Properties

Label 1008.2.df.d.689.8
Level $1008$
Weight $2$
Character 1008.689
Analytic conductor $8.049$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(689,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.689"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.df (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 5 x^{14} - 17 x^{13} + 22 x^{12} - 31 x^{11} + 62 x^{10} - 52 x^{9} + 52 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 689.8
Root \(1.68042 - 0.419752i\) of defining polynomial
Character \(\chi\) \(=\) 1008.689
Dual form 1008.2.df.d.929.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.60579 + 0.649187i) q^{3} -2.96988 q^{5} +(-2.38485 - 1.14563i) q^{7} +(2.15711 + 2.08491i) q^{9} -4.72811i q^{11} +(3.54045 + 2.04408i) q^{13} +(-4.76900 - 1.92801i) q^{15} +(0.835278 - 1.44674i) q^{17} +(4.25377 - 2.45592i) q^{19} +(-3.08584 - 3.38786i) q^{21} -4.91090i q^{23} +3.82018 q^{25} +(2.11037 + 4.74830i) q^{27} +(0.238557 - 0.137731i) q^{29} +(1.38847 - 0.801636i) q^{31} +(3.06943 - 7.59235i) q^{33} +(7.08273 + 3.40239i) q^{35} +(-1.69681 - 2.93896i) q^{37} +(4.35823 + 5.58078i) q^{39} +(3.55632 - 6.15972i) q^{41} +(-5.22930 - 9.05742i) q^{43} +(-6.40637 - 6.19194i) q^{45} +(5.49885 - 9.52430i) q^{47} +(4.37505 + 5.46433i) q^{49} +(2.28049 - 1.78091i) q^{51} +(-0.707381 - 0.408407i) q^{53} +14.0419i q^{55} +(8.42500 - 1.18219i) q^{57} +(-1.37428 - 2.38032i) q^{59} +(-6.23807 - 3.60155i) q^{61} +(-2.75585 - 7.44347i) q^{63} +(-10.5147 - 6.07067i) q^{65} +(5.80513 + 10.0548i) q^{67} +(3.18809 - 7.88587i) q^{69} +10.4406i q^{71} +(13.6493 + 7.88042i) q^{73} +(6.13440 + 2.48001i) q^{75} +(-5.41668 + 11.2759i) q^{77} +(-6.15163 + 10.6549i) q^{79} +(0.306275 + 8.99479i) q^{81} +(-4.03981 - 6.99715i) q^{83} +(-2.48067 + 4.29665i) q^{85} +(0.472485 - 0.0662987i) q^{87} +(-4.60872 - 7.98254i) q^{89} +(-6.10169 - 8.93089i) q^{91} +(2.75001 - 0.385879i) q^{93} +(-12.6332 + 7.29377i) q^{95} +(-7.00772 + 4.04591i) q^{97} +(9.85770 - 10.1991i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + q^{7} + 3 q^{13} + 3 q^{15} - 9 q^{17} + 16 q^{25} + 9 q^{27} + 6 q^{29} - 6 q^{31} - 27 q^{33} - 15 q^{35} + q^{37} + 3 q^{39} + 6 q^{41} + 2 q^{43} - 15 q^{45} + 18 q^{47} + 13 q^{49} - 15 q^{51}+ \cdots + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.60579 + 0.649187i 0.927102 + 0.374808i
\(4\) 0 0
\(5\) −2.96988 −1.32817 −0.664085 0.747657i \(-0.731179\pi\)
−0.664085 + 0.747657i \(0.731179\pi\)
\(6\) 0 0
\(7\) −2.38485 1.14563i −0.901390 0.433009i
\(8\) 0 0
\(9\) 2.15711 + 2.08491i 0.719038 + 0.694971i
\(10\) 0 0
\(11\) 4.72811i 1.42558i −0.701378 0.712790i \(-0.747431\pi\)
0.701378 0.712790i \(-0.252569\pi\)
\(12\) 0 0
\(13\) 3.54045 + 2.04408i 0.981945 + 0.566926i 0.902857 0.429942i \(-0.141466\pi\)
0.0790880 + 0.996868i \(0.474799\pi\)
\(14\) 0 0
\(15\) −4.76900 1.92801i −1.23135 0.497809i
\(16\) 0 0
\(17\) 0.835278 1.44674i 0.202585 0.350887i −0.746776 0.665076i \(-0.768399\pi\)
0.949360 + 0.314189i \(0.101733\pi\)
\(18\) 0 0
\(19\) 4.25377 2.45592i 0.975882 0.563426i 0.0748577 0.997194i \(-0.476150\pi\)
0.901024 + 0.433768i \(0.142816\pi\)
\(20\) 0 0
\(21\) −3.08584 3.38786i −0.673385 0.739292i
\(22\) 0 0
\(23\) 4.91090i 1.02399i −0.858987 0.511997i \(-0.828906\pi\)
0.858987 0.511997i \(-0.171094\pi\)
\(24\) 0 0
\(25\) 3.82018 0.764036
\(26\) 0 0
\(27\) 2.11037 + 4.74830i 0.406141 + 0.913811i
\(28\) 0 0
\(29\) 0.238557 0.137731i 0.0442989 0.0255760i −0.477687 0.878530i \(-0.658525\pi\)
0.521986 + 0.852954i \(0.325191\pi\)
\(30\) 0 0
\(31\) 1.38847 0.801636i 0.249377 0.143978i −0.370102 0.928991i \(-0.620677\pi\)
0.619479 + 0.785013i \(0.287344\pi\)
\(32\) 0 0
\(33\) 3.06943 7.59235i 0.534319 1.32166i
\(34\) 0 0
\(35\) 7.08273 + 3.40239i 1.19720 + 0.575109i
\(36\) 0 0
\(37\) −1.69681 2.93896i −0.278954 0.483162i 0.692171 0.721733i \(-0.256654\pi\)
−0.971125 + 0.238571i \(0.923321\pi\)
\(38\) 0 0
\(39\) 4.35823 + 5.58078i 0.697875 + 0.893639i
\(40\) 0 0
\(41\) 3.55632 6.15972i 0.555404 0.961987i −0.442468 0.896784i \(-0.645897\pi\)
0.997872 0.0652031i \(-0.0207695\pi\)
\(42\) 0 0
\(43\) −5.22930 9.05742i −0.797461 1.38124i −0.921265 0.388936i \(-0.872843\pi\)
0.123804 0.992307i \(-0.460491\pi\)
\(44\) 0 0
\(45\) −6.40637 6.19194i −0.955005 0.923040i
\(46\) 0 0
\(47\) 5.49885 9.52430i 0.802090 1.38926i −0.116148 0.993232i \(-0.537055\pi\)
0.918238 0.396029i \(-0.129612\pi\)
\(48\) 0 0
\(49\) 4.37505 + 5.46433i 0.625007 + 0.780619i
\(50\) 0 0
\(51\) 2.28049 1.78091i 0.319332 0.249378i
\(52\) 0 0
\(53\) −0.707381 0.408407i −0.0971663 0.0560990i 0.450629 0.892711i \(-0.351200\pi\)
−0.547796 + 0.836612i \(0.684533\pi\)
\(54\) 0 0
\(55\) 14.0419i 1.89341i
\(56\) 0 0
\(57\) 8.42500 1.18219i 1.11592 0.156585i
\(58\) 0 0
\(59\) −1.37428 2.38032i −0.178916 0.309891i 0.762594 0.646878i \(-0.223926\pi\)
−0.941509 + 0.336986i \(0.890592\pi\)
\(60\) 0 0
\(61\) −6.23807 3.60155i −0.798703 0.461131i 0.0443147 0.999018i \(-0.485890\pi\)
−0.843017 + 0.537886i \(0.819223\pi\)
\(62\) 0 0
\(63\) −2.75585 7.44347i −0.347205 0.937789i
\(64\) 0 0
\(65\) −10.5147 6.07067i −1.30419 0.752974i
\(66\) 0 0
\(67\) 5.80513 + 10.0548i 0.709210 + 1.22839i 0.965151 + 0.261695i \(0.0842814\pi\)
−0.255941 + 0.966692i \(0.582385\pi\)
\(68\) 0 0
\(69\) 3.18809 7.88587i 0.383801 0.949347i
\(70\) 0 0
\(71\) 10.4406i 1.23907i 0.784968 + 0.619537i \(0.212680\pi\)
−0.784968 + 0.619537i \(0.787320\pi\)
\(72\) 0 0
\(73\) 13.6493 + 7.88042i 1.59753 + 0.922334i 0.991962 + 0.126539i \(0.0403870\pi\)
0.605567 + 0.795794i \(0.292946\pi\)
\(74\) 0 0
\(75\) 6.13440 + 2.48001i 0.708340 + 0.286367i
