Properties

Label 30.4.e.a.23.1
Level $30$
Weight $4$
Character 30.23
Analytic conductor $1.770$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [30,4,Mod(17,30)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("30.17"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(30, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 30 = 2 \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 30.e (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.77005730017\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 1577x^{8} + 284056x^{4} + 810000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{7}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 23.1
Root \(2.67233 + 2.67233i\) of defining polynomial
Character \(\chi\) \(=\) 30.23
Dual form 30.4.e.a.17.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.41421 - 1.41421i) q^{2} +(-4.79094 + 2.01170i) q^{3} +4.00000i q^{4} +(-10.8454 + 2.71609i) q^{5} +(9.62038 + 3.93044i) q^{6} +(-16.1789 + 16.1789i) q^{7} +(5.65685 - 5.65685i) q^{8} +(18.9062 - 19.2758i) q^{9} +(19.1789 + 11.4966i) q^{10} -12.7562i q^{11} +(-8.04679 - 19.1637i) q^{12} +(-34.2057 - 34.2057i) q^{13} +45.7607 q^{14} +(46.4957 - 34.8303i) q^{15} -16.0000 q^{16} +(26.9917 + 26.9917i) q^{17} +(-53.9975 + 0.522794i) q^{18} +136.755i q^{19} +(-10.8644 - 43.3816i) q^{20} +(44.9649 - 110.059i) q^{21} +(-18.0400 + 18.0400i) q^{22} +(-72.2934 + 72.2934i) q^{23} +(-15.7218 + 38.4815i) q^{24} +(110.246 - 58.9143i) q^{25} +96.7483i q^{26} +(-51.8011 + 130.383i) q^{27} +(-64.7154 - 64.7154i) q^{28} -206.570 q^{29} +(-115.012 - 16.4974i) q^{30} +6.41137 q^{31} +(22.6274 + 22.6274i) q^{32} +(25.6616 + 61.1141i) q^{33} -76.3440i q^{34} +(131.523 - 219.410i) q^{35} +(77.1033 + 75.6246i) q^{36} +(148.178 - 148.178i) q^{37} +(193.401 - 193.401i) q^{38} +(232.689 + 95.0658i) q^{39} +(-45.9863 + 76.7154i) q^{40} +20.5652i q^{41} +(-219.237 + 92.0567i) q^{42} +(-162.284 - 162.284i) q^{43} +51.0248 q^{44} +(-152.690 + 260.405i) q^{45} +204.477 q^{46} +(191.575 + 191.575i) q^{47} +(76.6550 - 32.1871i) q^{48} -180.511i q^{49} +(-239.228 - 72.5935i) q^{50} +(-183.615 - 75.0164i) q^{51} +(136.823 - 136.823i) q^{52} +(12.0238 - 12.0238i) q^{53} +(257.647 - 111.131i) q^{54} +(34.6470 + 138.346i) q^{55} +183.043i q^{56} +(-275.110 - 655.187i) q^{57} +(292.134 + 292.134i) q^{58} -627.311 q^{59} +(139.321 + 185.983i) q^{60} -543.776 q^{61} +(-9.06704 - 9.06704i) q^{62} +(5.98086 + 617.741i) q^{63} -64.0000i q^{64} +(463.880 + 278.069i) q^{65} +(50.1375 - 122.719i) q^{66} +(-120.548 + 120.548i) q^{67} +(-107.967 + 107.967i) q^{68} +(200.921 - 491.786i) q^{69} +(-496.294 + 124.290i) q^{70} -149.269i q^{71} +(-2.09118 - 215.990i) q^{72} +(771.809 + 771.809i) q^{73} -419.112 q^{74} +(-409.662 + 504.035i) q^{75} -547.022 q^{76} +(206.381 + 206.381i) q^{77} +(-194.628 - 463.515i) q^{78} +97.9422i q^{79} +(173.526 - 43.4575i) q^{80} +(-14.1148 - 728.863i) q^{81} +(29.0836 - 29.0836i) q^{82} +(735.158 - 735.158i) q^{83} +(440.235 + 179.860i) q^{84} +(-366.048 - 219.424i) q^{85} +459.009i q^{86} +(989.662 - 415.556i) q^{87} +(-72.1599 - 72.1599i) q^{88} +492.823 q^{89} +(584.205 - 152.332i) q^{90} +1106.82 q^{91} +(-289.174 - 289.174i) q^{92} +(-30.7164 + 12.8977i) q^{93} -541.857i q^{94} +(-371.441 - 1483.17i) q^{95} +(-153.926 - 62.8870i) q^{96} +(-811.978 + 811.978i) q^{97} +(-255.281 + 255.281i) q^{98} +(-245.886 - 241.171i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 8 q^{3} + 8 q^{6} + 12 q^{7} + 24 q^{10} - 32 q^{12} - 120 q^{13} - 172 q^{15} - 192 q^{16} - 16 q^{18} + 464 q^{21} + 312 q^{22} + 504 q^{25} - 688 q^{27} + 48 q^{28} + 168 q^{30} - 504 q^{31} + 788 q^{33}+ \cdots - 7596 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/30\mathbb{Z}\right)^\times\).

