i −0.488523 0.846147i 0.511390 0.859349i \(-0.329131\pi\)
−0.999913 + 0.0132019i \(0.995798\pi\)
\(90\) 0 0
\(91\) −6.10169 8.93089i −0.639631 0.936212i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 14.5875i 1.49665i
\(96\) 0 0
\(97\) 7.00772 + 4.04591i 0.711527 + 0.410800i 0.811626 0.584177i \(-0.198583\pi\)
−0.100099 + 0.994977i \(0.531916\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.65365 + 6.32831i 0.363552 + 0.629690i 0.988543 0.150942i \(-0.0482307\pi\)
−0.624991 + 0.780632i \(0.714897\pi\)
\(102\) 0 0
\(103\) 6.08409 + 3.51265i 0.599483 + 0.346112i 0.768838 0.639443i \(-0.220835\pi\)
−0.169355 + 0.985555i \(0.554168\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −12.2618 + 7.07938i −1.18540 + 0.684389i −0.957257 0.289239i \(-0.906598\pi\)
−0.228140 + 0.973628i \(0.573265\pi\)
\(108\) 0 0
\(109\) −2.82203 + 4.88789i −0.270301 + 0.468175i −0.968939 0.247300i \(-0.920457\pi\)
0.698638 + 0.715476i \(0.253790\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −11.6411 + 6.72099i −1.09510 + 0.632258i −0.934930 0.354831i \(-0.884538\pi\)
−0.160172 + 0.987089i \(0.551205\pi\)
\(114\) 0 0
\(115\) 12.6308 7.29239i 1.17783 0.680019i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 3.98403 + 1.91384i 0.365215 + 0.175442i
\(120\) 0 0
\(121\) 5.67752 9.83375i 0.516138 0.893977i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 3.50392 0.313400
\(126\) 0 0
\(127\) 12.7730 1.13342 0.566712 0.823916i \(-0.308215\pi\)
0.566712 + 0.823916i \(0.308215\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 6.70890 11.6202i 0.586159 1.01526i −0.408570 0.912727i \(-0.633973\pi\)
0.994730 0.102531i \(-0.0326941\pi\)
\(132\) 0 0
\(133\) 7.33104 + 10.7303i 0.635682 + 0.930432i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 7.79449 4.50015i 0.665928 0.384474i −0.128604 0.991696i \(-0.541050\pi\)
0.794532 + 0.607222i \(0.207716\pi\)
\(138\) 0 0
\(139\) −1.54902 + 0.894326i −0.131386 + 0.0758557i −0.564252 0.825602i \(-0.690836\pi\)
0.432866 + 0.901458i \(0.357502\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 9.66464 16.7397i 0.808198 1.39984i
\(144\) 0 0
\(145\) −0.708485 + 0.409044i −0.0588365 + 0.0339693i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 11.1779 + 6.45358i 0.915732 + 0.528698i 0.882271 0.470742i \(-0.156014\pi\)
0.0334609 + 0.999440i \(0.489347\pi\)
\(150\) 0 0
\(151\) −6.48364 11.2300i −0.527631 0.913884i −0.999481 0.0322054i \(-0.989747\pi\)
0.471850 0.881679i \(-0.343586\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.12360 + 2.38076i 0.331216 + 0.191227i
\(156\) 0 0
\(157\) 17.1728i 1.37054i 0.728291 + 0.685268i \(0.240315\pi\)
−0.728291 + 0.685268i \(0.759685\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −5.62609 + 11.7118i −0.443398 + 0.923017i
\(162\) 0 0
\(163\) −2.53107 4.38394i −0.198249 0.343377i 0.749712 0.661764i \(-0.230192\pi\)
−0.947961 + 0.318387i \(0.896859\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.79673 10.0402i −0.448564 0.776936i 0.549729 0.835343i \(-0.314731\pi\)
−0.998293 + 0.0584072i \(0.981398\pi\)
\(168\) 0 0
\(169\) 1.85653 3.21561i 0.142810 0.247354i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −6.26691 −0.476464 −0.238232 0.971208i \(-0.576568\pi\)
−0.238232 + 0.971208i \(0.576568\pi\)
\(174\) 0 0
\(175\) 8.34547 5.70172i 0.630858 0.431010i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −12.7668 7.37089i −0.954233 0.550927i −0.0598395 0.998208i \(-0.519059\pi\)
−0.894393 + 0.447281i \(0.852392\pi\)
\(180\) 0 0
\(181\) 0.0833642i 0.00619641i 0.999995 + 0.00309821i \(0.000986191\pi\)
−0.999995 + 0.00309821i \(0.999014\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −10.0786 −0.740996
\(186\) 0 0
\(187\) 7.89857i 0.577601i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 15.4351i 1.11684i 0.829558 + 0.558421i \(0.188593\pi\)
−0.829558 + 0.558421i \(0.811407\pi\)
\(192\) 0 0
\(193\) 21.5557 1.55162 0.775808 0.630969i \(-0.217343\pi\)
0.775808 + 0.630969i \(0.217343\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 9.88306i 0.704139i −0.935974 0.352069i \(-0.885478\pi\)
0.935974 0.352069i \(-0.114522\pi\)
\(198\) 0 0
\(199\) 9.14623 + 5.28058i 0.648359 + 0.374330i 0.787827 0.615896i \(-0.211206\pi\)
−0.139468 + 0.990227i \(0.544539\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.315578 0.656936i 0.0221492 0.0461079i