\(76\) 0 0
\(77\) −5.41668 + 11.2759i −0.617288 + 1.28500i
\(78\) 0 0
\(79\) −6.15163 + 10.6549i −0.692112 + 1.19877i 0.279032 + 0.960282i \(0.409986\pi\)
−0.971145 + 0.238492i \(0.923347\pi\)
\(80\) 0 0
\(81\) 0.306275 + 8.99479i 0.0340305 + 0.999421i
\(82\) 0 0
\(83\) −4.03981 6.99715i −0.443426 0.768037i 0.554515 0.832174i \(-0.312904\pi\)
−0.997941 + 0.0641368i \(0.979571\pi\)
\(84\) 0 0
\(85\) −2.48067 + 4.29665i −0.269067 + 0.466037i
\(86\) 0 0
\(87\) 0.472485 0.0662987i 0.0506557 0.00710797i
\(88\) 0 0
\(89\) −4.60872 7.98254i −0.488523 0.846147i 0.511390 0.859349i \(-0.329131\pi\)
−0.999913 + 0.0132019i \(0.995798\pi\)
\(90\) 0 0
\(91\) −6.10169 8.93089i −0.639631 0.936212i
\(92\) 0 0
\(93\) 2.75001 0.385879i 0.285163 0.0400138i
\(94\) 0 0
\(95\) −12.6332 + 7.29377i −1.29614 + 0.748325i
\(96\) 0 0
\(97\) −7.00772 + 4.04591i −0.711527 + 0.410800i −0.811626 0.584177i \(-0.801417\pi\)
0.100099 + 0.994977i \(0.468084\pi\)
\(98\) 0 0
\(99\) 9.85770 10.1991i 0.990736 1.02505i
\(100\) 0 0
\(101\) −7.30730 −0.727103 −0.363552 0.931574i \(-0.618436\pi\)
−0.363552 + 0.931574i \(0.618436\pi\)
\(102\) 0 0
\(103\) 7.02530i 0.692224i −0.938193 0.346112i \(-0.887502\pi\)
0.938193 0.346112i \(-0.112498\pi\)
\(104\) 0 0
\(105\) 9.16457 + 10.0615i 0.894371 + 0.981905i
\(106\) 0 0
\(107\) −12.2618 + 7.07938i −1.18540 + 0.684389i −0.957257 0.289239i \(-0.906598\pi\)
−0.228140 + 0.973628i \(0.573265\pi\)
\(108\) 0 0
\(109\) −2.82203 + 4.88789i −0.270301 + 0.468175i −0.968939 0.247300i \(-0.920457\pi\)
0.698638 + 0.715476i \(0.253790\pi\)
\(110\) 0 0
\(111\) −0.816783 5.82089i −0.0775256 0.552495i
\(112\) 0 0
\(113\) 11.6411 + 6.72099i 1.09510 + 0.632258i 0.934930 0.354831i \(-0.115462\pi\)
0.160172 + 0.987089i \(0.448795\pi\)
\(114\) 0 0
\(115\) 14.5848i 1.36004i
\(116\) 0 0
\(117\) 3.37542 + 11.7908i 0.312058 + 1.09006i
\(118\) 0 0
\(119\) −3.64945 + 2.49335i −0.334545 + 0.228565i
\(120\) 0 0
\(121\) −11.3550 −1.03228
\(122\) 0 0
\(123\) 9.70951 7.58250i 0.875477 0.683691i
\(124\) 0 0
\(125\) 3.50392 0.313400
\(126\) 0 0
\(127\) 12.7730 1.13342 0.566712 0.823916i \(-0.308215\pi\)
0.566712 + 0.823916i \(0.308215\pi\)
\(128\) 0 0
\(129\) −2.51720 17.9391i −0.221627 1.57945i
\(130\) 0 0
\(131\) −13.4178 −1.17232 −0.586159 0.810196i \(-0.699361\pi\)
−0.586159 + 0.810196i \(0.699361\pi\)
\(132\) 0 0
\(133\) −12.9582 + 0.983737i −1.12362 + 0.0853008i
\(134\) 0 0
\(135\) −6.26754 14.1019i −0.539424 1.21370i
\(136\) 0 0
\(137\) 9.00030i 0.768948i 0.923136 + 0.384474i \(0.125617\pi\)
−0.923136 + 0.384474i \(0.874383\pi\)
\(138\) 0 0
\(139\) 1.54902 + 0.894326i 0.131386 + 0.0758557i 0.564252 0.825602i \(-0.309164\pi\)
−0.432866 + 0.901458i \(0.642498\pi\)
\(140\) 0 0
\(141\) 15.0130 11.7242i 1.26433 0.987357i
\(142\) 0 0
\(143\) 9.66464 16.7397i 0.808198 1.39984i
\(144\) 0 0
\(145\) −0.708485 + 0.409044i −0.0588365 + 0.0339693i
\(146\) 0 0
\(147\) 3.47803 + 11.6148i 0.286863 + 0.957972i
\(148\) 0 0
\(149\) 12.9072i 1.05740i −0.848810 0.528698i \(-0.822680\pi\)
0.848810 0.528698i \(-0.177320\pi\)
\(150\) 0 0
\(151\) 12.9673 1.05526 0.527631 0.849473i \(-0.323080\pi\)
0.527631 + 0.849473i \(0.323080\pi\)
\(152\) 0 0
\(153\) 4.81812 1.37931i 0.389522 0.111510i
\(154\) 0 0
\(155\) −4.12360 + 2.38076i −0.331216 + 0.191227i
\(156\) 0 0
\(157\) 14.8720 8.58638i 1.18692 0.685268i 0.229314 0.973353i \(-0.426352\pi\)
0.957605 + 0.288085i \(0.0930185\pi\)
\(158\) 0 0
\(159\) −0.870773 1.11504i −0.0690568 0.0884282i
\(160\) 0 0
\(161\) −5.62609 + 11.7118i −0.443398 + 0.923017i
\(162\) 0 0
\(163\) −2.53107 4.38394i −0.198249 0.343377i 0.749712 0.661764i \(-0.230192\pi\)
−0.947961 + 0.318387i \(0.896859\pi\)
\(164\) 0 0
\(165\) −9.11583 + 22.5484i −0.709666 + 1.75539i
\(166\) 0 0
\(167\) −5.79673 + 10.0402i −0.448564 + 0.776936i −0.998293 0.0584072i \(-0.981398\pi\)
0.549729 + 0.835343i \(0.314731\pi\)
\(168\) 0 0
\(169\) 1.85653 + 3.21561i 0.142810 + 0.247354i
\(170\) 0 0
\(171\) 14.2962 + 3.57105i 1.09326 + 0.273085i
\(172\) 0 0
\(173\) 3.13346 5.42730i 0.238232 0.412630i −0.721975 0.691919i \(-0.756765\pi\)
0.960207 + 0.279289i \(0.0900987\pi\)
\(174\) 0 0
\(175\) −9.11057 4.37653i −0.688694 0.330834i
\(176\) 0 0
\(177\) −0.661528 4.71446i −0.0497235 0.354360i
\(178\) 0 0
\(179\) −12.7668 7.37089i −0.954233 0.550927i −0.0598395 0.998208i \(-0.519059\pi\)
−0.894393 + 0.447281i \(0.852392\pi\)
\(180\) 0 0
\(181\) 0.0833642i 0.00619641i 0.999995 + 0.00309821i \(0.000986191\pi\)
−0.999995 + 0.00309821i \(0.999014\pi\)
\(182\) 0 0
\(183\) −7.67894 9.83300i −0.567643 0.726876i
\(184\) 0 0
\(185\) 5.03932 + 8.72835i 0.370498 + 0.641721i
\(186\) 0 0
\(187\) −6.84036 3.94929i −0.500217 0.288800i
\(188\) 0 0
\(189\) 0.406887 13.7417i 0.0295967 0.999562i
\(190\) 0 0
\(191\) −13.3672 7.71754i −0.967214 0.558421i −0.0688282 0.997629i \(-0.521926\pi\)
−0.898386 + 0.439207i \(0.855259\pi\)
\(192\) 0 0
\(193\) −10.7779 18.6678i −0.775808 1.34374i −0.934339 0.356385i \(-0.884009\pi\)
0.158532 0.987354i \(-0.449324\pi\)
\(194\) 0 0
\(195\) −12.9434 16.5742i −0.926896 1.18691i
\(196\) 0 0
\(197\) 9.88306i 0.704139i −0.935974 0.352069i \(-0.885478\pi\)
0.935974 0.352069i \(-0.114522\pi\)
\(198\) 0 0
\(199\) 9.14623 + 5.28058i 0.648359 + 0.374330i 0.787827 0.615896i \(-0.211206\pi\)
−0.139468 + 0.990227i \(0.544539\pi\)
\(200\) 0 0
\(201\) 2.79438 + 19.9145i 0.197100 + 1.40466i
\(202\) 0 0
\(203\) −0.726712 + 0.0551692i −0.0510052 + 0.00387212i
\(204\) 0 0
\(205\) −10.5618 + 18.2936i −0.737670 + 1.27768i
\(206\) 0 0
\(207\) 10.2388 10.5934i 0.711646 0.736290i
\(208\) 0 0
\(209\) −11.6118 20.1123i −0.803208 1.39120i