\(n\) \(7\) \(11\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41421 1.41421i −0.500000 0.500000i
\(3\) −4.79094 + 2.01170i −0.922016 + 0.387151i
\(4\) 4.00000i 0.500000i
\(5\) −10.8454 + 2.71609i −0.970043 + 0.242935i
\(6\) 9.62038 + 3.93044i 0.654584 + 0.267433i
\(7\) −16.1789 + 16.1789i −0.873576 + 0.873576i −0.992860 0.119284i \(-0.961940\pi\)
0.119284 + 0.992860i \(0.461940\pi\)
\(8\) 5.65685 5.65685i 0.250000 0.250000i
\(9\) 18.9062 19.2758i 0.700228 0.713919i
\(10\) 19.1789 + 11.4966i 0.606489 + 0.363554i
\(11\) 12.7562i 0.349649i −0.984600 0.174824i \(-0.944064\pi\)
0.984600 0.174824i \(-0.0559358\pi\)
\(12\) −8.04679 19.1637i −0.193576 0.461008i
\(13\) −34.2057 34.2057i −0.729765 0.729765i 0.240808 0.970573i \(-0.422588\pi\)
−0.970573 + 0.240808i \(0.922588\pi\)
\(14\) 45.7607 0.873576
\(15\) 46.4957 34.8303i 0.800343 0.599543i
\(16\) −16.0000 −0.250000
\(17\) 26.9917 + 26.9917i 0.385085 + 0.385085i 0.872930 0.487845i \(-0.162217\pi\)
−0.487845 + 0.872930i \(0.662217\pi\)
\(18\) −53.9975 + 0.522794i −0.707074 + 0.00684577i
\(19\) 136.755i 1.65125i 0.564216 + 0.825627i \(0.309179\pi\)
−0.564216 + 0.825627i \(0.690821\pi\)
\(20\) −10.8644 43.3816i −0.121467 0.485021i
\(21\) 44.9649 110.059i 0.467245 1.14366i
\(22\) −18.0400 + 18.0400i −0.174824 + 0.174824i
\(23\) −72.2934 + 72.2934i −0.655401 + 0.655401i −0.954288 0.298887i \(-0.903384\pi\)
0.298887 + 0.954288i \(0.403384\pi\)
\(24\) −15.7218 + 38.4815i −0.133716 + 0.327292i
\(25\) 110.246 58.9143i 0.881965 0.471314i
\(26\) 96.7483i 0.729765i
\(27\) −51.8011 + 130.383i −0.369227 + 0.929339i
\(28\) −64.7154 64.7154i −0.436788 0.436788i
\(29\) −206.570 −1.32272 −0.661362 0.750066i \(-0.730021\pi\)
−0.661362 + 0.750066i \(0.730021\pi\)
\(30\) −115.012 16.4974i −0.699943 0.100400i
\(31\) 6.41137 0.0371457 0.0185728 0.999828i \(-0.494088\pi\)
0.0185728 + 0.999828i \(0.494088\pi\)
\(32\) 22.6274 + 22.6274i 0.125000 + 0.125000i
\(33\) 25.6616 + 61.1141i 0.135367 + 0.322382i
\(34\) 76.3440i 0.385085i
\(35\) 131.523 219.410i 0.635184 1.05963i
\(36\) 77.1033 + 75.6246i 0.356960 + 0.350114i
\(37\) 148.178 148.178i 0.658388 0.658388i −0.296610 0.954999i \(-0.595856\pi\)
0.954999 + 0.296610i \(0.0958562\pi\)
\(38\) 193.401 193.401i 0.825627 0.825627i
\(39\) 232.689 + 95.0658i 0.955385 + 0.390326i
\(40\) −45.9863 + 76.7154i −0.181777 + 0.303244i
\(41\) 20.5652i 0.0783354i 0.999233 + 0.0391677i \(0.0124706\pi\)
−0.999233 + 0.0391677i \(0.987529\pi\)
\(42\) −219.237 + 92.0567i −0.805451 + 0.338206i
\(43\) −162.284 162.284i −0.575537 0.575537i 0.358133 0.933670i \(-0.383413\pi\)
−0.933670 + 0.358133i \(0.883413\pi\)
\(44\) 51.0248 0.174824
\(45\) −152.690 + 260.405i −0.505815 + 0.862642i
\(46\) 204.477 0.655401
\(47\) 191.575 + 191.575i 0.594556 + 0.594556i 0.938859 0.344303i \(-0.111885\pi\)
−0.344303 + 0.938859i \(0.611885\pi\)
\(48\) 76.6550 32.1871i 0.230504 0.0967878i
\(49\) 180.511i 0.526271i
\(50\) −239.228 72.5935i −0.676640 0.205326i
\(51\) −183.615 75.0164i −0.504141 0.205969i
\(52\) 136.823 136.823i 0.364883 0.364883i
\(53\) 12.0238 12.0238i 0.0311622 0.0311622i −0.691354 0.722516i \(-0.742985\pi\)
0.722516 + 0.691354i \(0.242985\pi\)
\(54\) 257.647 111.131i 0.649283 0.280056i
\(55\) 34.6470 + 138.346i 0.0849419 + 0.339174i
\(56\) 183.043i 0.436788i
\(57\) −275.110 655.187i −0.639285 1.52248i
\(58\) 292.134 + 292.134i 0.661362 + 0.661362i
\(59\) −627.311 −1.38422 −0.692110 0.721792i \(-0.743319\pi\)
−0.692110 + 0.721792i \(0.743319\pi\)
\(60\) 139.321 + 185.983i 0.299772 + 0.400171i
\(61\) −543.776 −1.14137 −0.570684 0.821170i \(-0.693322\pi\)
−0.570684 + 0.821170i \(0.693322\pi\)
\(62\) −9.06704 9.06704i −0.0185728 0.0185728i
\(63\) 5.98086 + 617.741i 0.0119606 + 1.23537i
\(64\) 64.0000i 0.125000i
\(65\) 463.880 + 278.069i 0.885189 + 0.530618i
\(66\) 50.1375 122.719i 0.0935075 0.228874i
\(67\) −120.548 + 120.548i −0.219810 + 0.219810i −0.808419 0.588608i \(-0.799676\pi\)
0.588608 + 0.808419i \(0.299676\pi\)
\(68\) −107.967 + 107.967i −0.192543 + 0.192543i
\(69\) 200.921 491.786i 0.350551 0.858029i
\(70\) −496.294 + 124.290i −0.847406 + 0.212222i
\(71\) 149.269i 0.249507i −0.992188 0.124753i \(-0.960186\pi\)
0.992188 0.124753i \(-0.0398140\pi\)