\(204\) 0 0
\(205\) 21.1237 1.47534
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −11.6118 + 20.1123i −0.803208 + 1.39120i
\(210\) 0 0
\(211\) −6.08453 10.5387i −0.418876 0.725514i 0.576951 0.816779i \(-0.304242\pi\)
−0.995827 + 0.0912645i \(0.970909\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 15.5304 + 26.8994i 1.05916 + 1.83453i
\(216\) 0 0
\(217\) −4.22969 + 0.321102i −0.287130 + 0.0217978i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 6.82950i 0.459402i
\(222\) 0 0
\(223\) −0.714485 0.412508i −0.0478455 0.0276236i 0.475886 0.879507i \(-0.342127\pi\)
−0.523732 + 0.851883i \(0.675461\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0.166778 + 0.288869i 0.0110695 + 0.0191729i 0.871507 0.490383i \(-0.163143\pi\)
−0.860438 + 0.509556i \(0.829810\pi\)
\(228\) 0 0
\(229\) 12.4893 + 7.21072i 0.825319 + 0.476498i 0.852247 0.523139i \(-0.175239\pi\)
−0.0269285 + 0.999637i \(0.508573\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 12.7953 7.38739i 0.838250 0.483964i −0.0184192 0.999830i \(-0.505863\pi\)
0.856669 + 0.515867i \(0.172530\pi\)
\(234\) 0 0
\(235\) −16.3309 + 28.2860i −1.06531 + 1.84518i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −22.5339 + 13.0100i −1.45760 + 0.841545i −0.998893 0.0470423i \(-0.985020\pi\)
−0.458707 + 0.888588i \(0.651687\pi\)
\(240\) 0 0
\(241\) 1.66295 0.960105i 0.107120 0.0618458i −0.445483 0.895290i \(-0.646968\pi\)
0.552603 + 0.833445i \(0.313635\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −7.55753 + 19.3668i −0.482833 + 1.23730i
\(246\) 0 0
\(247\) −10.0402 + 17.3901i −0.638841 + 1.10651i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 9.97663 0.629719 0.314860 0.949138i \(-0.398043\pi\)
0.314860 + 0.949138i \(0.398043\pi\)
\(252\) 0 0
\(253\) −23.2193 −1.45978
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −7.50364 + 12.9967i −0.468064 + 0.810711i −0.999334 0.0364915i \(-0.988382\pi\)
0.531270 + 0.847203i \(0.321715\pi\)
\(258\) 0 0
\(259\) 7.41361 5.06506i 0.460659 0.314728i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6.11010 3.52767i 0.376765 0.217525i −0.299645 0.954051i \(-0.596868\pi\)
0.676410 + 0.736525i \(0.263535\pi\)
\(264\) 0 0
\(265\) −2.10084 + 1.21292i −0.129053 + 0.0745090i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −14.8898 + 25.7898i −0.907844 + 1.57243i −0.0907911 + 0.995870i \(0.528940\pi\)
−0.817053 + 0.576562i \(0.804394\pi\)
\(270\) 0 0
\(271\) 2.41462 1.39408i 0.146677 0.0846843i −0.424865 0.905257i \(-0.639679\pi\)
0.571543 + 0.820572i \(0.306345\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 15.6424 + 9.03112i 0.943270 + 0.544597i
\(276\) 0 0
\(277\) −6.79074 11.7619i −0.408016 0.706705i 0.586651 0.809840i \(-0.300446\pi\)
−0.994667 + 0.103135i \(0.967113\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 3.95777 + 2.28502i 0.236101 + 0.136313i 0.613383 0.789785i \(-0.289808\pi\)
−0.377283 + 0.926098i \(0.623141\pi\)
\(282\) 0 0
\(283\) 20.4019i 1.21277i −0.795173 0.606383i \(-0.792620\pi\)
0.795173 0.606383i \(-0.207380\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −15.5381 + 10.6158i −0.917184 + 0.626631i
\(288\) 0 0
\(289\) 7.10462 + 12.3056i 0.417919 + 0.723857i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −6.41037 11.1031i −0.374498 0.648649i 0.615754 0.787939i \(-0.288852\pi\)
−0.990252 + 0.139289i \(0.955518\pi\)
\(294\) 0 0
\(295\) 4.08144 7.06926i 0.237631 0.411589i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −20.0766 −1.16106
\(300\) 0 0
\(301\) −24.9422 11.9817i −1.43765 0.690615i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 18.5263 + 10.6962i 1.06081 + 0.612461i
\(306\) 0 0
\(307\) 1.93411i 0.110386i −0.998476 0.0551928i \(-0.982423\pi\)
0.998476 0.0551928i \(-0.0175773\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 2.08916 0.118465 0.0592326 0.998244i \(-0.481135\pi\)
0.0592326 + 0.998244i \(0.481135\pi\)
\(312\) 0 0
\(313\) 22.4088i 1.26662i −0.773899 0.633309i \(-0.781696\pi\)
0.773899 0.633309i \(-0.218304\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.48474i 0.195723i 0.995200 + 0.0978614i \(0.0312002\pi\)
−0.995200 + 0.0978614i \(0.968800\pi\)
\(318\) 0 0
\(319\) 1.30241 0.0729212