\(210\) 0 0
\(211\) −6.08453 + 10.5387i −0.418876 + 0.725514i −0.995827 0.0912645i \(-0.970909\pi\)
0.576951 + 0.816779i \(0.304242\pi\)
\(212\) 0 0
\(213\) −6.77791 + 16.7654i −0.464415 + 1.14875i
\(214\) 0 0
\(215\) 15.5304 + 26.8994i 1.05916 + 1.83453i
\(216\) 0 0
\(217\) −4.22969 + 0.321102i −0.287130 + 0.0217978i
\(218\) 0 0
\(219\) 16.8020 + 21.5152i 1.13537 + 1.45386i
\(220\) 0 0
\(221\) 5.91452 3.41475i 0.397854 0.229701i
\(222\) 0 0
\(223\) 0.714485 0.412508i 0.0478455 0.0276236i −0.475886 0.879507i \(-0.657873\pi\)
0.523732 + 0.851883i \(0.324539\pi\)
\(224\) 0 0
\(225\) 8.24056 + 7.96475i 0.549371 + 0.530983i
\(226\) 0 0
\(227\) −0.333557 −0.0221390 −0.0110695 0.999939i \(-0.503524\pi\)
−0.0110695 + 0.999939i \(0.503524\pi\)
\(228\) 0 0
\(229\) 14.4214i 0.952996i −0.879176 0.476498i \(-0.841906\pi\)
0.879176 0.476498i \(-0.158094\pi\)
\(230\) 0 0
\(231\) −16.0182 + 14.5902i −1.05392 + 0.959964i
\(232\) 0 0
\(233\) 12.7953 7.38739i 0.838250 0.483964i −0.0184192 0.999830i \(-0.505863\pi\)
0.856669 + 0.515867i \(0.172530\pi\)
\(234\) 0 0
\(235\) −16.3309 + 28.2860i −1.06531 + 1.84518i
\(236\) 0 0
\(237\) −16.7953 + 13.1160i −1.09097 + 0.851976i
\(238\) 0 0
\(239\) 22.5339 + 13.0100i 1.45760 + 0.841545i 0.998893 0.0470423i \(-0.0149795\pi\)
0.458707 + 0.888588i \(0.348313\pi\)
\(240\) 0 0
\(241\) 1.92021i 0.123692i 0.998086 + 0.0618458i \(0.0196987\pi\)
−0.998086 + 0.0618458i \(0.980301\pi\)
\(242\) 0 0
\(243\) −5.34748 + 14.6426i −0.343041 + 0.939320i
\(244\) 0 0
\(245\) −12.9934 16.2284i −0.830116 1.03680i
\(246\) 0 0
\(247\) 20.0804 1.27768
\(248\) 0 0
\(249\) −1.94462 13.8585i −0.123235 0.878249i
\(250\) 0 0
\(251\) 9.97663 0.629719 0.314860 0.949138i \(-0.398043\pi\)
0.314860 + 0.949138i \(0.398043\pi\)
\(252\) 0 0
\(253\) −23.2193 −1.45978
\(254\) 0 0
\(255\) −6.77277 + 5.28909i −0.424127 + 0.331216i
\(256\) 0 0
\(257\) 15.0073 0.936129 0.468064 0.883694i \(-0.344952\pi\)
0.468064 + 0.883694i \(0.344952\pi\)
\(258\) 0 0
\(259\) 0.679670 + 8.95291i 0.0422327 + 0.556306i
\(260\) 0 0
\(261\) 0.801751 + 0.200269i 0.0496271 + 0.0123964i
\(262\) 0 0
\(263\) 7.05534i 0.435051i 0.976055 + 0.217525i \(0.0697985\pi\)
−0.976055 + 0.217525i \(0.930202\pi\)
\(264\) 0 0
\(265\) 2.10084 + 1.21292i 0.129053 + 0.0745090i
\(266\) 0 0
\(267\) −2.21847 15.8102i −0.135768 0.967568i
\(268\) 0 0
\(269\) −14.8898 + 25.7898i −0.907844 + 1.57243i −0.0907911 + 0.995870i \(0.528940\pi\)
−0.817053 + 0.576562i \(0.804394\pi\)
\(270\) 0 0
\(271\) 2.41462 1.39408i 0.146677 0.0846843i −0.424865 0.905257i \(-0.639679\pi\)
0.571543 + 0.820572i \(0.306345\pi\)
\(272\) 0 0
\(273\) −4.00021 18.3023i −0.242104 1.10770i
\(274\) 0 0
\(275\) 18.0622i 1.08919i
\(276\) 0 0
\(277\) 13.5815 0.816032 0.408016 0.912975i \(-0.366221\pi\)
0.408016 + 0.912975i \(0.366221\pi\)
\(278\) 0 0
\(279\) 4.66644 + 1.16563i 0.279372 + 0.0697844i
\(280\) 0 0
\(281\) −3.95777 + 2.28502i −0.236101 + 0.136313i −0.613383 0.789785i \(-0.710192\pi\)
0.377283 + 0.926098i \(0.376859\pi\)
\(282\) 0 0
\(283\) −17.6685 + 10.2009i −1.05029 + 0.606383i −0.922729 0.385449i \(-0.874047\pi\)
−0.127556 + 0.991831i \(0.540713\pi\)
\(284\) 0 0
\(285\) −25.0212 + 3.51096i −1.48213 + 0.207971i
\(286\) 0 0
\(287\) −15.5381 + 10.6158i −0.917184 + 0.626631i
\(288\) 0 0
\(289\) 7.10462 + 12.3056i 0.417919 + 0.723857i
\(290\) 0 0
\(291\) −13.8795 + 1.94756i −0.813629 + 0.114168i
\(292\) 0 0
\(293\) −6.41037 + 11.1031i −0.374498 + 0.648649i −0.990252 0.139289i \(-0.955518\pi\)
0.615754 + 0.787939i \(0.288852\pi\)
\(294\) 0 0
\(295\) 4.08144 + 7.06926i 0.237631 + 0.411589i
\(296\) 0 0
\(297\) 22.4505 9.97806i 1.30271 0.578986i
\(298\) 0 0
\(299\) 10.0383 17.3868i 0.580529 1.00551i
\(300\) 0 0
\(301\) 2.09464 + 27.5915i 0.120733 + 1.59035i
\(302\) 0 0
\(303\) −11.7340 4.74380i −0.674099 0.272524i
\(304\) 0 0
\(305\) 18.5263 + 10.6962i 1.06081 + 0.612461i
\(306\) 0 0
\(307\) 1.93411i 0.110386i −0.998476 0.0551928i \(-0.982423\pi\)
0.998476 0.0551928i \(-0.0175773\pi\)
\(308\) 0 0
\(309\) 4.56073 11.2812i 0.259451 0.641762i
\(310\) 0 0
\(311\) −1.04458 1.80926i −0.0592326 0.102594i 0.834889 0.550419i \(-0.185532\pi\)
−0.894121 + 0.447825i \(0.852199\pi\)
\(312\) 0 0
\(313\) 19.4066 + 11.2044i 1.09692 + 0.633309i 0.935411 0.353562i \(-0.115030\pi\)
0.161512 + 0.986871i \(0.448363\pi\)
\(314\) 0 0
\(315\) 8.18455 + 22.1062i 0.461147 + 1.24554i
\(316\) 0 0
\(317\) −3.01788 1.74237i −0.169501 0.0978614i 0.412850 0.910799i \(-0.364534\pi\)
−0.582350 + 0.812938i \(0.697867\pi\)
\(318\) 0 0
\(319\) −0.651207 1.12792i −0.0364606 0.0631516i
\(320\) 0 0
\(321\) −24.2858 + 3.40776i −1.35550 + 0.190203i
\(322\) 0 0
\(323\) 8.20549i 0.456565i
\(324\) 0 0
\(325\) 13.5252 + 7.80876i 0.750241 + 0.433152i
\(326\) 0 0
\(327\) −7.70473 + 6.01690i −0.426073 + 0.332735i
\(328\) 0 0
\(329\) −24.0253 + 16.4144i −1.32456 + 0.904954i
\(330\) 0 0
\(331\) −2.28857 + 3.96392i −0.125791 + 0.217877i −0.922042 0.387090i \(-0.873480\pi\)
0.796251 + 0.604967i \(0.206814\pi\)
\(332\) 0 0
\(333\) 2.46727 9.87737i 0.135205 0.541276i
\(334\) 0 0
\(335\) −17.2405 29.8615i −0.941951 1.63151i
\(336\) 0 0
\(337\) −14.7062 + 25.4720i −0.801100 + 1.38755i 0.117793 + 0.993038i \(0.462418\pi\)
−0.918893 + 0.394508i \(0.870915\pi\)
\(338\) 0 0
\(339\) 14.3300 + 18.3497i 0.778297 + 0.996621i
\(340\) 0 0
\(341\) −3.79023 6.56486i −0.205252 0.355507i
\(342\) 0 0
\(343\) −4.17373 18.0438i −0.225360 0.974276i
\(344\) 0 0
\(345\) −9.46825 + 23.4201i −0.509753 + 1.26089i
\(346\) 0 0
\(347\) −17.0245 + 9.82911i −0.913924 + 0.527654i −0.881692 0.471826i \(-0.843595\pi\)