\(72\) −2.09118 215.990i −0.00342288 0.353537i
\(73\) 771.809 + 771.809i 1.23744 + 1.23744i 0.961042 + 0.276402i \(0.0891422\pi\)
0.276402 + 0.961042i \(0.410858\pi\)
\(74\) −419.112 −0.658388
\(75\) −409.662 + 504.035i −0.630717 + 0.776013i
\(76\) −547.022 −0.825627
\(77\) 206.381 + 206.381i 0.305445 + 0.305445i
\(78\) −194.628 463.515i −0.282530 0.672855i
\(79\) 97.9422i 0.139486i 0.997565 + 0.0697428i \(0.0222178\pi\)
−0.997565 + 0.0697428i \(0.977782\pi\)
\(80\) 173.526 43.4575i 0.242511 0.0607337i
\(81\) −14.1148 728.863i −0.0193619 0.999813i
\(82\) 29.0836 29.0836i 0.0391677 0.0391677i
\(83\) 735.158 735.158i 0.972218 0.972218i −0.0274067 0.999624i \(-0.508725\pi\)
0.999624 + 0.0274067i \(0.00872490\pi\)
\(84\) 440.235 + 179.860i 0.571829 + 0.233623i
\(85\) −366.048 219.424i −0.467100 0.279998i
\(86\) 459.009i 0.575537i
\(87\) 989.662 415.556i 1.21957 0.512095i
\(88\) −72.1599 72.1599i −0.0874122 0.0874122i
\(89\) 492.823 0.586956 0.293478 0.955966i \(-0.405187\pi\)
0.293478 + 0.955966i \(0.405187\pi\)
\(90\) 584.205 152.332i 0.684228 0.178413i
\(91\) 1106.82 1.27501
\(92\) −289.174 289.174i −0.327700 0.327700i
\(93\) −30.7164 + 12.8977i −0.0342489 + 0.0143810i
\(94\) 541.857i 0.594556i
\(95\) −371.441 1483.17i −0.401147 1.60179i
\(96\) −153.926 62.8870i −0.163646 0.0668581i
\(97\) −811.978 + 811.978i −0.849937 + 0.849937i −0.990125 0.140188i \(-0.955229\pi\)
0.140188 + 0.990125i \(0.455229\pi\)
\(98\) −255.281 + 255.281i −0.263135 + 0.263135i
\(99\) −245.886 241.171i −0.249621 0.244834i
\(100\) 235.657 + 440.983i 0.235657 + 0.440983i
\(101\) 1221.28i 1.20319i 0.798801 + 0.601596i \(0.205468\pi\)
−0.798801 + 0.601596i \(0.794532\pi\)
\(102\) 153.581 + 365.760i 0.149086 + 0.355055i
\(103\) −1013.81 1013.81i −0.969841 0.969841i 0.0297171 0.999558i \(-0.490539\pi\)
−0.999558 + 0.0297171i \(0.990539\pi\)
\(104\) −386.993 −0.364883
\(105\) −188.733 + 1315.76i −0.175414 + 1.22291i
\(106\) −34.0085 −0.0311622
\(107\) 104.272 + 104.272i 0.0942090 + 0.0942090i 0.752641 0.658432i \(-0.228780\pi\)
−0.658432 + 0.752641i \(0.728780\pi\)
\(108\) −521.531 207.204i −0.464670 0.184613i
\(109\) 728.726i 0.640360i 0.947357 + 0.320180i \(0.103743\pi\)
−0.947357 + 0.320180i \(0.896257\pi\)
\(110\) 146.653 244.649i 0.127116 0.212058i
\(111\) −411.823 + 1008.00i −0.352149 + 0.861941i
\(112\) 258.862 258.862i 0.218394 0.218394i
\(113\) −124.657 + 124.657i −0.103777 + 0.103777i −0.757089 0.653312i \(-0.773379\pi\)
0.653312 + 0.757089i \(0.273379\pi\)
\(114\) −537.509 + 1315.64i −0.441599 + 1.08088i
\(115\) 587.696 980.407i 0.476547 0.794986i
\(116\) 826.279i 0.661362i
\(117\) −1306.04 + 12.6449i −1.03200 + 0.00999161i
\(118\) 887.152 + 887.152i 0.692110 + 0.692110i
\(119\) −873.390 −0.672802
\(120\) 65.9895 460.049i 0.0501999 0.349971i
\(121\) 1168.28 0.877746
\(122\) 769.015 + 769.015i 0.570684 + 0.570684i
\(123\) −41.3710 98.5267i −0.0303276 0.0722265i
\(124\) 25.6455i 0.0185728i
\(125\) −1035.64 + 938.387i −0.741045 + 0.671455i
\(126\) 865.159 882.076i 0.611702 0.623663i
\(127\) 292.476 292.476i 0.204355 0.204355i −0.597508 0.801863i \(-0.703842\pi\)
0.801863 + 0.597508i \(0.203842\pi\)
\(128\) −90.5097 + 90.5097i −0.0625000 + 0.0625000i
\(129\) 1103.96 + 451.026i 0.753474 + 0.307835i
\(130\) −262.777 1049.27i −0.177285 0.707903i
\(131\) 464.976i 0.310115i 0.987905 + 0.155058i \(0.0495563\pi\)
−0.987905 + 0.155058i \(0.950444\pi\)
\(132\) −244.457 + 102.646i −0.161191 + 0.0676835i
\(133\) −2212.55 2212.55i −1.44250 1.44250i
\(134\) 340.962 0.219810
\(135\) 207.672 1554.75i 0.132397 0.991197i
\(136\) 305.376 0.192543
\(137\) −102.116 102.116i −0.0636815 0.0636815i 0.674549 0.738230i \(-0.264338\pi\)
−0.738230 + 0.674549i \(0.764338\pi\)
\(138\) −979.635 + 411.345i −0.604290 + 0.253739i
\(139\) 336.335i 0.205234i 0.994721 + 0.102617i \(0.0327216\pi\)
−0.994721 + 0.102617i \(0.967278\pi\)
\(140\) 877.638 + 526.092i 0.529814 + 0.317592i
\(141\) −1303.22 532.434i −0.778373 0.318007i
\(142\) −211.098 + 211.098i −0.124753 + 0.124753i
\(143\) −436.334 + 436.334i −0.255162 + 0.255162i
\(144\) −302.498 + 308.413i −0.175057 + 0.178480i
\(145\) 2240.33 561.063i 1.28310 0.321336i
\(146\) 2183.01i 1.23744i
