# Properties

 Label 300.3.c.b Level $300$ Weight $3$ Character orbit 300.c Analytic conductor $8.174$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$300 = 2^{2} \cdot 3 \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$3$$ Character orbit: $$[\chi]$$ $$=$$ 300.c (of order $$2$$, degree $$1$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$8.17440793081$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 12) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + 2 \zeta_{6} q^{2} + ( 1 - 2 \zeta_{6} ) q^{3} + ( -4 + 4 \zeta_{6} ) q^{4} + ( 4 - 2 \zeta_{6} ) q^{6} + ( -4 + 8 \zeta_{6} ) q^{7} -8 q^{8} -3 q^{9} +O(q^{10})$$ $$q + 2 \zeta_{6} q^{2} + ( 1 - 2 \zeta_{6} ) q^{3} + ( -4 + 4 \zeta_{6} ) q^{4} + ( 4 - 2 \zeta_{6} ) q^{6} + ( -4 + 8 \zeta_{6} ) q^{7} -8 q^{8} -3 q^{9} + ( -4 + 8 \zeta_{6} ) q^{11} + ( 4 + 4 \zeta_{6} ) q^{12} -2 q^{13} + ( -16 + 8 \zeta_{6} ) q^{14} -16 \zeta_{6} q^{16} -10 q^{17} -6 \zeta_{6} q^{18} + ( -12 + 24 \zeta_{6} ) q^{19} + 12 q^{21} + ( -16 + 8 \zeta_{6} ) q^{22} + ( -16 + 32 \zeta_{6} ) q^{23} + ( -8 + 16 \zeta_{6} ) q^{24} -4 \zeta_{6} q^{26} + ( -3 + 6 \zeta_{6} ) q^{27} + ( -16 - 16 \zeta_{6} ) q^{28} -26 q^{29} + ( -4 + 8 \zeta_{6} ) q^{31} + ( 32 - 32 \zeta_{6} ) q^{32} + 12 q^{33} -20 \zeta_{6} q^{34} + ( 12 - 12 \zeta_{6} ) q^{36} -26 q^{37} + ( -48 + 24 \zeta_{6} ) q^{38} + ( -2 + 4 \zeta_{6} ) q^{39} + 58 q^{41} + 24 \zeta_{6} q^{42} + ( -28 + 56 \zeta_{6} ) q^{43} + ( -16 - 16 \zeta_{6} ) q^{44} + ( -64 + 32 \zeta_{6} ) q^{46} + ( 40 - 80 \zeta_{6} ) q^{47} + ( -32 + 16 \zeta_{6} ) q^{48} + q^{49} + ( -10 + 20 \zeta_{6} ) q^{51} + ( 8 - 8 \zeta_{6} ) q^{52} + 74 q^{53} + ( -12 + 6 \zeta_{6} ) q^{54} + ( 32 - 64 \zeta_{6} ) q^{56} + 36 q^{57} -52 \zeta_{6} q^{58} + ( 52 - 104 \zeta_{6} ) q^{59} + 26 q^{61} + ( -16 + 8 \zeta_{6} ) q^{62} + ( 12 - 24 \zeta_{6} ) q^{63} + 64 q^{64} + 24 \zeta_{6} q^{66} + ( 4 - 8 \zeta_{6} ) q^{67} + ( 40 - 40 \zeta_{6} ) q^{68} + 48 q^{69} + 24 q^{72} + 46 q^{73} -52 \zeta_{6} q^{74} + ( -48 - 48 \zeta_{6} ) q^{76} -48 q^{77} + ( -8 + 4 \zeta_{6} ) q^{78} + ( -68 + 136 \zeta_{6} ) q^{79} + 9 q^{81} + 116 \zeta_{6} q^{82} + ( 28 - 56 \zeta_{6} ) q^{83} + ( -48 + 48 \zeta_{6} ) q^{84} + ( -112 + 56 \zeta_{6} ) q^{86} + ( -26 + 52 \zeta_{6} ) q^{87} + ( 32 - 64 \zeta_{6} ) q^{88} + 82 q^{89} + ( 8 - 16 \zeta_{6} ) q^{91} + ( -64 - 64 \zeta_{6} ) q^{92} + 12 q^{93} + ( 160 - 80 \zeta_{6} ) q^{94} + ( -32 - 32 \zeta_{6} ) q^{96} -2 q^{97} + 2 \zeta_{6} q^{98} + ( 12 - 24 \zeta_{6} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + 2q^{2} - 4q^{4} + 6q^{6} - 16q^{8} - 6q^{9} + O(q^{10})$$ $$2q + 2q^{2} - 4q^{4} + 6q^{6} - 16q^{8} - 6q^{9} + 12q^{12} - 4q^{13} - 24q^{14} - 16q^{16} - 20q^{17} - 6q^{18} + 24q^{21} - 24q^{22} - 4q^{26} - 48q^{28} - 52q^{29} + 32q^{32} + 24q^{33} - 20q^{34} + 12q^{36} - 52q^{37} - 72q^{38} + 116q^{41} + 24q^{42} - 48q^{44} - 96q^{46} - 48q^{48} + 2q^{49} + 8q^{52} + 148q^{53} - 18q^{54} + 72q^{57} - 52q^{58} + 52q^{61} - 24q^{62} + 128q^{64} + 24q^{66} + 40q^{68} + 96q^{69} + 48q^{72} + 92q^{73} - 52q^{74} - 144q^{76} - 96q^{77} - 12q^{78} + 18q^{81} + 116q^{82} - 48q^{84} - 168q^{86} + 164q^{89} - 192q^{92} + 24q^{93} + 240q^{94} - 96q^{96} - 4q^{97} + 2q^{98} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/300\mathbb{Z}\right)^\times$$.