−0.0322323 + 0.999480i \(0.510262\pi\)
\(348\) 0 0
\(349\) 8.47286 4.89181i 0.453542 0.261852i −0.255783 0.966734i \(-0.582333\pi\)
0.709325 + 0.704882i \(0.249000\pi\)
\(350\) 0 0
\(351\) −2.23424 + 21.1249i −0.119255 + 1.12756i
\(352\) 0 0
\(353\) 25.0645 1.33405 0.667023 0.745037i \(-0.267568\pi\)
0.667023 + 0.745037i \(0.267568\pi\)
\(354\) 0 0
\(355\) 31.0074i 1.64570i
\(356\) 0 0
\(357\) −7.47890 + 1.63461i −0.395825 + 0.0865130i
\(358\) 0 0
\(359\) −8.09861 + 4.67574i −0.427428 + 0.246776i −0.698251 0.715853i \(-0.746038\pi\)
0.270822 + 0.962629i \(0.412704\pi\)
\(360\) 0 0
\(361\) 2.56305 4.43933i 0.134897 0.233649i
\(362\) 0 0
\(363\) −18.2338 7.37154i −0.957026 0.386906i
\(364\) 0 0
\(365\) −40.5367 23.4039i −2.12179 1.22502i
\(366\) 0 0
\(367\) 21.8850i 1.14239i −0.820815 0.571194i \(-0.806480\pi\)
0.820815 0.571194i \(-0.193520\pi\)
\(368\) 0 0
\(369\) 20.5139 5.87261i 1.06791 0.305716i
\(370\) 0 0
\(371\) 1.21912 + 1.78439i 0.0632934 + 0.0926409i
\(372\) 0 0
\(373\) 4.61644 0.239030 0.119515 0.992832i \(-0.461866\pi\)
0.119515 + 0.992832i \(0.461866\pi\)
\(374\) 0 0
\(375\) 5.62655 + 2.27470i 0.290554 + 0.117465i
\(376\) 0 0
\(377\) 1.12613 0.0579988
\(378\) 0 0
\(379\) 6.22396 0.319703 0.159852 0.987141i \(-0.448898\pi\)
0.159852 + 0.987141i \(0.448898\pi\)
\(380\) 0 0
\(381\) 20.5108 + 8.29209i 1.05080 + 0.424817i
\(382\) 0 0
\(383\) 21.9977 1.12403 0.562015 0.827127i \(-0.310026\pi\)
0.562015 + 0.827127i \(0.310026\pi\)
\(384\) 0 0
\(385\) 16.0869 33.4879i 0.819864 1.70670i
\(386\) 0 0
\(387\) 7.60373 30.4405i 0.386519 1.54738i
\(388\) 0 0
\(389\) 9.82776i 0.498287i 0.968467 + 0.249144i \(0.0801491\pi\)
−0.968467 + 0.249144i \(0.919851\pi\)
\(390\) 0 0
\(391\) −7.10481 4.10197i −0.359306 0.207445i
\(392\) 0 0
\(393\) −21.5462 8.71066i −1.08686 0.439395i
\(394\) 0 0
\(395\) 18.2696 31.6439i 0.919243 1.59218i
\(396\) 0 0
\(397\) 4.55324 2.62881i 0.228520 0.131936i −0.381369 0.924423i \(-0.624547\pi\)
0.609889 + 0.792487i \(0.291214\pi\)
\(398\) 0 0
\(399\) −21.4468 6.83262i −1.07368 0.342059i
\(400\) 0 0
\(401\) 17.0719i 0.852529i 0.904598 + 0.426265i \(0.140171\pi\)
−0.904598 + 0.426265i \(0.859829\pi\)
\(402\) 0 0
\(403\) 6.55444 0.326500
\(404\) 0 0
\(405\) −0.909599 26.7134i −0.0451983 1.32740i
\(406\) 0 0
\(407\) −13.8957 + 8.02270i −0.688786 + 0.397671i
\(408\) 0 0
\(409\) 16.9484 9.78516i 0.838044 0.483845i −0.0185546 0.999828i \(-0.505906\pi\)
0.856599 + 0.515983i \(0.172573\pi\)
\(410\) 0 0
\(411\) −5.84288 + 14.4526i −0.288208 + 0.712893i
\(412\) 0 0
\(413\) 0.550478 + 7.25114i 0.0270873 + 0.356805i
\(414\) 0 0
\(415\) 11.9977 + 20.7807i 0.588946 + 1.02008i
\(416\) 0 0
\(417\) 1.90681 + 2.44170i 0.0933769 + 0.119571i
\(418\) 0 0
\(419\) 10.3073 17.8529i 0.503547 0.872169i −0.496445 0.868068i \(-0.665361\pi\)
0.999992 0.00410056i \(-0.00130525\pi\)
\(420\) 0 0
\(421\) 0.704748 + 1.22066i 0.0343473 + 0.0594913i 0.882688 0.469959i \(-0.155731\pi\)
−0.848341 + 0.529451i \(0.822398\pi\)
\(422\) 0 0
\(423\) 31.7190 9.08035i 1.54223 0.441502i
\(424\) 0 0
\(425\) 3.19091 5.52682i 0.154782 0.268090i
\(426\) 0 0
\(427\) 10.7508 + 15.7357i 0.520268 + 0.761504i
\(428\) 0 0
\(429\) 26.3865 20.6062i 1.27395 0.994876i
\(430\) 0 0
\(431\) 11.6666 + 6.73569i 0.561959 + 0.324447i 0.753931 0.656953i \(-0.228155\pi\)
−0.191973 + 0.981400i \(0.561488\pi\)
\(432\) 0 0
\(433\) 12.9356i 0.621646i 0.950468 + 0.310823i \(0.100605\pi\)
−0.950468 + 0.310823i \(0.899395\pi\)
\(434\) 0 0
\(435\) −1.40322 + 0.196899i −0.0672794 + 0.00944059i
\(436\) 0 0
\(437\) −12.0608 20.8899i −0.576944 0.999297i
\(438\) 0 0
\(439\) −8.75023 5.05195i −0.417626 0.241116i 0.276435 0.961033i \(-0.410847\pi\)
−0.694061 + 0.719916i \(0.744180\pi\)
\(440\) 0 0
\(441\) −1.95519 + 20.9088i −0.0931041 + 0.995656i
\(442\) 0 0
\(443\) 25.1220 + 14.5042i 1.19358 + 0.689115i 0.959117 0.283009i \(-0.0913326\pi\)
0.234466 + 0.972124i \(0.424666\pi\)
\(444\) 0 0
\(445\) 13.6873 + 23.7072i 0.648842 + 1.12383i
\(446\) 0 0
\(447\) 8.37916 20.7262i 0.396321 0.980314i
\(448\) 0 0
\(449\) 7.94881i 0.375127i −0.982252 0.187564i \(-0.939941\pi\)
0.982252 0.187564i \(-0.0600591\pi\)
\(450\) 0 0
\(451\) −29.1239 16.8147i −1.37139 0.791772i
\(452\) 0 0
\(453\) 20.8227 + 8.41819i 0.978337 + 0.395521i
\(454\) 0 0
\(455\) 18.1213 + 26.5237i 0.849539 + 1.24345i
\(456\) 0 0
\(457\) 6.98084 12.0912i 0.326550 0.565601i −0.655275 0.755391i \(-0.727447\pi\)
0.981825 + 0.189789i \(0.0607805\pi\)
\(458\) 0 0
\(459\) 8.63231 + 0.912985i 0.402922 + 0.0426145i
\(460\) 0 0
\(461\) 16.4030 + 28.4108i 0.763964 + 1.32322i 0.940793 + 0.338983i \(0.110083\pi\)
−0.176829 + 0.984242i \(0.556584\pi\)
\(462\) 0 0
\(463\) 13.8812 24.0429i 0.645112 1.11737i −0.339163 0.940727i \(-0.610144\pi\)
0.984276 0.176640i \(-0.0565227\pi\)
\(464\) 0 0
\(465\) −8.16719 + 1.14601i −0.378744 + 0.0531451i
\(466\) 0 0
\(467\) −11.4311 19.7992i −0.528966 0.916196i −0.999429 0.0337767i \(-0.989247\pi\)
0.470463 0.882420i \(-0.344087\pi\)
\(468\) 0 0
\(469\) −2.32529 30.6297i −0.107372 1.41435i
\(470\) 0 0
\(471\) 29.4555 4.13318i 1.35724 0.190447i
\(472\) 0 0
\(473\) −42.8245 + 24.7247i −1.96907 + 1.13684i
\(474\) 0 0
\(475\) 16.2502 9.38204i 0.745609 0.430478i
\(476\) 0 0
\(477\) −0.674409 2.35581i −0.0308791 0.107865i
\(478\) 0 0
\(479\) −2.42425 −0.110767 −0.0553834 0.998465i \(-0.517638\pi\)
−0.0553834 + 0.998465i \(0.517638\pi\)
\(480\) 0 0
\(481\) 13.8737i 0.632584i
\(482\) 0 0
\(483\) −16.6374 + 15.1543i −0.757030 + 0.689542i
\(484\) 0 0
\(485\) 20.8121 12.0159i 0.945028 0.545612i
\(486\) 0 0
\(487\) −5.19651 + 9.00061i −0.235476 + 0.407857i −0.959411 0.282012i \(-0.908998\pi\)