\(147\) 363.133 + 864.816i 0.203746 + 0.485230i
\(148\) 592.713 + 592.713i 0.329194 + 0.329194i
\(149\) 3241.32 1.78214 0.891071 0.453864i \(-0.149955\pi\)
0.891071 + 0.453864i \(0.149955\pi\)
\(150\) 1292.16 133.464i 0.703365 0.0726484i
\(151\) −224.154 −0.120804 −0.0604019 0.998174i \(-0.519238\pi\)
−0.0604019 + 0.998174i \(0.519238\pi\)
\(152\) 773.605 + 773.605i 0.412814 + 0.412814i
\(153\) 1030.60 9.97806i 0.544567 0.00527241i
\(154\) 583.733i 0.305445i
\(155\) −69.5339 + 17.4139i −0.0360329 + 0.00902397i
\(156\) −380.263 + 930.755i −0.195163 + 0.477693i
\(157\) −1006.73 + 1006.73i −0.511759 + 0.511759i −0.915065 0.403306i \(-0.867861\pi\)
0.403306 + 0.915065i \(0.367861\pi\)
\(158\) 138.511 138.511i 0.0697428 0.0697428i
\(159\) −33.4171 + 81.7936i −0.0166676 + 0.0407966i
\(160\) −306.862 183.945i −0.151622 0.0908885i
\(161\) 2339.25i 1.14509i
\(162\) −1010.81 + 1050.73i −0.490225 + 0.509587i
\(163\) 694.457 + 694.457i 0.333706 + 0.333706i 0.853992 0.520286i \(-0.174175\pi\)
−0.520286 + 0.853992i \(0.674175\pi\)
\(164\) −82.2609 −0.0391677
\(165\) −444.302 593.108i −0.209630 0.279839i
\(166\) −2079.34 −0.972218
\(167\) −1875.50 1875.50i −0.869044 0.869044i 0.123322 0.992367i \(-0.460645\pi\)
−0.992367 + 0.123322i \(0.960645\pi\)
\(168\) −368.227 876.947i −0.169103 0.402726i
\(169\) 143.057i 0.0651149i
\(170\) 207.358 + 827.982i 0.0935506 + 0.373549i
\(171\) 2636.07 + 2585.52i 1.17886 + 1.15625i
\(172\) 649.136 649.136i 0.287768 0.287768i
\(173\) −2100.72 + 2100.72i −0.923208 + 0.923208i −0.997255 0.0740463i \(-0.976409\pi\)
0.0740463 + 0.997255i \(0.476409\pi\)
\(174\) −1987.28 811.910i −0.865834 0.353740i
\(175\) −830.483 + 2736.81i −0.358735 + 1.18219i
\(176\) 204.099i 0.0874122i
\(177\) 3005.41 1261.96i 1.27627 0.535902i
\(178\) −696.957 696.957i −0.293478 0.293478i
\(179\) −1272.12 −0.531190 −0.265595 0.964085i \(-0.585568\pi\)
−0.265595 + 0.964085i \(0.585568\pi\)
\(180\) −1041.62 610.760i −0.431321 0.252908i
\(181\) 62.7280 0.0257599 0.0128799 0.999917i \(-0.495900\pi\)
0.0128799 + 0.999917i \(0.495900\pi\)
\(182\) −1565.28 1565.28i −0.637506 0.637506i
\(183\) 2605.20 1093.91i 1.05236 0.441882i
\(184\) 817.907i 0.327700i
\(185\) −1204.59 + 2009.52i −0.478719 + 0.798610i
\(186\) 61.6798 + 25.1995i 0.0243149 + 0.00993396i
\(187\) 344.311 344.311i 0.134645 0.134645i
\(188\) −766.301 + 766.301i −0.297278 + 0.297278i
\(189\) −1271.36 2947.53i −0.489301 1.13440i
\(190\) −1572.22 + 2622.81i −0.600320 + 1.00147i
\(191\) 2039.90i 0.772785i 0.922335 + 0.386392i \(0.126279\pi\)
−0.922335 + 0.386392i \(0.873721\pi\)
\(192\) 128.749 + 306.620i 0.0483939 + 0.115252i
\(193\) 1274.49 + 1274.49i 0.475335 + 0.475335i 0.903636 0.428301i \(-0.140888\pi\)
−0.428301 + 0.903636i \(0.640888\pi\)
\(194\) 2296.62 0.849937
\(195\) −2781.81 399.023i −1.02159 0.146537i
\(196\) 722.043 0.263135
\(197\) −1983.65 1983.65i −0.717407 0.717407i 0.250667 0.968073i \(-0.419350\pi\)
−0.968073 + 0.250667i \(0.919350\pi\)
\(198\) 6.66887 + 688.802i 0.00239362 + 0.247228i
\(199\) 1815.35i 0.646666i 0.946285 + 0.323333i \(0.104803\pi\)
−0.946285 + 0.323333i \(0.895197\pi\)
\(200\) 290.374 956.913i 0.102663 0.338320i
\(201\) 335.032 820.045i 0.117569 0.287769i
\(202\) 1727.16 1727.16i 0.601596 0.601596i
\(203\) 3342.06 3342.06i 1.15550 1.15550i
\(204\) 300.066 734.459i 0.102984 0.252070i
\(205\) −55.8571 223.038i −0.0190304 0.0759886i
\(206\) 2867.49i 0.969841i
\(207\) 26.7248 + 2760.31i 0.00897345 + 0.926833i
\(208\) 547.291 + 547.291i 0.182441 + 0.182441i
\(209\) 1744.48 0.577360
\(210\) 2127.68 1593.86i 0.699160 0.523746i
\(211\) −3581.87 −1.16865 −0.584327 0.811518i \(-0.698642\pi\)
−0.584327 + 0.811518i \(0.698642\pi\)
\(212\) 48.0952 + 48.0952i 0.0155811 + 0.0155811i
\(213\) 300.284 + 715.139i 0.0965969 + 0.230049i
\(214\) 294.926i 0.0942090i
\(215\) 2200.82 + 1319.26i 0.698113 + 0.418477i
\(216\) 444.525 + 1030.59i 0.140028 + 0.324642i
\(217\) −103.729 + 103.729i −0.0324496 + 0.0324496i
\(218\) 1030.57 1030.57i 0.320180 0.320180i
\(219\) −5250.34 2145.04i −1.62002 0.661866i
\(220\) −553.385 + 138.588i −0.169587 + 0.0424709i
\(221\) 1846.54i 0.562044i
\(222\) 2007.94 843.126i 0.607045 0.254896i
\(223\) −285.691 285.691i −0.0857906 0.0857906i 0.662909 0.748700i \(-0.269322\pi\)