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 8.20549i 0.456565i
\(324\) 0 0
\(325\) 13.5252 + 7.80876i 0.750241 + 0.433152i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −2.20261 29.0137i −0.121434 1.59958i
\(330\) 0 0
\(331\) 4.57715 0.251583 0.125791 0.992057i \(-0.459853\pi\)
0.125791 + 0.992057i \(0.459853\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −17.2405 + 29.8615i −0.941951 + 1.63151i
\(336\) 0 0
\(337\) −14.7062 25.4720i −0.801100 1.38755i −0.918893 0.394508i \(-0.870915\pi\)
0.117793 0.993038i \(-0.462418\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −3.79023 6.56486i −0.205252 0.355507i
\(342\) 0 0
\(343\) −4.17373 18.0438i −0.225360 0.974276i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 19.6582i 1.05531i −0.849459 0.527654i \(-0.823072\pi\)
0.849459 0.527654i \(-0.176928\pi\)
\(348\) 0 0
\(349\) −8.47286 4.89181i −0.453542 0.261852i 0.255783 0.966734i \(-0.417667\pi\)
−0.709325 + 0.704882i \(0.751000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −12.5322 21.7065i −0.667023 1.15532i −0.978733 0.205141i \(-0.934235\pi\)
0.311709 0.950178i \(-0.399099\pi\)
\(354\) 0 0
\(355\) 26.8532 + 15.5037i 1.42522 + 0.822850i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −8.09861 + 4.67574i −0.427428 + 0.246776i −0.698251 0.715853i \(-0.746038\pi\)
0.270822 + 0.962629i \(0.412704\pi\)
\(360\) 0 0
\(361\) 2.56305 4.43933i 0.134897 0.233649i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 40.5367 23.4039i 2.12179 1.22502i
\(366\) 0 0
\(367\) −18.9530 + 10.9425i −0.989337 + 0.571194i −0.905076 0.425250i \(-0.860186\pi\)
−0.0842608 + 0.996444i \(0.526853\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0.935769 1.94798i 0.0485827 0.101134i
\(372\) 0 0
\(373\) −2.30822 + 3.99795i −0.119515 + 0.207006i −0.919576 0.392913i \(-0.871467\pi\)
0.800061 + 0.599919i \(0.204801\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.12613 0.0579988
\(378\) 0 0
\(379\) 6.22396 0.319703 0.159852 0.987141i \(-0.448898\pi\)
0.159852 + 0.987141i \(0.448898\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −10.9989 + 19.0506i −0.562015 + 0.973439i 0.435305 + 0.900283i \(0.356640\pi\)
−0.997321 + 0.0731560i \(0.976693\pi\)
\(384\) 0 0
\(385\) −37.0448 + 2.81230i −1.88798 + 0.143328i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 8.51109 4.91388i 0.431529 0.249144i −0.268469 0.963288i \(-0.586518\pi\)
0.699998 + 0.714145i \(0.253184\pi\)
\(390\) 0 0
\(391\) 7.10481 4.10197i 0.359306 0.207445i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 18.2696 31.6439i 0.919243 1.59218i
\(396\) 0 0
\(397\) 4.55324 2.62881i 0.228520 0.131936i −0.381369 0.924423i \(-0.624547\pi\)
0.609889 + 0.792487i \(0.291214\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −14.7847 8.53594i −0.738312 0.426265i 0.0831432 0.996538i \(-0.473504\pi\)
−0.821455 + 0.570273i \(0.806837\pi\)
\(402\) 0 0
\(403\) −3.27722 5.67631i −0.163250 0.282757i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 13.8957 + 8.02270i 0.688786 + 0.397671i
\(408\) 0 0
\(409\) 19.5703i 0.967690i 0.875154 + 0.483845i \(0.160760\pi\)
−0.875154 + 0.483845i \(0.839240\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0.550478 + 7.25114i 0.0270873 + 0.356805i
\(414\) 0 0
\(415\) 11.9977 + 20.7807i 0.588946 + 1.02008i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 10.3073 + 17.8529i 0.503547 + 0.872169i 0.999992 + 0.00410056i \(0.00130525\pi\)
−0.496445 + 0.868068i \(0.665361\pi\)
\(420\) 0 0
\(421\) 0.704748 1.22066i 0.0343473 0.0594913i −0.848341 0.529451i \(-0.822398\pi\)
0.882688 + 0.469959i \(0.155731\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −6.38182 −0.309564
\(426\) 0 0
\(427\) −19.0029 + 1.44263i −0.919616 + 0.0698137i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 11.6666 + 6.73569i 0.561959 + 0.324447i 0.753931 0.656953i \(-0.228155\pi\)
−0.191973 + 0.981400i \(0.561488\pi\)
\(432\) 0 0
\(433\) 12.9356i 0.621646i 0.950468 + 0.310823i \(0.100605\pi\)
−0.950468 + 0.310823i \(0.899395\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 24.1215 1.15389
\(438\) 0 0
\(439\) 10.1039i 0.482233i 0.970496 + 0.241116i \(0.0775135\pi\)
−0.970496 + 0.241116i \(0.922486\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 29.0084i 1.37823i −0.724652 0.689115i \(-0.757999\pi\)
0.724652 0.689115i \(-0.242001\pi\)