0.723935 + 0.689868i \(0.242332\pi\)
\(488\) 0 0
\(489\) −1.21837 8.68282i −0.0550964 0.392651i
\(490\) 0 0
\(491\) 2.93014 + 1.69172i 0.132235 + 0.0763462i 0.564658 0.825325i \(-0.309008\pi\)
−0.432423 + 0.901671i \(0.642341\pi\)
\(492\) 0 0
\(493\) 0.460174i 0.0207252i
\(494\) 0 0
\(495\) −29.2762 + 30.2900i −1.31587 + 1.36143i
\(496\) 0 0
\(497\) 11.9611 24.8993i 0.536530 1.11689i
\(498\) 0 0
\(499\) −39.5603 −1.77096 −0.885481 0.464676i \(-0.846171\pi\)
−0.885481 + 0.464676i \(0.846171\pi\)
\(500\) 0 0
\(501\) −15.8263 + 12.3593i −0.707067 + 0.552174i
\(502\) 0 0
\(503\) 14.5476 0.648645 0.324323 0.945947i \(-0.394864\pi\)
0.324323 + 0.945947i \(0.394864\pi\)
\(504\) 0 0
\(505\) 21.7018 0.965717
\(506\) 0 0
\(507\) 0.893668 + 6.36882i 0.0396892 + 0.282849i
\(508\) 0 0
\(509\) 20.3916 0.903841 0.451921 0.892058i \(-0.350739\pi\)
0.451921 + 0.892058i \(0.350739\pi\)
\(510\) 0 0
\(511\) −23.5235 34.4307i −1.04062 1.52313i
\(512\) 0 0
\(513\) 20.6385 + 15.0153i 0.911210 + 0.662941i
\(514\) 0 0
\(515\) 20.8643i 0.919391i
\(516\) 0 0
\(517\) −45.0319 25.9992i −1.98050 1.14344i
\(518\) 0 0
\(519\) 8.55500 6.68091i 0.375523 0.293259i
\(520\) 0 0
\(521\) 7.75122 13.4255i 0.339587 0.588182i −0.644768 0.764379i \(-0.723046\pi\)
0.984355 + 0.176196i \(0.0563793\pi\)
\(522\) 0 0
\(523\) −9.35989 + 5.40394i −0.409280 + 0.236298i −0.690480 0.723351i \(-0.742601\pi\)
0.281201 + 0.959649i \(0.409267\pi\)
\(524\) 0 0
\(525\) −11.7885 12.9422i −0.514491 0.564846i
\(526\) 0 0
\(527\) 2.67836i 0.116671i
\(528\) 0 0
\(529\) −1.11695 −0.0485631
\(530\) 0 0
\(531\) 1.99829 7.99987i 0.0867183 0.347165i
\(532\) 0 0
\(533\) 25.1819 14.5388i 1.09075 0.629745i
\(534\) 0 0
\(535\) 36.4162 21.0249i 1.57441 0.908986i
\(536\) 0 0
\(537\) −15.7156 20.1241i −0.678180 0.868419i
\(538\) 0 0
\(539\) 25.8360 20.6857i 1.11283 0.890997i
\(540\) 0 0
\(541\) −8.79357 15.2309i −0.378065 0.654828i 0.612716 0.790303i \(-0.290077\pi\)
−0.990781 + 0.135476i \(0.956744\pi\)
\(542\) 0 0
\(543\) −0.0541189 + 0.133865i −0.00232247 + 0.00574471i
\(544\) 0 0
\(545\) 8.38108 14.5165i 0.359006 0.621817i
\(546\) 0 0
\(547\) 5.72451 + 9.91513i 0.244762 + 0.423940i 0.962065 0.272821i \(-0.0879568\pi\)
−0.717303 + 0.696762i \(0.754623\pi\)
\(548\) 0 0
\(549\) −5.94730 20.7748i −0.253824 0.886646i
\(550\) 0 0
\(551\) 0.676511 1.17175i 0.0288203 0.0499183i
\(552\) 0 0
\(553\) 26.8774 18.3629i 1.14294 0.780871i
\(554\) 0 0
\(555\) 2.42575 + 17.2873i 0.102967 + 0.733807i
\(556\) 0 0
\(557\) 32.9159 + 19.0040i 1.39469 + 0.805226i 0.993830 0.110912i \(-0.0353771\pi\)
0.400863 + 0.916138i \(0.368710\pi\)
\(558\) 0 0
\(559\) 42.7565i 1.80841i
\(560\) 0 0
\(561\) −8.42035 10.7824i −0.355508 0.455233i
\(562\) 0 0
\(563\) 8.88438 + 15.3882i 0.374432 + 0.648535i 0.990242 0.139360i \(-0.0445044\pi\)
−0.615810 + 0.787895i \(0.711171\pi\)
\(564\) 0 0
\(565\) −34.5727 19.9605i −1.45448 0.839746i
\(566\) 0 0
\(567\) 9.57431 21.8021i 0.402083 0.915603i
\(568\) 0 0
\(569\) −33.7404 19.4801i −1.41447 0.816646i −0.418667 0.908140i \(-0.637503\pi\)
−0.995806 + 0.0914936i \(0.970836\pi\)
\(570\) 0 0
\(571\) 8.45245 + 14.6401i 0.353724 + 0.612668i 0.986899 0.161341i \(-0.0515818\pi\)
−0.633175 + 0.774009i \(0.718248\pi\)
\(572\) 0 0
\(573\) −16.4547 21.0705i −0.687406 0.880233i
\(574\) 0 0
\(575\) 18.7605i 0.782368i
\(576\) 0 0
\(577\) −40.9329 23.6326i −1.70406 0.983840i −0.941555 0.336858i \(-0.890636\pi\)
−0.762506 0.646982i \(-0.776031\pi\)
\(578\) 0 0
\(579\) −5.18808 36.9734i −0.215609 1.53656i
\(580\) 0 0
\(581\) 1.61818 + 21.3153i 0.0671333 + 0.884308i
\(582\) 0 0
\(583\) −1.93099 + 3.34458i −0.0799736 + 0.138518i
\(584\) 0 0
\(585\) −10.0246 35.0174i −0.414466 1.44779i
\(586\) 0 0
\(587\) 11.6343 + 20.1513i 0.480200 + 0.831731i 0.999742 0.0227138i \(-0.00723065\pi\)
−0.519542 + 0.854445i \(0.673897\pi\)
\(588\) 0 0
\(589\) 3.93750 6.81995i 0.162242 0.281011i
\(590\) 0 0
\(591\) 6.41595 15.8701i 0.263917 0.652809i
\(592\) 0 0
\(593\) 18.5962 + 32.2095i 0.763654 + 1.32269i 0.940955 + 0.338530i \(0.109930\pi\)
−0.177302 + 0.984157i \(0.556737\pi\)
\(594\) 0 0
\(595\) 10.8384 7.40494i 0.444332 0.303573i
\(596\) 0 0
\(597\) 11.2588 + 14.4171i 0.460793 + 0.590053i
\(598\) 0 0
\(599\) −27.9591 + 16.1422i −1.14238 + 0.659552i −0.947018 0.321180i \(-0.895921\pi\)
−0.195359 + 0.980732i \(0.562587\pi\)
\(600\) 0 0
\(601\) 14.7559 8.51933i 0.601906 0.347511i −0.167885 0.985807i \(-0.553694\pi\)
0.769791 + 0.638296i \(0.220360\pi\)
\(602\) 0 0
\(603\) −8.44102 + 33.7925i −0.343745 + 1.37614i
\(604\) 0 0
\(605\) 33.7231 1.37104
\(606\) 0 0
\(607\) 9.75021i 0.395749i 0.980227 + 0.197874i \(0.0634038\pi\)
−0.980227 + 0.197874i \(0.936596\pi\)
\(608\) 0 0
\(609\) −1.20276 0.383182i −0.0487383 0.0155273i
\(610\) 0 0
\(611\) 38.9369 22.4802i 1.57522 0.909452i
\(612\) 0 0
\(613\) −6.86332 + 11.8876i −0.277207 + 0.480136i −0.970690 0.240337i \(-0.922742\pi\)
0.693483 + 0.720473i \(0.256075\pi\)
\(614\) 0 0
\(615\) −28.8361 + 22.5191i −1.16278 + 0.908058i
\(616\) 0 0
\(617\) −2.84301 1.64141i −0.114455 0.0660807i 0.441680 0.897173i \(-0.354383\pi\)
−0.556135 + 0.831092i \(0.687716\pi\)
\(618\) 0 0
\(619\) 17.3098i 0.695740i 0.937543 + 0.347870i \(0.113095\pi\)
−0.937543 + 0.347870i \(0.886905\pi\)
\(620\) 0 0
\(621\) 23.3184 10.3638i 0.935736 0.415886i
\(622\) 0 0
\(623\) 1.84606 + 24.3171i 0.0739608 + 0.974243i
\(624\) 0 0
\(625\) −29.5071 −1.18028
\(626\) 0 0
\(627\) −5.58952 39.8344i −0.223224 1.59083i
\(628\) 0 0
\(629\) −5.66923 −0.226047
\(630\) 0 0
\(631\) 6.27821 0.249932 0.124966 0.992161i \(-0.460118\pi\)