−0.748700 + 0.662909i \(0.769322\pi\)
\(224\) −732.171 −0.218394
\(225\) 948.700 3238.92i 0.281096 0.959680i
\(226\) 352.584 0.103777
\(227\) 4779.51 + 4779.51i 1.39748 + 1.39748i 0.807206 + 0.590270i \(0.200979\pi\)
0.590270 + 0.807206i \(0.299021\pi\)
\(228\) 2620.75 1100.44i 0.761242 0.319643i
\(229\) 5062.03i 1.46074i −0.683054 0.730368i \(-0.739349\pi\)
0.683054 0.730368i \(-0.260651\pi\)
\(230\) −2217.63 + 555.378i −0.635767 + 0.159220i
\(231\) −1403.93 573.582i −0.399879 0.163372i
\(232\) −1168.53 + 1168.53i −0.330681 + 0.330681i
\(233\) −1012.79 + 1012.79i −0.284765 + 0.284765i −0.835006 0.550241i \(-0.814536\pi\)
0.550241 + 0.835006i \(0.314536\pi\)
\(234\) 1864.90 + 1829.14i 0.520994 + 0.511002i
\(235\) −2598.05 1557.38i −0.721183 0.432306i
\(236\) 2509.25i 0.692110i
\(237\) −197.030 469.235i −0.0540020 0.128608i
\(238\) 1235.16 + 1235.16i 0.336401 + 0.336401i
\(239\) −1140.60 −0.308701 −0.154350 0.988016i \(-0.549328\pi\)
−0.154350 + 0.988016i \(0.549328\pi\)
\(240\) −743.931 + 557.285i −0.200086 + 0.149886i
\(241\) 894.509 0.239089 0.119544 0.992829i \(-0.461857\pi\)
0.119544 + 0.992829i \(0.461857\pi\)
\(242\) −1652.20 1652.20i −0.438873 0.438873i
\(243\) 1533.88 + 3463.54i 0.404931 + 0.914347i
\(244\) 2175.10i 0.570684i
\(245\) 490.284 + 1957.71i 0.127849 + 0.510505i
\(246\) −80.8304 + 197.845i −0.0209494 + 0.0512771i
\(247\) 4677.81 4677.81i 1.20503 1.20503i
\(248\) 36.2682 36.2682i 0.00928641 0.00928641i
\(249\) −2043.18 + 5001.01i −0.520005 + 1.27280i
\(250\) 2791.70 + 137.540i 0.706250 + 0.0347952i
\(251\) 4198.52i 1.05581i −0.849304 0.527905i \(-0.822978\pi\)
0.849304 0.527905i \(-0.177022\pi\)
\(252\) −2470.96 + 23.9235i −0.617683 + 0.00598030i
\(253\) 922.189 + 922.189i 0.229160 + 0.229160i
\(254\) −827.246 −0.204355
\(255\) 2195.13 + 314.869i 0.539075 + 0.0773249i
\(256\) 256.000 0.0625000
\(257\) −3004.70 3004.70i −0.729291 0.729291i 0.241188 0.970479i \(-0.422463\pi\)
−0.970479 + 0.241188i \(0.922463\pi\)
\(258\) −923.386 2199.08i −0.222820 0.530654i
\(259\) 4794.71i 1.15030i
\(260\) −1112.27 + 1855.52i −0.265309 + 0.442594i
\(261\) −3905.44 + 3981.80i −0.926209 + 0.944319i
\(262\) 657.575 657.575i 0.155058 0.155058i
\(263\) −3594.55 + 3594.55i −0.842773 + 0.842773i −0.989219 0.146446i \(-0.953217\pi\)
0.146446 + 0.989219i \(0.453217\pi\)
\(264\) 490.878 + 200.550i 0.114437 + 0.0467537i
\(265\) −97.7453 + 163.061i −0.0226583 + 0.0377991i
\(266\) 6258.03i 1.44250i
\(267\) −2361.08 + 991.410i −0.541183 + 0.227241i
\(268\) −482.193 482.193i −0.109905 0.109905i
\(269\) 2096.25 0.475132 0.237566 0.971371i \(-0.423650\pi\)
0.237566 + 0.971371i \(0.423650\pi\)
\(270\) −2492.44 + 1905.06i −0.561797 + 0.429400i
\(271\) −588.893 −0.132002 −0.0660012 0.997820i \(-0.521024\pi\)
−0.0660012 + 0.997820i \(0.521024\pi\)
\(272\) −431.867 431.867i −0.0962713 0.0962713i
\(273\) −5302.69 + 2226.58i −1.17558 + 0.493622i
\(274\) 288.828i 0.0636815i
\(275\) −751.522 1406.32i −0.164795 0.308378i
\(276\) 1967.14 + 803.683i 0.429015 + 0.175276i
\(277\) −1492.04 + 1492.04i −0.323639 + 0.323639i −0.850161 0.526522i \(-0.823496\pi\)
0.526522 + 0.850161i \(0.323496\pi\)
\(278\) 475.649 475.649i 0.102617 0.102617i
\(279\) 121.214 123.584i 0.0260104 0.0265190i
\(280\) −497.162 1985.17i −0.106111 0.423703i
\(281\) 5169.08i 1.09737i −0.836028 0.548686i \(-0.815128\pi\)
0.836028 0.548686i \(-0.184872\pi\)
\(282\) 1090.05 + 2596.00i 0.230183 + 0.548190i
\(283\) −892.521 892.521i −0.187473 0.187473i 0.607130 0.794603i \(-0.292321\pi\)
−0.794603 + 0.607130i \(0.792321\pi\)
\(284\) 597.077 0.124753
\(285\) 4763.23 + 6358.54i 0.989998 + 1.32157i
\(286\) 1234.14 0.255162
\(287\) −332.722 332.722i −0.0684319 0.0684319i
\(288\) 863.960 8.36471i 0.176768 0.00171144i
\(289\) 3455.90i 0.703419i
\(290\) −3961.77 2374.85i −0.802218 0.480882i
\(291\) 2256.68 5523.59i 0.454602 1.11271i
\(292\) −3087.24 + 3087.24i −0.618722 + 0.618722i
\(293\) 3323.48 3323.48i 0.662661 0.662661i −0.293346 0.956006i \(-0.594769\pi\)
0.956006 + 0.293346i \(0.0947687\pi\)
\(294\) 709.487 1736.58i 0.140742 0.344488i
\(295\) 6803.45 1703.84i 1.34275 0.336275i
\(296\) 1676.45i 0.329194i