\(444\) 0 0
\(445\) −27.3747 −1.29768
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 7.94881i 0.375127i −0.982252 0.187564i \(-0.939941\pi\)
0.982252 0.187564i \(-0.0600591\pi\)
\(450\) 0 0
\(451\) −29.1239 16.8147i −1.37139 0.791772i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −32.0308 + 2.43166i −1.50163 + 0.113998i
\(456\) 0 0
\(457\) −13.9617 −0.653100 −0.326550 0.945180i \(-0.605886\pi\)
−0.326550 + 0.945180i \(0.605886\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 16.4030 28.4108i 0.763964 1.32322i −0.176829 0.984242i \(-0.556584\pi\)
0.940793 0.338983i \(-0.110083\pi\)
\(462\) 0 0
\(463\) 13.8812 + 24.0429i 0.645112 + 1.11737i 0.984276 + 0.176640i \(0.0565227\pi\)
−0.339163 + 0.940727i \(0.610144\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −11.4311 19.7992i −0.528966 0.916196i −0.999429 0.0337767i \(-0.989247\pi\)
0.470463 0.882420i \(-0.344087\pi\)
\(468\) 0 0
\(469\) −2.32529 30.6297i −0.107372 1.41435i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 49.4494i 2.27369i
\(474\) 0 0
\(475\) −16.2502 9.38204i −0.745609 0.430478i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1.21212 + 2.09946i 0.0553834 + 0.0959269i 0.892388 0.451269i \(-0.149029\pi\)
−0.837004 + 0.547196i \(0.815695\pi\)
\(480\) 0 0
\(481\) 12.0149 + 6.93683i 0.547834 + 0.316292i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 20.8121 12.0159i 0.945028 0.545612i
\(486\) 0 0
\(487\) −5.19651 + 9.00061i −0.235476 + 0.407857i −0.959411 0.282012i \(-0.908998\pi\)
0.723935 + 0.689868i \(0.242332\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −2.93014 + 1.69172i −0.132235 + 0.0763462i −0.564658 0.825325i \(-0.690992\pi\)
0.432423 + 0.901671i \(0.357659\pi\)
\(492\) 0 0
\(493\) −0.398522 + 0.230087i −0.0179485 + 0.0103626i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −27.5440 + 2.09104i −1.23552 + 0.0937958i
\(498\) 0 0
\(499\) 19.7801 34.2602i 0.885481 1.53370i 0.0403188 0.999187i \(-0.487163\pi\)
0.845162 0.534511i \(-0.179504\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 14.5476 0.648645 0.324323 0.945947i \(-0.394864\pi\)
0.324323 + 0.945947i \(0.394864\pi\)
\(504\) 0 0
\(505\) 21.7018 0.965717
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −10.1958 + 17.6596i −0.451921 + 0.782750i −0.998505 0.0546542i \(-0.982594\pi\)
0.546585 + 0.837404i \(0.315928\pi\)
\(510\) 0 0
\(511\) −18.0561 + 37.5873i −0.798757 + 1.66276i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 18.0690 10.4322i 0.796216 0.459696i
\(516\) 0 0
\(517\) 45.0319 25.9992i 1.98050 1.14344i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 7.75122 13.4255i 0.339587 0.588182i −0.644768 0.764379i \(-0.723046\pi\)
0.984355 + 0.176196i \(0.0563793\pi\)
\(522\) 0 0
\(523\) −9.35989 + 5.40394i −0.409280 + 0.236298i −0.690480 0.723351i \(-0.742601\pi\)
0.281201 + 0.959649i \(0.409267\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.31952 + 1.33918i 0.101040 + 0.0583355i
\(528\) 0 0
\(529\) 0.558476 + 0.967309i 0.0242816 + 0.0420569i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −25.1819 14.5388i −1.09075 0.629745i
\(534\) 0 0
\(535\) 42.0498i 1.81797i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 25.8360 20.6857i 1.11283 0.890997i
\(540\) 0 0
\(541\) −8.79357 15.2309i −0.378065 0.654828i 0.612716 0.790303i \(-0.290077\pi\)
−0.990781 + 0.135476i \(0.956744\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 8.38108 + 14.5165i 0.359006 + 0.621817i
\(546\) 0 0
\(547\) 5.72451 9.91513i 0.244762 0.423940i −0.717303 0.696762i \(-0.754623\pi\)
0.962065 + 0.272821i \(0.0879568\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1.35302 −0.0576407
\(552\) 0 0
\(553\) 2.46408 + 32.4580i 0.104784 + 1.38025i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 32.9159 + 19.0040i 1.39469 + 0.805226i 0.993830 0.110912i \(-0.0353771\pi\)
0.400863 + 0.916138i \(0.368710\pi\)
\(558\) 0 0
\(559\) 42.7565i 1.80841i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −17.7688 −0.748864 −0.374432 0.927254i \(-0.622162\pi\)
−0.374432 + 0.927254i \(0.622162\pi\)
\(564\) 0 0
\(565\) 39.9211i 1.67949i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 38.9601i 1.63329i 0.577139 + 0.816646i \(0.304169\pi\)
−0.577139 + 0.816646i \(0.695831\pi\)
\(570\) 0 0