0.124966 + 0.992161i \(0.460118\pi\)
\(632\) 0 0
\(633\) −16.6120 + 12.9729i −0.660270 + 0.515628i
\(634\) 0 0
\(635\) −37.9344 −1.50538
\(636\) 0 0
\(637\) 4.32011 + 28.2892i 0.171169 + 1.12086i
\(638\) 0 0
\(639\) −21.7678 + 22.5216i −0.861120 + 0.890941i
\(640\) 0 0
\(641\) 20.7601i 0.819976i 0.912091 + 0.409988i \(0.134467\pi\)
−0.912091 + 0.409988i \(0.865533\pi\)
\(642\) 0 0
\(643\) −17.2553 9.96236i −0.680483 0.392877i 0.119554 0.992828i \(-0.461854\pi\)
−0.800037 + 0.599950i \(0.795187\pi\)
\(644\) 0 0
\(645\) 7.47577 + 53.2769i 0.294358 + 2.09778i
\(646\) 0 0
\(647\) −14.7670 + 25.5772i −0.580551 + 1.00554i 0.414863 + 0.909884i \(0.363830\pi\)
−0.995414 + 0.0956605i \(0.969504\pi\)
\(648\) 0 0
\(649\) −11.2544 + 6.49774i −0.441775 + 0.255059i
\(650\) 0 0
\(651\) −7.00044 2.23024i −0.274369 0.0874099i
\(652\) 0 0
\(653\) 15.9250i 0.623193i 0.950215 + 0.311596i \(0.100864\pi\)
−0.950215 + 0.311596i \(0.899136\pi\)
\(654\) 0 0
\(655\) 39.8493 1.55704
\(656\) 0 0
\(657\) 13.0131 + 45.4565i 0.507688 + 1.77343i
\(658\) 0 0
\(659\) −2.80283 + 1.61822i −0.109183 + 0.0630368i −0.553597 0.832785i \(-0.686745\pi\)
0.444414 + 0.895821i \(0.353412\pi\)
\(660\) 0 0
\(661\) 7.71194 4.45249i 0.299960 0.173182i −0.342465 0.939531i \(-0.611262\pi\)
0.642425 + 0.766349i \(0.277928\pi\)
\(662\) 0 0
\(663\) 11.7143 1.64374i 0.454945 0.0638375i
\(664\) 0 0
\(665\) 38.4843 2.92158i 1.49236 0.113294i
\(666\) 0 0
\(667\) −0.676383 1.17153i −0.0261896 0.0453618i
\(668\) 0 0
\(669\) 1.41511 0.198567i 0.0547112 0.00767703i
\(670\) 0 0
\(671\) −17.0285 + 29.4943i −0.657379 + 1.13861i
\(672\) 0 0
\(673\) −13.2311 22.9169i −0.510021 0.883382i −0.999933 0.0116101i \(-0.996304\pi\)
0.489912 0.871772i \(-0.337029\pi\)
\(674\) 0 0
\(675\) 8.06199 + 18.1394i 0.310306 + 0.698184i
\(676\) 0 0
\(677\) 4.46424 7.73229i 0.171575 0.297176i −0.767396 0.641174i \(-0.778448\pi\)
0.938971 + 0.343997i \(0.111781\pi\)
\(678\) 0 0
\(679\) 21.3475 1.62062i 0.819243 0.0621938i
\(680\) 0 0
\(681\) −0.535622 0.216541i −0.0205251 0.00829786i
\(682\) 0 0
\(683\) 32.7902 + 18.9314i 1.25468 + 0.724390i 0.972035 0.234834i \(-0.0754547\pi\)
0.282645 + 0.959225i \(0.408788\pi\)
\(684\) 0 0
\(685\) 26.7298i 1.02129i
\(686\) 0 0
\(687\) 9.36221 23.1578i 0.357191 0.883525i
\(688\) 0 0
\(689\) −1.66963 2.89189i −0.0636080 0.110172i
\(690\) 0 0
\(691\) 4.94211 + 2.85333i 0.188007 + 0.108546i 0.591049 0.806636i \(-0.298714\pi\)
−0.403042 + 0.915181i \(0.632047\pi\)
\(692\) 0 0
\(693\) −35.1936 + 13.0300i −1.33689 + 0.494968i
\(694\) 0 0
\(695\) −4.60039 2.65604i −0.174503 0.100749i
\(696\) 0 0
\(697\) −5.94103 10.2902i −0.225032 0.389768i
\(698\) 0 0
\(699\) 25.3424 3.55602i 0.958537 0.134501i
\(700\) 0 0
\(701\) 8.19949i 0.309690i 0.987939 + 0.154845i \(0.0494879\pi\)
−0.987939 + 0.154845i \(0.950512\pi\)
\(702\) 0 0
\(703\) −14.4357 8.33444i −0.544452 0.314339i
\(704\) 0 0
\(705\) −44.5869 + 34.8195i −1.67924 + 1.31138i
\(706\) 0 0
\(707\) 17.4268 + 8.37148i 0.655403 + 0.314842i
\(708\) 0 0
\(709\) −10.0757 + 17.4517i −0.378402 + 0.655412i −0.990830 0.135115i \(-0.956860\pi\)
0.612428 + 0.790527i \(0.290193\pi\)
\(710\) 0 0
\(711\) −35.4844 + 10.1583i −1.33077 + 0.380965i
\(712\) 0 0
\(713\) −3.93676 6.81866i −0.147433 0.255361i
\(714\) 0 0
\(715\) −28.7028 + 49.7147i −1.07342 + 1.85923i
\(716\) 0 0
\(717\) 27.7388 + 35.5200i 1.03593 + 1.32652i
\(718\) 0 0
\(719\) 25.5996 + 44.3397i 0.954702 + 1.65359i 0.735048 + 0.678015i \(0.237159\pi\)
0.219654 + 0.975578i \(0.429507\pi\)
\(720\) 0 0
\(721\) −8.04842 + 16.7543i −0.299739 + 0.623963i
\(722\) 0 0
\(723\) −1.24657 + 3.08345i −0.0463606 + 0.114675i
\(724\) 0 0
\(725\) 0.911330 0.526157i 0.0338460 0.0195410i
\(726\) 0 0
\(727\) 13.7848 7.95865i 0.511249 0.295170i −0.222098 0.975024i \(-0.571290\pi\)
0.733347 + 0.679854i \(0.237957\pi\)
\(728\) 0 0
\(729\) −18.0927 + 20.0413i −0.670099 + 0.742271i
\(730\) 0 0
\(731\) −17.4717 −0.646213
\(732\) 0 0
\(733\) 4.24025i 0.156617i −0.996929 0.0783086i \(-0.975048\pi\)
0.996929 0.0783086i \(-0.0249519\pi\)
\(734\) 0 0
\(735\) −10.3293 34.4945i −0.381003 1.27235i
\(736\) 0 0
\(737\) 47.5401 27.4473i 1.75116 1.01103i
\(738\) 0 0
\(739\) 14.1835 24.5665i 0.521747 0.903693i −0.477933 0.878397i \(-0.658614\pi\)
0.999680 0.0252966i \(-0.00805300\pi\)
\(740\) 0 0
\(741\) 32.2448 + 13.0359i 1.18454 + 0.478886i
\(742\) 0 0
\(743\) −21.8850 12.6353i −0.802884 0.463545i 0.0415945 0.999135i \(-0.486756\pi\)
−0.844479 + 0.535589i \(0.820090\pi\)
\(744\) 0 0
\(745\) 38.3327i 1.40440i
\(746\) 0 0
\(747\) 5.87413 23.5163i 0.214923 0.860416i
\(748\) 0 0
\(749\) 37.3531 2.83570i 1.36485 0.103614i
\(750\) 0 0
\(751\) −47.5460 −1.73498 −0.867490 0.497455i \(-0.834268\pi\)
−0.867490 + 0.497455i \(0.834268\pi\)
\(752\) 0 0
\(753\) 16.0204 + 6.47670i 0.583814 + 0.236024i
\(754\) 0 0
\(755\) −38.5113 −1.40157
\(756\) 0 0
\(757\) 37.3922 1.35904 0.679521 0.733656i \(-0.262188\pi\)
0.679521 + 0.733656i \(0.262188\pi\)
\(758\) 0 0
\(759\) −37.2853 15.0737i −1.35337 0.547139i
\(760\) 0 0
\(761\) −8.24283 −0.298802 −0.149401 0.988777i \(-0.547735\pi\)
−0.149401 + 0.988777i \(0.547735\pi\)
\(762\) 0 0
\(763\) 12.3299 8.42390i 0.446371 0.304966i
\(764\) 0 0
\(765\) −14.3092 + 4.09638i −0.517352 + 0.148105i
\(766\) 0 0
\(767\) 11.2365i 0.405728i
\(768\) 0 0
\(769\) 20.2182 + 11.6730i 0.729086 + 0.420938i 0.818088 0.575094i \(-0.195034\pi\)
−0.0890020 + 0.996031i \(0.528368\pi\)
\(770\) 0 0
\(771\) 24.0985 + 9.74253i 0.867887 + 0.350869i
\(772\) 0 0
\(773\) −17.2201 + 29.8261i −0.619364 + 1.07277i 0.370238 + 0.928937i \(0.379276\pi\)