\(297\) 1663.19 + 660.785i 0.324943 + 0.129100i
\(298\) −4583.92 4583.92i −0.891071 0.891071i
\(299\) 4945.69 0.956578
\(300\) −2016.14 1638.65i −0.388007 0.315358i
\(301\) 5251.14 1.00555
\(302\) 317.001 + 317.001i 0.0604019 + 0.0604019i
\(303\) −2456.85 5851.09i −0.465817 1.10936i
\(304\) 2188.09i 0.412814i
\(305\) 5897.47 1476.95i 1.10717 0.277278i
\(306\) −1471.59 1443.37i −0.274920 0.269647i
\(307\) −2558.00 + 2558.00i −0.475547 + 0.475547i −0.903704 0.428157i \(-0.859163\pi\)
0.428157 + 0.903704i \(0.359163\pi\)
\(308\) −825.523 + 825.523i −0.152722 + 0.152722i
\(309\) 6896.58 + 2817.62i 1.26968 + 0.518734i
\(310\) 122.963 + 73.7088i 0.0225284 + 0.0135044i
\(311\) 8102.38i 1.47731i 0.674083 + 0.738655i \(0.264539\pi\)
−0.674083 + 0.738655i \(0.735461\pi\)
\(312\) 1854.06 778.513i 0.336428 0.141265i
\(313\) 106.246 + 106.246i 0.0191865 + 0.0191865i 0.716635 0.697448i \(-0.245681\pi\)
−0.697448 + 0.716635i \(0.745681\pi\)
\(314\) 2847.47 0.511759
\(315\) −1742.71 6683.40i −0.311716 1.19545i
\(316\) −391.769 −0.0697428
\(317\) 1174.48 + 1174.48i 0.208093 + 0.208093i 0.803456 0.595364i \(-0.202992\pi\)
−0.595364 + 0.803456i \(0.702992\pi\)
\(318\) 162.932 68.4147i 0.0287321 0.0120645i
\(319\) 2635.04i 0.462489i
\(320\) 173.830 + 694.106i 0.0303669 + 0.121255i
\(321\) −709.325 289.797i −0.123335 0.0503891i
\(322\) −3308.20 + 3308.20i −0.572543 + 0.572543i
\(323\) −3691.26 + 3691.26i −0.635874 + 0.635874i
\(324\) 2915.45 56.4592i 0.499906 0.00968093i
\(325\) −5786.23 1755.83i −0.987577 0.299679i
\(326\) 1964.22i 0.333706i
\(327\) −1465.98 3491.28i −0.247916 0.590423i
\(328\) 116.335 + 116.335i 0.0195838 + 0.0195838i
\(329\) −6198.94 −1.03878
\(330\) −210.444 + 1467.12i −0.0351047 + 0.244734i
\(331\) 2832.47 0.470352 0.235176 0.971953i \(-0.424433\pi\)
0.235176 + 0.971953i \(0.424433\pi\)
\(332\) 2940.63 + 2940.63i 0.486109 + 0.486109i
\(333\) −54.7773 5657.74i −0.00901435 0.931058i
\(334\) 5304.71i 0.869044i
\(335\) 979.974 1634.81i 0.159826 0.266625i
\(336\) −719.439 + 1760.94i −0.116811 + 0.285914i
\(337\) −4789.86 + 4789.86i −0.774244 + 0.774244i −0.978845 0.204601i \(-0.934410\pi\)
0.204601 + 0.978845i \(0.434410\pi\)
\(338\) 202.314 202.314i 0.0325575 0.0325575i
\(339\) 346.453 847.998i 0.0555066 0.135861i
\(340\) 877.696 1464.19i 0.139999 0.233550i
\(341\) 81.7846i 0.0129879i
\(342\) −71.4950 7384.45i −0.0113041 1.16756i
\(343\) −2628.89 2628.89i −0.413839 0.413839i
\(344\) −1836.03 −0.287768
\(345\) −843.332 + 5879.33i −0.131604 + 0.917486i
\(346\) 5941.74 0.923208
\(347\) 2124.17 + 2124.17i 0.328621 + 0.328621i 0.852062 0.523441i \(-0.175352\pi\)
−0.523441 + 0.852062i \(0.675352\pi\)
\(348\) 1662.22 + 3958.65i 0.256047 + 0.609787i
\(349\) 9235.10i 1.41646i 0.705983 + 0.708229i \(0.250505\pi\)
−0.705983 + 0.708229i \(0.749495\pi\)
\(350\) 5044.92 2695.96i 0.770464 0.411729i
\(351\) 6231.72 2687.94i 0.947649 0.408751i
\(352\) 288.640 288.640i 0.0437061 0.0437061i
\(353\) −986.773 + 986.773i −0.148784 + 0.148784i −0.777574 0.628791i \(-0.783550\pi\)
0.628791 + 0.777574i \(0.283550\pi\)
\(354\) −6034.97 2465.61i −0.906088 0.370185i
\(355\) 405.429 + 1618.88i 0.0606139 + 0.242032i
\(356\) 1971.29i 0.293478i
\(357\) 4184.35 1757.00i 0.620335 0.260476i
\(358\) 1799.06 + 1799.06i 0.265595 + 0.265595i
\(359\) −10701.5 −1.57327 −0.786635 0.617419i \(-0.788178\pi\)
−0.786635 + 0.617419i \(0.788178\pi\)
\(360\) 609.328 + 2336.82i 0.0892067 + 0.342114i
\(361\) −11843.0 −1.72664
\(362\) −88.7108 88.7108i −0.0128799 0.0128799i
\(363\) −5597.15 + 2350.22i −0.809296 + 0.339820i
\(364\) 4427.27i 0.637506i
\(365\) −10466.9 6274.28i −1.50099 0.899755i
\(366\) −5231.33 2137.28i −0.747120 0.305239i
\(367\) 1004.85 1004.85i 0.142923 0.142923i −0.632025 0.774948i \(-0.717776\pi\)
0.774948 + 0.632025i \(0.217776\pi\)
\(368\) 1156.69 1156.69i 0.163850 0.163850i
\(369\) 396.412 + 388.809i 0.0559251 + 0.0548526i
\(370\) 4545.44 1138.35i 0.638665 0.159945i
\(371\) 389.063i 0.0544451i
\(372\) −51.5909 122.866i −0.00719049 0.0171244i
\(373\) 8677.69 + 8677.69i 1.20460 + 1.20460i 0.972754 + 0.231842i \(0.0744751\pi\)
0.231842 + 0.972754i \(0.425525\pi\)
\(374\) −973.860 −0.134645
\(375\) 3073.95 6579.15i 0.423301 0.905989i
\(376\) 2167.43 0.297278