\(571\) −16.9049 −0.707448 −0.353724 0.935350i \(-0.615085\pi\)
−0.353724 + 0.935350i \(0.615085\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 18.7605i 0.782368i
\(576\) 0 0
\(577\) −40.9329 23.6326i −1.70406 0.983840i −0.941555 0.336858i \(-0.890636\pi\)
−0.762506 0.646982i \(-0.776031\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −19.2687 9.25628i −0.799400 0.384015i
\(582\) 0 0
\(583\) 3.86199 0.159947
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 11.6343 20.1513i 0.480200 0.831731i −0.519542 0.854445i \(-0.673897\pi\)
0.999742 + 0.0227138i \(0.00723065\pi\)
\(588\) 0 0
\(589\) 3.93750 + 6.81995i 0.162242 + 0.281011i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 18.5962 + 32.2095i 0.763654 + 1.32269i 0.940955 + 0.338530i \(0.109930\pi\)
−0.177302 + 0.984157i \(0.556737\pi\)
\(594\) 0 0
\(595\) 10.8384 7.40494i 0.444332 0.303573i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 32.2844i 1.31910i −0.751659 0.659552i \(-0.770746\pi\)
0.751659 0.659552i \(-0.229254\pi\)
\(600\) 0 0
\(601\) −14.7559 8.51933i −0.601906 0.347511i 0.167885 0.985807i \(-0.446306\pi\)
−0.769791 + 0.638296i \(0.779640\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −16.8615 29.2051i −0.685519 1.18735i
\(606\) 0 0
\(607\) −8.44393 4.87510i −0.342728 0.197874i 0.318749 0.947839i \(-0.396737\pi\)
−0.661478 + 0.749965i \(0.730070\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 38.9369 22.4802i 1.57522 0.909452i
\(612\) 0 0
\(613\) −6.86332 + 11.8876i −0.277207 + 0.480136i −0.970690 0.240337i \(-0.922742\pi\)
0.693483 + 0.720473i \(0.256075\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 2.84301 1.64141i 0.114455 0.0660807i −0.441680 0.897173i \(-0.645617\pi\)
0.556135 + 0.831092i \(0.312284\pi\)
\(618\) 0 0
\(619\) 14.9907 8.65490i 0.602528 0.347870i −0.167507 0.985871i \(-0.553572\pi\)
0.770036 + 0.638001i \(0.220238\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 20.1362 13.7573i 0.806739 0.551174i
\(624\) 0 0
\(625\) 14.7536 25.5539i 0.590142 1.02216i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −5.66923 −0.226047
\(630\) 0 0
\(631\) 6.27821 0.249932 0.124966 0.992161i \(-0.460118\pi\)
0.124966 + 0.992161i \(0.460118\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 18.9672 32.8522i 0.752691 1.30370i
\(636\) 0 0
\(637\) 22.3391 17.8859i 0.885107 0.708665i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 17.9788 10.3801i 0.710120 0.409988i −0.100986 0.994888i \(-0.532200\pi\)
0.811105 + 0.584900i \(0.198866\pi\)
\(642\) 0 0
\(643\) 17.2553 9.96236i 0.680483 0.392877i −0.119554 0.992828i \(-0.538146\pi\)
0.800037 + 0.599950i \(0.204813\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −14.7670 + 25.5772i −0.580551 + 1.00554i 0.414863 + 0.909884i \(0.363830\pi\)
−0.995414 + 0.0956605i \(0.969504\pi\)
\(648\) 0 0
\(649\) −11.2544 + 6.49774i −0.441775 + 0.255059i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −13.7914 7.96249i −0.539701 0.311596i 0.205257 0.978708i \(-0.434197\pi\)
−0.744958 + 0.667112i \(0.767530\pi\)
\(654\) 0 0
\(655\) −19.9246 34.5105i −0.778520 1.34844i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 2.80283 + 1.61822i 0.109183 + 0.0630368i 0.553597 0.832785i \(-0.313255\pi\)
−0.444414 + 0.895821i \(0.646588\pi\)
\(660\) 0 0
\(661\) 8.90498i 0.346364i 0.984890 + 0.173182i \(0.0554048\pi\)
−0.984890 + 0.173182i \(0.944595\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 38.4843 2.92158i 1.49236 0.113294i
\(666\) 0 0
\(667\) −0.676383 1.17153i −0.0261896 0.0453618i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −17.0285 29.4943i −0.657379 1.13861i
\(672\) 0 0
\(673\) −13.2311 + 22.9169i −0.510021 + 0.883382i 0.489912 + 0.871772i \(0.337029\pi\)
−0.999933 + 0.0116101i \(0.996304\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −8.92848 −0.343149 −0.171575 0.985171i \(-0.554886\pi\)
−0.171575 + 0.985171i \(0.554886\pi\)
\(678\) 0 0
\(679\) −9.27026 + 19.2978i −0.355760 + 0.740582i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 32.7902 + 18.9314i 1.25468 + 0.724390i 0.972035 0.234834i \(-0.0754547\pi\)
0.282645 + 0.959225i \(0.408788\pi\)
\(684\) 0 0
\(685\) 26.7298i 1.02129i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3.33927 0.127216
\(690\) 0 0
\(691\) 5.70665i 0.217091i −0.994091 0.108546i \(-0.965381\pi\)