−0.989602 + 0.143833i \(0.954057\pi\)
\(774\) 0 0
\(775\) 5.30422 3.06240i 0.190533 0.110004i
\(776\) 0 0
\(777\) −4.72070 + 14.8177i −0.169354 + 0.531582i
\(778\) 0 0
\(779\) 34.9361i 1.25171i
\(780\) 0 0
\(781\) 49.3644 1.76640
\(782\) 0 0
\(783\) 1.15743 + 0.842076i 0.0413632 + 0.0300933i
\(784\) 0 0
\(785\) −44.1682 + 25.5005i −1.57643 + 0.910152i
\(786\) 0 0
\(787\) 7.19975 4.15678i 0.256643 0.148173i −0.366159 0.930552i \(-0.619327\pi\)
0.622802 + 0.782379i \(0.285994\pi\)
\(788\) 0 0
\(789\) −4.58023 + 11.3294i −0.163061 + 0.403337i
\(790\) 0 0
\(791\) −20.0625 29.3650i −0.713341 1.04410i
\(792\) 0 0
\(793\) −14.7237 25.5022i −0.522854 0.905610i
\(794\) 0 0
\(795\) 2.58609 + 3.31153i 0.0917191 + 0.117448i
\(796\) 0 0
\(797\) 0.426036 0.737916i 0.0150910 0.0261383i −0.858381 0.513012i \(-0.828530\pi\)
0.873472 + 0.486874i \(0.161863\pi\)
\(798\) 0 0
\(799\) −9.18614 15.9109i −0.324982 0.562886i
\(800\) 0 0
\(801\) 6.70136 26.8280i 0.236781 0.947921i
\(802\) 0 0
\(803\) 37.2595 64.5354i 1.31486 2.27740i
\(804\) 0 0
\(805\) 16.7088 34.7826i 0.588908 1.22592i
\(806\) 0 0
\(807\) −40.6522 + 31.7467i −1.43102 + 1.11754i
\(808\) 0 0
\(809\) −31.5580 18.2200i −1.10952 0.640581i −0.170814 0.985303i \(-0.554640\pi\)
−0.938705 + 0.344722i \(0.887973\pi\)
\(810\) 0 0
\(811\) 1.08986i 0.0382702i 0.999817 + 0.0191351i \(0.00609126\pi\)
−0.999817 + 0.0191351i \(0.993909\pi\)
\(812\) 0 0
\(813\) 4.78238 0.671060i 0.167725 0.0235351i
\(814\) 0 0
\(815\) 7.51697 + 13.0198i 0.263308 + 0.456063i
\(816\) 0 0
\(817\) −44.4885 25.6855i −1.55646 0.898620i
\(818\) 0 0
\(819\) 5.45810 31.9864i 0.190721 1.11770i
\(820\) 0 0
\(821\) −20.9748 12.1098i −0.732025 0.422635i 0.0871374 0.996196i \(-0.472228\pi\)
−0.819163 + 0.573561i \(0.805561\pi\)
\(822\) 0 0
\(823\) 2.85592 + 4.94660i 0.0995512 + 0.172428i 0.911499 0.411302i \(-0.134926\pi\)
−0.811948 + 0.583730i \(0.801593\pi\)
\(824\) 0 0
\(825\) 11.7258 29.0041i 0.408239 1.00979i
\(826\) 0 0
\(827\) 36.4579i 1.26777i −0.773429 0.633883i \(-0.781460\pi\)
0.773429 0.633883i \(-0.218540\pi\)
\(828\) 0 0
\(829\) −0.498269 0.287676i −0.0173056 0.00999140i 0.491322 0.870978i \(-0.336514\pi\)
−0.508628 + 0.860986i \(0.669847\pi\)
\(830\) 0 0
\(831\) 21.8090 + 8.81692i 0.756545 + 0.305856i
\(832\) 0 0
\(833\) 11.5599 1.76534i 0.400526 0.0611653i
\(834\) 0 0
\(835\) 17.2156 29.8183i 0.595770 1.03190i
\(836\) 0 0
\(837\) 6.73660 + 4.90114i 0.232851 + 0.169408i
\(838\) 0 0
\(839\) 23.9341 + 41.4550i 0.826295 + 1.43119i 0.900925 + 0.433974i \(0.142889\pi\)
−0.0746300 + 0.997211i \(0.523778\pi\)
\(840\) 0 0
\(841\) −14.4621 + 25.0490i −0.498692 + 0.863759i
\(842\) 0 0
\(843\) −7.83874 + 1.09993i −0.269981 + 0.0378835i
\(844\) 0 0
\(845\) −5.51368 9.54997i −0.189676 0.328529i
\(846\) 0 0
\(847\) 27.0801 + 13.0087i 0.930483 + 0.446985i
\(848\) 0 0
\(849\) −34.9943 + 4.91036i −1.20100 + 0.168523i
\(850\) 0 0
\(851\) −14.4329 + 8.33286i −0.494755 + 0.285647i
\(852\) 0 0
\(853\) 40.5393 23.4054i 1.38804 0.801385i 0.394945 0.918705i \(-0.370764\pi\)
0.993094 + 0.117320i \(0.0374303\pi\)
\(854\) 0 0
\(855\) −42.4581 10.6056i −1.45204 0.362704i
\(856\) 0 0
\(857\) 9.56441 0.326714 0.163357 0.986567i \(-0.447768\pi\)
0.163357 + 0.986567i \(0.447768\pi\)
\(858\) 0 0
\(859\) 5.40759i 0.184505i −0.995736 0.0922523i \(-0.970593\pi\)
0.995736 0.0922523i \(-0.0294066\pi\)
\(860\) 0 0
\(861\) −31.8425 + 6.95961i −1.08519 + 0.237183i
\(862\) 0 0
\(863\) −35.5402 + 20.5191i −1.20980 + 0.698480i −0.962716 0.270514i \(-0.912806\pi\)
−0.247086 + 0.968994i \(0.579473\pi\)
\(864\) 0 0
\(865\) −9.30598 + 16.1184i −0.316413 + 0.548043i
\(866\) 0 0
\(867\) 3.41991 + 24.3724i 0.116146 + 0.827729i
\(868\) 0 0
\(869\) 50.3777 + 29.0856i 1.70895 + 0.986661i
\(870\) 0 0
\(871\) 47.4646i 1.60828i
\(872\) 0 0
\(873\) −23.5518 5.88301i −0.797109 0.199110i
\(874\) 0 0
\(875\) −8.35633 4.01421i −0.282496 0.135705i
\(876\) 0 0
\(877\) −14.6502 −0.494701 −0.247351 0.968926i \(-0.579560\pi\)
−0.247351 + 0.968926i \(0.579560\pi\)
\(878\) 0 0
\(879\) −17.5017 + 13.6677i −0.590317 + 0.460999i
\(880\) 0 0
\(881\) −44.8295 −1.51034 −0.755172 0.655527i \(-0.772447\pi\)
−0.755172 + 0.655527i \(0.772447\pi\)
\(882\) 0 0
\(883\) −33.8527 −1.13923 −0.569617 0.821910i \(-0.692909\pi\)
−0.569617 + 0.821910i \(0.692909\pi\)
\(884\) 0 0
\(885\) 1.96466 + 14.0014i 0.0660413 + 0.470651i
\(886\) 0 0
\(887\) 26.6844 0.895973 0.447987 0.894040i \(-0.352141\pi\)
0.447987 + 0.894040i \(0.352141\pi\)
\(888\) 0 0
\(889\) −30.4618 14.6332i −1.02166 0.490783i
\(890\) 0 0
\(891\) 42.5284 1.44810i 1.42475 0.0485132i
\(892\) 0 0
\(893\) 54.0189i 1.80767i
\(894\) 0 0
\(895\) 37.9157 + 21.8907i 1.26738 + 0.731724i
\(896\) 0 0
\(897\) 27.4066 21.4028i 0.915081 0.714619i
\(898\) 0 0
\(899\) 0.220820 0.382472i 0.00736476 0.0127561i
\(900\) 0 0
\(901\) −1.18172 + 0.682266i −0.0393688 + 0.0227296i
\(902\) 0 0
\(903\) −14.5485 + 45.6659i −0.484143 + 1.51967i
\(904\) 0 0
\(905\) 0.247582i 0.00822989i
\(906\) 0 0
\(907\) 15.9442 0.529419 0.264710 0.964328i \(-0.414724\pi\)
0.264710 + 0.964328i \(0.414724\pi\)
\(908\) 0 0
\(909\) −15.7627 15.2351i −0.522815 0.505316i
\(910\) 0 0
\(911\) −40.9207 + 23.6256i −1.35576 + 0.782750i −0.989050 0.147584i \(-0.952850\pi\)
−0.366713 + 0.930334i \(0.619517\pi\)
\(912\) 0 0
\(913\) −33.0833 + 19.1007i −1.09490 + 0.632140i
\(914\) 0 0
\(915\) 22.8055 + 29.2028i 0.753927 + 0.965415i
\(916\) 0 0
\(917\) 31.9995 + 15.3719i 1.05672 + 0.507624i
\(918\) 0 0
\(919\) −14.8163 25.6625i −0.488743 0.846528i 0.511173 0.859478i \(-0.329211\pi\)
−0.999916 + 0.0129500i \(0.995878\pi\)
\(920\) 0 0