\(377\) 7065.86 + 7065.86i 0.965279 + 0.965279i
\(378\) −2370.45 + 5966.41i −0.322548 + 0.811849i
\(379\) 14693.0i 1.99137i −0.0927715 0.995687i \(-0.529573\pi\)
0.0927715 0.995687i \(-0.470427\pi\)
\(380\) 5932.67 1485.76i 0.800894 0.200574i
\(381\) −812.860 + 1989.61i −0.109302 + 0.267534i
\(382\) 2884.85 2884.85i 0.386392 0.386392i
\(383\) 1850.91 1850.91i 0.246937 0.246937i −0.572775 0.819713i \(-0.694133\pi\)
0.819713 + 0.572775i \(0.194133\pi\)
\(384\) 251.548 615.704i 0.0334291 0.0818230i
\(385\) −2798.83 1677.73i −0.370498 0.222091i
\(386\) 3604.80i 0.475335i
\(387\) −6196.33 + 59.9918i −0.813894 + 0.00787999i
\(388\) −3247.91 3247.91i −0.424969 0.424969i
\(389\) −9296.60 −1.21171 −0.605856 0.795574i \(-0.707169\pi\)
−0.605856 + 0.795574i \(0.707169\pi\)
\(390\) 3369.77 + 4498.38i 0.437526 + 0.584062i
\(391\) −3902.64 −0.504770
\(392\) −1021.12 1021.12i −0.131568 0.131568i
\(393\) −935.390 2227.67i −0.120062 0.285931i
\(394\) 5610.60i 0.717407i
\(395\) −266.020 1062.22i −0.0338859 0.135307i
\(396\) 964.682 983.545i 0.122417 0.124811i
\(397\) 848.145 848.145i 0.107222 0.107222i −0.651460 0.758683i \(-0.725843\pi\)
0.758683 + 0.651460i \(0.225843\pi\)
\(398\) 2567.29 2567.29i 0.323333 0.323333i
\(399\) 15051.1 + 6149.20i 1.88847 + 0.771541i
\(400\) −1763.93 + 942.628i −0.220491 + 0.117829i
\(401\) 8527.15i 1.06191i 0.847400 + 0.530954i \(0.178166\pi\)
−0.847400 + 0.530954i \(0.821834\pi\)
\(402\) −1633.53 + 685.911i −0.202669 + 0.0850999i
\(403\) −219.305 219.305i −0.0271076 0.0271076i
\(404\) −4885.14 −0.601596
\(405\) 2132.74 + 7866.48i 0.261671 + 0.965157i
\(406\) −9452.78 −1.15550
\(407\) −1890.19 1890.19i −0.230205 0.230205i
\(408\) −1463.04 + 614.324i −0.177527 + 0.0745431i
\(409\) 7604.85i 0.919403i −0.888073 0.459702i \(-0.847956\pi\)
0.888073 0.459702i \(-0.152044\pi\)
\(410\) −236.430 + 394.418i −0.0284791 + 0.0475095i
\(411\) 694.658 + 283.805i 0.0833697 + 0.0340610i
\(412\) 4055.24 4055.24i 0.484921 0.484921i
\(413\) 10149.2 10149.2i 1.20922 1.20922i
\(414\) 3865.87 3941.46i 0.458930 0.467903i
\(415\) −5976.33 + 9969.84i −0.706907 + 1.17928i
\(416\) 1547.97i 0.182441i
\(417\) −676.603 1611.36i −0.0794566 0.189229i
\(418\) −2467.07 2467.07i −0.288680 0.288680i
\(419\) 13904.7 1.62122 0.810609 0.585588i \(-0.199136\pi\)
0.810609 + 0.585588i \(0.199136\pi\)
\(420\) −5263.05 754.931i −0.611453 0.0877068i
\(421\) 15613.5 1.80749 0.903745 0.428071i \(-0.140807\pi\)
0.903745 + 0.428071i \(0.140807\pi\)
\(422\) 5065.53 + 5065.53i 0.584327 + 0.584327i
\(423\) 7314.73 70.8200i 0.840790 0.00814039i
\(424\) 136.034i 0.0155811i
\(425\) 4565.91 + 1385.52i 0.521128 + 0.158136i
\(426\) 586.693 1436.03i 0.0667263 0.163323i
\(427\) 8797.68 8797.68i 0.997071 0.997071i
\(428\) −417.088 + 417.088i −0.0471045 + 0.0471045i
\(429\) 1212.68 2968.22i 0.136477 0.334049i
\(430\) −1246.71 4978.14i −0.139818 0.558295i
\(431\) 1687.62i 0.188607i 0.995544 + 0.0943034i \(0.0300624\pi\)
−0.995544 + 0.0943034i \(0.969938\pi\)
\(432\) 828.817 2086.12i 0.0923067 0.232335i
\(433\) 3605.54 + 3605.54i 0.400164 + 0.400164i 0.878291 0.478127i \(-0.158684\pi\)
−0.478127 + 0.878291i \(0.658684\pi\)
\(434\) 293.389 0.0324496
\(435\) −9604.60 + 7194.88i −1.05863 + 0.793031i
\(436\) −2914.90 −0.320180
\(437\) −9886.52 9886.52i −1.08223 1.08223i
\(438\) 4391.55 + 10458.6i 0.479078 + 1.14094i
\(439\) 8014.92i 0.871369i −0.900099 0.435685i \(-0.856506\pi\)
0.900099 0.435685i \(-0.143494\pi\)
\(440\) 978.597 + 586.611i 0.106029 + 0.0635581i
\(441\) −3479.50 3412.77i −0.375715 0.368509i
\(442\) −2611.40 + 2611.40i −0.281022 + 0.281022i
\(443\) 4788.70 4788.70i 0.513584 0.513584i −0.402039 0.915623i \(-0.631698\pi\)
0.915623 + 0.402039i \(0.131698\pi\)
\(444\) −4032.01 1647.29i −0.430970 0.176074i
\(445\) −5344.86 + 1338.55i −0.569373 + 0.142592i
\(446\) 808.057i 0.0857906i
\(447\) −15528.9 + 6520.55i −1.64316 + 0.689958i
\(448\) 1035.45 + 1035.45i 0.109197 + 0.109197i
\(449\) −6437.16 −0.676588 −0.338294 0.941040i \(-0.609850\pi\)
−0.338294 + 0.941040i \(0.609850\pi\)
\(450\) −5922.19 + 3238.86i −0.620388 + 0.339292i
\(451\) 262.334 0.0273899
\(452\) −498.629 498.629i −0.0518884 0.0518884i
\(453\) 1073.91 450.929i 0.111383 0.0467693i