0.994091 0.108546i \(-0.0346194\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 5.31208i 0.201499i
\(696\) 0 0
\(697\) 11.8821 0.450065
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 8.19949i 0.309690i 0.987939 + 0.154845i \(0.0494879\pi\)
−0.987939 + 0.154845i \(0.950512\pi\)
\(702\) 0 0
\(703\) −14.4357 8.33444i −0.544452 0.314339i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −15.9633 + 10.9063i −0.600363 + 0.410175i
\(708\) 0 0
\(709\) 20.1515 0.756805 0.378402 0.925641i \(-0.376474\pi\)
0.378402 + 0.925641i \(0.376474\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −3.93676 + 6.81866i −0.147433 + 0.255361i
\(714\) 0 0
\(715\) −28.7028 49.7147i −1.07342 1.85923i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 25.5996 + 44.3397i 0.954702 + 1.65359i 0.735048 + 0.678015i \(0.237159\pi\)
0.219654 + 0.975578i \(0.429507\pi\)
\(720\) 0 0
\(721\) −8.04842 + 16.7543i −0.299739 + 0.623963i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.05231i 0.0390820i
\(726\) 0 0
\(727\) −13.7848 7.95865i −0.511249 0.295170i 0.222098 0.975024i \(-0.428710\pi\)
−0.733347 + 0.679854i \(0.762043\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 8.73584 + 15.1309i 0.323107 + 0.559637i
\(732\) 0 0
\(733\) 3.67216 + 2.12012i 0.135634 + 0.0783086i 0.566282 0.824212i \(-0.308381\pi\)
−0.430647 + 0.902520i \(0.641715\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 47.5401 27.4473i 1.75116 1.01103i
\(738\) 0 0
\(739\) 14.1835 24.5665i 0.521747 0.903693i −0.477933 0.878397i \(-0.658614\pi\)
0.999680 0.0252966i \(-0.00805300\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 21.8850 12.6353i 0.802884 0.463545i −0.0415945 0.999135i \(-0.513244\pi\)
0.844479 + 0.535589i \(0.179910\pi\)
\(744\) 0 0
\(745\) 33.1971 19.1664i 1.21625 0.702201i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −21.1323 30.9309i −0.772158 1.13019i
\(750\) 0 0
\(751\) 23.7730 41.1761i 0.867490 1.50254i 0.00293597 0.999996i \(-0.499065\pi\)
0.864554 0.502540i \(-0.167601\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −38.5113 −1.40157
\(756\) 0 0
\(757\) 37.3922 1.35904 0.679521 0.733656i \(-0.262188\pi\)
0.679521 + 0.733656i \(0.262188\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 4.12142 7.13850i 0.149401 0.258770i −0.781605 0.623774i \(-0.785599\pi\)
0.931006 + 0.365003i \(0.118932\pi\)
\(762\) 0 0
\(763\) −13.4602 6.46602i −0.487293 0.234086i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −9.73114 + 5.61827i −0.351371 + 0.202864i
\(768\) 0 0
\(769\) −20.2182 + 11.6730i −0.729086 + 0.420938i −0.818088 0.575094i \(-0.804966\pi\)
0.0890020 + 0.996031i \(0.471632\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −17.2201 + 29.8261i −0.619364 + 1.07277i 0.370238 + 0.928937i \(0.379276\pi\)
−0.989602 + 0.143833i \(0.954057\pi\)
\(774\) 0 0
\(775\) 5.30422 3.06240i 0.190533 0.110004i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 30.2555 + 17.4680i 1.08402 + 0.625857i
\(780\) 0 0
\(781\) −24.6822 42.7508i −0.883199 1.52975i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 44.1682 + 25.5005i 1.57643 + 0.910152i
\(786\) 0 0
\(787\) 8.31355i 0.296346i 0.988961 + 0.148173i \(0.0473393\pi\)
−0.988961 + 0.148173i \(0.952661\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −20.0625 29.3650i −0.713341 1.04410i
\(792\) 0 0
\(793\) −14.7237 25.5022i −0.522854 0.905610i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0.426036 + 0.737916i 0.0150910 + 0.0261383i 0.873472 0.486874i \(-0.161863\pi\)
−0.858381 + 0.513012i \(0.828530\pi\)
\(798\) 0 0
\(799\) −9.18614 + 15.9109i −0.324982 + 0.562886i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −74.5190 −2.62972
\(804\) 0 0
\(805\) 21.7682 + 31.8615i 0.767227 + 1.12297i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −31.5580 18.2200i −1.10952 0.640581i −0.170814 0.985303i \(-0.554640\pi\)
−0.938705 + 0.344722i \(0.887973\pi\)
\(810\) 0 0
\(811\) 1.08986i 0.0382702i 0.999817 + 0.0191351i \(0.00609126\pi\)
−0.999817 + 0.0191351i \(0.993909\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −15.0339 −0.526616
\(816\) 0 0
\(817\) 51.3709i 1.79724i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 24.2196i 0.845270i 0.906300 + 0.422635i \(0.138895\pi\)
−0.906300 + 0.422635i \(0.861105\pi\)