 $$n$$ $$101$$ $$151$$ $$277$$ $$\chi(n)$$ $$1$$ $$-1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
151.1
 0.5 − 0.866025i 0.5 + 0.866025i
1.00000 1.73205i 1.73205i −2.00000 3.46410i 0 3.00000 + 1.73205i 6.92820i −8.00000 −3.00000 0
151.2 1.00000 + 1.73205i 1.73205i −2.00000 + 3.46410i 0 3.00000 1.73205i 6.92820i −8.00000 −3.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 300.3.c.b 2
3.b odd 2 1 900.3.c.e 2
4.b odd 2 1 inner 300.3.c.b 2
5.b even 2 1 12.3.d.a 2
5.c odd 4 2 300.3.f.a 4
12.b even 2 1 900.3.c.e 2
15.d odd 2 1 36.3.d.c 2
15.e even 4 2 900.3.f.c 4
20.d odd 2 1 12.3.d.a 2
20.e even 4 2 300.3.f.a 4
35.c odd 2 1 588.3.g.b 2
40.e odd 2 1 192.3.g.b 2
40.f even 2 1 192.3.g.b 2
45.h odd 6 1 324.3.f.a 2
45.h odd 6 1 324.3.f.g 2
45.j even 6 1 324.3.f.d 2
45.j even 6 1 324.3.f.j 2
60.h even 2 1 36.3.d.c 2
60.l odd 4 2 900.3.f.c 4
80.k odd 4 2 768.3.b.c 4
80.q even 4 2 768.3.b.c 4
120.i odd 2 1 576.3.g.e 2
120.m even 2 1 576.3.g.e 2
140.c even 2 1 588.3.g.b 2
180.n even 6 1 324.3.f.a 2
180.n even 6 1 324.3.f.g 2
180.p odd 6 1 324.3.f.d 2
180.p odd 6 1 324.3.f.j 2
240.t even 4 2 2304.3.b.l 4
240.bm odd 4 2 2304.3.b.l 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
12.3.d.a 2 5.b even 2 1
12.3.d.a 2 20.d odd 2 1
36.3.d.c 2 15.d odd 2 1
36.3.d.c 2 60.h even 2 1
192.3.g.b 2 40.e odd 2 1
192.3.g.b 2 40.f even 2 1
300.3.c.b 2 1.a even 1 1 trivial
300.3.c.b 2 4.b odd 2 1 inner
300.3.f.a 4 5.c odd 4 2
300.3.f.a 4 20.e even 4 2
324.3.f.a 2 45.h odd 6 1
324.3.f.a 2 180.n even 6 1
324.3.f.d 2 45.j even 6 1
324.3.f.d 2 180.p odd 6 1
324.3.f.g 2 45.h odd 6 1
324.3.f.g 2 180.n even 6 1
324.3.f.j 2 45.j even 6 1
324.3.f.j 2 180.p odd 6 1
576.3.g.e 2 120.i odd 2 1
576.3.g.e 2 120.m even 2 1
588.3.g.b 2 35.c odd 2 1
588.3.g.b 2 140.c even 2 1
768.3.b.c 4 80.k odd 4 2
768.3.b.c 4 80.q even 4 2
900.3.c.e 2 3.b odd 2 1
900.3.c.e 2 12.b even 2 1
900.3.f.c 4 15.e even 4 2
900.3.f.c 4 60.l odd 4 2
2304.3.b.l 4 240.t even 4 2
2304.3.b.l 4 240.bm odd 4 2

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{3}^{\mathrm{new}}(300, [\chi])$$:

 $$T_{7}^{2} + 48$$ $$T_{13} + 2$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$4 - 2 T + T^{2}$$
$3$ $$3 + T^{2}$$
$5$ $$T^{2}$$
$7$ $$48 + T^{2}$$
$11$ $$48 + T^{2}$$
$13$ $$( 2 + T )^{2}$$
$17$ $$( 10 + T )^{2}$$
$19$ $$432 + T^{2}$$
$23$ $$768 + T^{2}$$
$29$ $$( 26 + T )^{2}$$
$31$ $$48 + T^{2}$$
$37$ $$( 26 + T )^{2}$$
$41$ $$( -58 + T )^{2}$$
$43$ $$2352 + T^{2}$$
$47$ $$4800 + T^{2}$$
$53$ $$( -74 + T )^{2}$$
$59$ $$8112 + T^{2}$$
$61$ $$( -26 + T )^{2}$$
$67$ $$48 + T^{2}$$
$71$ $$T^{2}$$
$73$ $$( -46 + T )^{2}$$
$79$ $$13872 + T^{2}$$
$83$ $$2352 + T^{2}$$
$89$ $$( -82 + T )^{2}$$
$97$ $$( 2 + T )^{2}$$