\(921\) 1.25560 3.10578i 0.0413734 0.102339i
\(922\) 0 0
\(923\) −21.3415 + 36.9645i −0.702463 + 1.21670i
\(924\) 0 0
\(925\) −6.48212 11.2274i −0.213131 0.369153i
\(926\) 0 0
\(927\) 14.6471 15.1544i 0.481075 0.497735i
\(928\) 0 0
\(929\) 16.6186 28.7842i 0.545238 0.944380i −0.453354 0.891331i \(-0.649773\pi\)
0.998592 0.0530496i \(-0.0168941\pi\)
\(930\) 0 0
\(931\) 32.0304 + 12.4993i 1.04975 + 0.409647i
\(932\) 0 0
\(933\) −0.502822 3.58342i −0.0164617 0.117316i
\(934\) 0 0
\(935\) 20.3151 + 11.7289i 0.664373 + 0.383576i
\(936\) 0 0
\(937\) 23.8190i 0.778134i −0.921209 0.389067i \(-0.872797\pi\)
0.921209 0.389067i \(-0.127203\pi\)
\(938\) 0 0
\(939\) 23.8891 + 30.5903i 0.779591 + 0.998278i
\(940\) 0 0
\(941\) −27.1201 46.9734i −0.884091 1.53129i −0.846752 0.531988i \(-0.821445\pi\)
−0.0373389 0.999303i \(-0.511888\pi\)
\(942\) 0 0
\(943\) −30.2498 17.4647i −0.985069 0.568730i
\(944\) 0 0
\(945\) −1.20841 + 40.8112i −0.0393095 + 1.32759i
\(946\) 0 0
\(947\) −18.2427 10.5324i −0.592807 0.342257i 0.173399 0.984852i \(-0.444525\pi\)
−0.766207 + 0.642594i \(0.777858\pi\)
\(948\) 0 0
\(949\) 32.2164 + 55.8005i 1.04579 + 1.81136i
\(950\) 0 0
\(951\) −3.71495 4.75705i −0.120465 0.154258i
\(952\) 0 0
\(953\) 4.50028i 0.145778i 0.997340 + 0.0728892i \(0.0232219\pi\)
−0.997340 + 0.0728892i \(0.976778\pi\)
\(954\) 0 0
\(955\) 39.6989 + 22.9201i 1.28462 + 0.741679i
\(956\) 0 0
\(957\) −0.313468 2.23396i −0.0101330 0.0722137i
\(958\) 0 0
\(959\) 10.3110 21.4644i 0.332961 0.693122i
\(960\) 0 0
\(961\) −14.2148 + 24.6207i −0.458541 + 0.794216i
\(962\) 0 0
\(963\) −41.2101 10.2939i −1.32798 0.331715i
\(964\) 0 0
\(965\) 32.0090 + 55.4411i 1.03040 + 1.78471i
\(966\) 0 0
\(967\) 10.8811 18.8466i 0.349912 0.606065i −0.636322 0.771424i \(-0.719545\pi\)
0.986233 + 0.165359i \(0.0528783\pi\)
\(968\) 0 0
\(969\) 5.32689 13.1763i 0.171124 0.423283i
\(970\) 0 0
\(971\) 23.5222 + 40.7416i 0.754862 + 1.30746i 0.945443 + 0.325788i \(0.105629\pi\)
−0.190581 + 0.981671i \(0.561037\pi\)
\(972\) 0 0
\(973\) −2.66961 3.90744i −0.0855838 0.125267i
\(974\) 0 0
\(975\) 16.6492 + 21.3196i 0.533202 + 0.682773i
\(976\) 0 0
\(977\) −21.7766 + 12.5727i −0.696695 + 0.402237i −0.806115 0.591758i \(-0.798434\pi\)
0.109420 + 0.993996i \(0.465101\pi\)
\(978\) 0 0
\(979\) −37.7423 + 21.7905i −1.20625 + 0.696429i
\(980\) 0 0
\(981\) −16.2783 + 4.66006i −0.519725 + 0.148784i
\(982\) 0 0
\(983\) 36.2142 1.15505 0.577527 0.816372i \(-0.304018\pi\)
0.577527 + 0.816372i \(0.304018\pi\)
\(984\) 0 0
\(985\) 29.3515i 0.935216i
\(986\) 0 0
\(987\) −49.2356 + 10.7611i −1.56719 + 0.342530i
\(988\) 0 0
\(989\) −44.4801 + 25.6806i −1.41438 + 0.816595i
\(990\) 0 0
\(991\) 9.32769 16.1560i 0.296304 0.513213i −0.678984 0.734153i \(-0.737579\pi\)
0.975287 + 0.220940i \(0.0709126\pi\)
\(992\) 0 0
\(993\) −6.24829 + 4.87951i −0.198284 + 0.154847i
\(994\) 0 0
\(995\) −27.1632 15.6827i −0.861131 0.497174i
\(996\) 0 0
\(997\) 17.4836i 0.553712i −0.960911 0.276856i \(-0.910708\pi\)
0.960911 0.276856i \(-0.0892925\pi\)
\(998\) 0 0
\(999\) 10.3742 14.2592i 0.328224 0.451143i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.df.d.689.8 16
3.2 odd 2 3024.2.df.d.17.7 16
4.3 odd 2 252.2.bm.a.185.1 yes 16
7.5 odd 6 1008.2.ca.d.257.6 16
9.2 odd 6 1008.2.ca.d.353.6 16
9.7 even 3 3024.2.ca.d.2033.7 16
12.11 even 2 756.2.bm.a.17.7 16
21.5 even 6 3024.2.ca.d.2609.7 16
28.3 even 6 1764.2.x.a.293.4 16
28.11 odd 6 1764.2.x.b.293.5 16
28.19 even 6 252.2.w.a.5.3 16
28.23 odd 6 1764.2.w.b.509.6 16
28.27 even 2 1764.2.bm.a.1697.8 16
36.7 odd 6 756.2.w.a.521.7 16
36.11 even 6 252.2.w.a.101.3 yes 16
36.23 even 6 2268.2.t.b.1781.2 16
36.31 odd 6 2268.2.t.a.1781.7 16
63.47 even 6 inner 1008.2.df.d.929.8 16
63.61 odd 6 3024.2.df.d.1601.7 16
84.11 even 6 5292.2.x.b.881.2 16
84.23 even 6 5292.2.w.b.1097.2 16
84.47 odd 6 756.2.w.a.341.7 16
84.59 odd 6 5292.2.x.a.881.7 16
84.83 odd 2 5292.2.bm.a.2285.2 16
252.11 even 6 1764.2.x.a.1469.4 16
252.47 odd 6 252.2.bm.a.173.1 yes 16
252.79 odd 6 5292.2.bm.a.4625.2 16
252.83 odd 6 1764.2.w.b.1109.6 16
252.103 even 6 2268.2.t.b.2105.2 16
252.115 even 6 5292.2.x.b.4409.2 16
252.131 odd 6 2268.2.t.a.2105.7 16
252.151 odd 6 5292.2.x.a.4409.7 16
252.187 even 6 756.2.bm.a.89.7 16
252.191 even 6 1764.2.bm.a.1685.8 16
252.223 even 6 5292.2.w.b.521.2 16
252.227 odd 6 1764.2.x.b.1469.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.w.a.5.3 16 28.19 even 6
252.2.w.a.101.3 yes 16 36.11 even 6
252.2.bm.a.173.1 yes 16 252.47 odd 6
252.2.bm.a.185.1 yes 16 4.3 odd 2
756.2.w.a.341.7 16 84.47 odd 6
756.2.w.a.521.7 16 36.7 odd 6
756.2.bm.a.17.7 16 12.11 even 2
756.2.bm.a.89.7 16 252.187 even 6
1008.2.ca.d.257.6 16 7.5 odd 6
1008.2.ca.d.353.6 16 9.2 odd 6
1008.2.df.d.689.8 16 1.1 even 1 trivial
1008.2.df.d.929.8 16 63.47 even 6 inner
1764.2.w.b.509.6 16 28.23 odd 6
1764.2.w.b.1109.6 16 252.83 odd 6
1764.2.x.a.293.4 16 28.3 even 6
1764.2.x.a.1469.4 16 252.11 even 6
1764.2.x.b.293.5 16 28.11 odd 6
1764.2.x.b.1469.5 16 252.227 odd 6
1764.2.bm.a.1685.8 16 252.191 even 6
1764.2.bm.a.1697.8 16 28.27 even 2
2268.2.t.a.1781.7 16 36.31 odd 6
2268.2.t.a.2105.7 16 252.131 odd 6
2268.2.t.b.1781.2 16 36.23 even 6
2268.2.t.b.2105.2 16 252.103 even 6
3024.2.ca.d.2033.7 16 9.7 even 3
3024.2.ca.d.2609.7 16 21.5 even 6
3024.2.df.d.17.7 16 3.2 odd 2
3024.2.df.d.1601.7 16 63.61 odd 6
5292.2.w.b.521.2 16 252.223 even 6
5292.2.w.b.1097.2 16 84.23 even 6
5292.2.x.a.881.7 16 84.59 odd 6
5292.2.x.a.4409.7 16 252.151 odd 6
5292.2.x.b.881.2 16 84.11 even 6
5292.2.x.b.4409.2 16 252.115 even 6
5292.2.bm.a.2285.2 16 84.83 odd 2
5292.2.bm.a.4625.2 16 252.79 odd 6