\(822\) 0 0
\(823\) −5.71185 −0.199102 −0.0995512 0.995032i \(-0.531741\pi\)
−0.0995512 + 0.995032i \(0.531741\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 36.4579i 1.26777i −0.773429 0.633883i \(-0.781460\pi\)
0.773429 0.633883i \(-0.218540\pi\)
\(828\) 0 0
\(829\) −0.498269 0.287676i −0.0173056 0.00999140i 0.491322 0.870978i \(-0.336514\pi\)
−0.508628 + 0.860986i \(0.669847\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −4.25111 + 10.8938i −0.147292 + 0.377448i
\(834\) 0 0
\(835\) −34.4312 −1.19154
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 23.9341 41.4550i 0.826295 1.43119i −0.0746300 0.997211i \(-0.523778\pi\)
0.900925 0.433974i \(-0.142889\pi\)
\(840\) 0 0
\(841\) −14.4621 25.0490i −0.498692 0.863759i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −5.51368 9.54997i −0.189676 0.328529i
\(846\) 0 0
\(847\) 27.0801 + 13.0087i 0.930483 + 0.446985i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 16.6657i 0.571294i
\(852\) 0 0
\(853\) −40.5393 23.4054i −1.38804 0.801385i −0.394945 0.918705i \(-0.629236\pi\)
−0.993094 + 0.117320i \(0.962570\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −4.78220 8.28302i −0.163357 0.282943i 0.772714 0.634755i \(-0.218899\pi\)
−0.936071 + 0.351812i \(0.885566\pi\)
\(858\) 0 0
\(859\) 4.68311 + 2.70379i 0.159786 + 0.0922523i 0.577761 0.816206i \(-0.303927\pi\)
−0.417975 + 0.908459i \(0.637260\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −35.5402 + 20.5191i −1.20980 + 0.698480i −0.962716 0.270514i \(-0.912806\pi\)
−0.247086 + 0.968994i \(0.579473\pi\)
\(864\) 0 0
\(865\) −9.30598 + 16.1184i −0.316413 + 0.548043i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −50.3777 + 29.0856i −1.70895 + 0.986661i
\(870\) 0 0
\(871\) 41.1056 23.7323i 1.39281 0.804139i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0.701762 + 9.24390i 0.0237239 + 0.312501i
\(876\) 0 0
\(877\) 7.32509 12.6874i 0.247351 0.428424i −0.715439 0.698675i \(-0.753773\pi\)
0.962790 + 0.270251i \(0.0871067\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −44.8295 −1.51034 −0.755172 0.655527i \(-0.772447\pi\)
−0.755172 + 0.655527i \(0.772447\pi\)
\(882\) 0 0
\(883\) −33.8527 −1.13923 −0.569617 0.821910i \(-0.692909\pi\)
−0.569617 + 0.821910i \(0.692909\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −13.3422 + 23.1093i −0.447987 + 0.775936i −0.998255 0.0590523i \(-0.981192\pi\)
0.550268 + 0.834988i \(0.314525\pi\)
\(888\) 0 0
\(889\) 2.55817 + 33.6973i 0.0857984 + 1.13017i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −46.7817 + 27.0094i −1.56549 + 0.903837i
\(894\) 0 0
\(895\) −37.9157 + 21.8907i −1.26738 + 0.731724i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0.220820 0.382472i 0.00736476 0.0127561i
\(900\) 0 0
\(901\) −1.18172 + 0.682266i −0.0393688 + 0.0227296i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0.214412 + 0.123791i 0.00712729 + 0.00411494i
\(906\) 0 0
\(907\) −7.97211 13.8081i −0.264710 0.458490i 0.702778 0.711409i \(-0.251943\pi\)
−0.967487 + 0.252919i \(0.918609\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 40.9207 + 23.6256i 1.35576 + 0.782750i 0.989050 0.147584i \(-0.0471496\pi\)
0.366713 + 0.930334i \(0.380483\pi\)
\(912\) 0 0
\(913\) 38.2013i 1.26428i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 31.9995 + 15.3719i 1.05672 + 0.507624i
\(918\) 0 0
\(919\) −14.8163 25.6625i −0.488743 0.846528i 0.511173 0.859478i \(-0.329211\pi\)
−0.999916 + 0.0129500i \(0.995878\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −21.3415 36.9645i −0.702463 1.21670i
\(924\) 0 0
\(925\) −6.48212 + 11.2274i −0.213131 + 0.369153i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −33.2372 −1.09048 −0.545238 0.838281i \(-0.683561\pi\)
−0.545238 + 0.838281i \(0.683561\pi\)
\(930\) 0 0
\(931\) −26.8399 + 21.4895i −0.879642 + 0.704290i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 20.3151 + 11.7289i 0.664373 + 0.383576i
\(936\) 0 0
\(937\) 23.8190i 0.778134i −0.921209 0.389067i \(-0.872797\pi\)
0.921209 0.389067i \(-0.127203\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 54.2403 1.76818 0.884091 0.467315i \(-0.154779\pi\)
0.884091 + 0.467315i \(0.154779\pi\)
\(942\) 0 0
\(943\) 34.9295i 1.13746i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 21.0648i 0.684515i 0.939606 + 0.342257i \(0.111191\pi\)
−0.939606 + 0.342257i \(0.888809\pi\)
\(948\) 0 0
\(949\) −64.4329 −2.09158
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 4.50028i 0.145778i 0.997340 + 0.0728892i \(0.0232219\pi\)
−0.997340 + 0.0728892i \(0.976778\pi\)
\(954\) 0 0
\(955\) 39.6989 + 22.9201i 1.28462 + 0.741679i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 13.4332 + 19.6618i 0.433780 + 0.634913i
\(960\) 0 0
\(961\) 28.4295 0.917081
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 32.0090 55.4411i 1.03040 1.78471i
\(966\) 0 0
\(967\) 10.8811 + 18.8466i 0.349912 + 0.606065i 0.986233 0.165359i \(-0.0528783\pi\)
−0.636322 + 0.771424i \(0.719545\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 23.5222 + 40.7416i 0.754862 + 1.30746i 0.945443 + 0.325788i \(0.105629\pi\)
−0.190581 + 0.981671i \(0.561037\pi\)
\(972\) 0 0
\(973\) −2.66961 3.90744i −0.0855838 0.125267i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 25.1455i 0.804475i −0.915535 0.402237i \(-0.868233\pi\)
0.915535 0.402237i \(-0.131767\pi\)
\(978\) 0 0
\(979\) 37.7423 + 21.7905i 1.20625 + 0.696429i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −18.1071 31.3624i −0.577527 1.00031i −0.995762 0.0919674i \(-0.970684\pi\)
0.418235 0.908339i \(-0.362649\pi\)
\(984\) 0 0
\(985\) −25.4191 14.6757i −0.809921 0.467608i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −44.4801 + 25.6806i −1.41438 + 0.816595i
\(990\) 0 0
\(991\) 9.32769 16.1560i 0.296304 0.513213i −0.678984 0.734153i \(-0.737579\pi\)
0.975287 + 0.220940i \(0.0709126\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 27.1632 15.6827i 0.861131 0.497174i
\(996\) 0 0
\(997\) −15.1413 + 8.74181i −0.479528 + 0.276856i −0.720220 0.693746i \(-0.755959\pi\)
0.240691 + 0.970602i \(0.422626\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.ca.d.2033.7 16
3.2 odd 2 1008.2.ca.d.353.6 16
4.3 odd 2 756.2.w.a.521.7 16
7.5 odd 6 3024.2.df.d.1601.7 16
9.4 even 3 1008.2.df.d.689.8 16
9.5 odd 6 3024.2.df.d.17.7 16
12.11 even 2 252.2.w.a.101.3 yes 16
21.5 even 6 1008.2.df.d.929.8 16
28.3 even 6 5292.2.x.b.4409.2 16
28.11 odd 6 5292.2.x.a.4409.7 16
28.19 even 6 756.2.bm.a.89.7 16
28.23 odd 6 5292.2.bm.a.4625.2 16
28.27 even 2 5292.2.w.b.521.2 16
36.7 odd 6 2268.2.t.a.1781.7 16
36.11 even 6 2268.2.t.b.1781.2 16
36.23 even 6 756.2.bm.a.17.7 16
36.31 odd 6 252.2.bm.a.185.1 yes 16
63.5 even 6 inner 3024.2.ca.d.2609.7 16
63.40 odd 6 1008.2.ca.d.257.6 16
84.11 even 6 1764.2.x.a.1469.4 16
84.23 even 6 1764.2.bm.a.1685.8 16
84.47 odd 6 252.2.bm.a.173.1 yes 16
84.59 odd 6 1764.2.x.b.1469.5 16
84.83 odd 2 1764.2.w.b.1109.6 16
252.23 even 6 5292.2.w.b.1097.2 16
252.31 even 6 1764.2.x.a.293.4 16
252.47 odd 6 2268.2.t.a.2105.7 16
252.59 odd 6 5292.2.x.a.881.7 16
252.67 odd 6 1764.2.x.b.293.5 16
252.95 even 6 5292.2.x.b.881.2 16
252.103 even 6 252.2.w.a.5.3 16
252.131 odd 6 756.2.w.a.341.7 16
252.139 even 6 1764.2.bm.a.1697.8 16
252.167 odd 6 5292.2.bm.a.2285.2 16
252.187 even 6 2268.2.t.b.2105.2 16
252.247 odd 6 1764.2.w.b.509.6 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.w.a.5.3 16 252.103 even 6
252.2.w.a.101.3 yes 16 12.11 even 2
252.2.bm.a.173.1 yes 16 84.47 odd 6
252.2.bm.a.185.1 yes 16 36.31 odd 6
756.2.w.a.341.7 16 252.131 odd 6
756.2.w.a.521.7 16 4.3 odd 2
756.2.bm.a.17.7 16 36.23 even 6
756.2.bm.a.89.7 16 28.19 even 6
1008.2.ca.d.257.6 16 63.40 odd 6
1008.2.ca.d.353.6 16 3.2 odd 2
1008.2.df.d.689.8 16 9.4 even 3
1008.2.df.d.929.8 16 21.5 even 6
1764.2.w.b.509.6 16 252.247 odd 6
1764.2.w.b.1109.6 16 84.83 odd 2
1764.2.x.a.293.4 16 252.31 even 6
1764.2.x.a.1469.4 16 84.11 even 6
1764.2.x.b.293.5 16 252.67 odd 6
1764.2.x.b.1469.5 16 84.59 odd 6
1764.2.bm.a.1685.8 16 84.23 even 6
1764.2.bm.a.1697.8 16 252.139 even 6
2268.2.t.a.1781.7 16 36.7 odd 6
2268.2.t.a.2105.7 16 252.47 odd 6
2268.2.t.b.1781.2 16 36.11 even 6
2268.2.t.b.2105.2 16 252.187 even 6
3024.2.ca.d.2033.7 16 1.1 even 1 trivial
3024.2.ca.d.2609.7 16 63.5 even 6 inner
3024.2.df.d.17.7 16 9.5 odd 6
3024.2.df.d.1601.7 16 7.5 odd 6
5292.2.w.b.521.2 16 28.27 even 2
5292.2.w.b.1097.2 16 252.23 even 6
5292.2.x.a.881.7 16 252.59 odd 6
5292.2.x.a.4409.7 16 28.11 odd 6
5292.2.x.b.881.2 16 252.95 even 6
5292.2.x.b.4409.2 16 28.3 even 6
5292.2.bm.a.2285.2 16 252.167 odd 6
5292.2.bm.a.4625.2 16 28.23 odd 6