\(454\) 13518.5i 1.39748i
\(455\) −12003.9 + 3006.22i −1.23682 + 0.309745i
\(456\) −5262.55 2150.04i −0.540442 0.220800i
\(457\) 7433.15 7433.15i 0.760850 0.760850i −0.215626 0.976476i \(-0.569179\pi\)
0.976476 + 0.215626i \(0.0691793\pi\)
\(458\) −7158.79 + 7158.79i −0.730368 + 0.730368i
\(459\) −4917.45 + 2121.05i −0.500059 + 0.215691i
\(460\) 3921.63 + 2350.78i 0.397493 + 0.238274i
\(461\) 15742.8i 1.59049i 0.606291 + 0.795243i \(0.292657\pi\)
−0.606291 + 0.795243i \(0.707343\pi\)
\(462\) 1174.29 + 2796.63i 0.118253 + 0.281625i
\(463\) 4385.12 + 4385.12i 0.440160 + 0.440160i 0.892066 0.451906i \(-0.149256\pi\)
−0.451906 + 0.892066i \(0.649256\pi\)
\(464\) 3305.11 0.330681
\(465\) 298.101 223.310i 0.0297292 0.0222704i
\(466\) 2864.61 0.284765
\(467\) 405.352 + 405.352i 0.0401659 + 0.0401659i 0.726904 0.686739i \(-0.240958\pi\)
−0.686739 + 0.726904i \(0.740958\pi\)
\(468\) −50.5795 5224.16i −0.00499581 0.515998i
\(469\) 3900.66i 0.384042i
\(470\) 1471.73 + 5876.66i 0.144438 + 0.576745i
\(471\) 2797.96 6848.44i 0.273722 0.669978i
\(472\) −3548.61 + 3548.61i −0.346055 + 0.346055i
\(473\) −2070.13 + 2070.13i −0.201236 + 0.201236i
\(474\) −384.956 + 942.241i −0.0373030 + 0.0913049i
\(475\) 8056.85 + 15076.7i 0.778260 + 1.45635i
\(476\) 3493.56i 0.336401i
\(477\) −4.44486 459.093i −0.000426659 0.0440680i
\(478\) 1613.06 + 1613.06i 0.154350 + 0.154350i
\(479\) 834.821 0.0796324 0.0398162 0.999207i \(-0.487323\pi\)
0.0398162 + 0.999207i \(0.487323\pi\)
\(480\) 1840.20 + 263.958i 0.174986 + 0.0250999i
\(481\) −10137.1 −0.960938
\(482\) −1265.03 1265.03i −0.119544 0.119544i
\(483\) 4705.86 + 11207.2i 0.443321 + 1.05579i
\(484\) 4673.12i 0.438873i
\(485\) 6600.83 11011.6i 0.617996 1.03095i
\(486\) 2728.96 7067.42i 0.254708 0.659639i
\(487\) 1123.69 1123.69i 0.104557 0.104557i −0.652893 0.757450i \(-0.726445\pi\)
0.757450 + 0.652893i \(0.226445\pi\)
\(488\) −3076.06 + 3076.06i −0.285342 + 0.285342i
\(489\) −4724.14 1930.06i −0.436877 0.178488i
\(490\) 2075.26 3461.99i 0.191328 0.319177i
\(491\) 2933.72i 0.269647i 0.990870 + 0.134824i \(0.0430468\pi\)
−0.990870 + 0.134824i \(0.956953\pi\)
\(492\) 394.107 165.484i 0.0361132 0.0151638i
\(493\) −5575.67 5575.67i −0.509362 0.509362i
\(494\) −13230.9 −1.20503
\(495\) 3321.78 + 1947.74i 0.301622 + 0.176858i
\(496\) −102.582 −0.00928641
\(497\) 2415.00 + 2415.00i 0.217963 + 0.217963i
\(498\) 9961.99 4183.00i 0.896401 0.376395i
\(499\) 19512.5i 1.75050i 0.483668 + 0.875252i \(0.339304\pi\)
−0.483668 + 0.875252i \(0.660696\pi\)
\(500\) −3753.55 4142.57i −0.335727 0.370523i
\(501\) 12758.3 + 5212.46i 1.13772 + 0.464821i
\(502\) −5937.60 + 5937.60i −0.527905 + 0.527905i
\(503\) −8770.75 + 8770.75i −0.777472 + 0.777472i −0.979400 0.201928i \(-0.935279\pi\)
0.201928 + 0.979400i \(0.435279\pi\)
\(504\) 3528.30 + 3460.64i 0.311831 + 0.305851i
\(505\) −3317.12 13245.3i −0.292297 1.16715i
\(506\) 2608.34i 0.229160i
\(507\) −287.788 685.379i −0.0252093 0.0600370i
\(508\) 1169.90 + 1169.90i 0.102177 + 0.102177i
\(509\) 16213.8 1.41192 0.705959 0.708253i \(-0.250516\pi\)
0.705959 + 0.708253i \(0.250516\pi\)
\(510\) −2659.09 3549.67i −0.230875 0.308200i
\(511\) −24974.0 −2.16200
\(512\) −362.039 362.039i −0.0312500 0.0312500i
\(513\) −17830.5 7084.08i −1.53458 0.609687i
\(514\) 8498.56i 0.729291i
\(515\) 13748.8 + 8241.58i 1.17640 + 0.705179i
\(516\) −1804.11 + 4415.84i −0.153917 + 0.376737i
\(517\) 2443.77 2443.77i 0.207886 0.207886i
\(518\) 6780.75 6780.75i 0.575152 0.575152i
\(519\) 5838.42 14290.5i 0.493792 1.20863i
\(520\) 4197.10 1051.11i 0.353952 0.0886427i
\(521\) 17031.0i 1.43213i −0.698032 0.716067i \(-0.745941\pi\)
0.698032 0.716067i \(-0.254059\pi\)
\(522\) 11154.2 107.993i 0.935264 0.00905507i
\(523\) −6159.97 6159.97i −0.515023 0.515023i 0.401039 0.916061i \(-0.368649\pi\)
−0.916061 + 0.401039i \(0.868649\pi\)
\(524\) −1859.90 −0.155058
\(525\) −1526.85 14782.6i −0.126928 1.22889i
\(526\) 10166.9 0.842773
\(527\) 173.054 + 173.054i 0.0143042 + 0.0143042i
\(528\) −410.586 977.826i −0.0338418 0.0805955i
\(529\) 1714.32i 0.140899i
\(530\) 368.836 92.3702i 0.0302287 0.00757039i
\(531\) −11860.0 + 12091.9i −0.969269 + 0.988221i
\(532\) 8850.19 8850.19i 0.721248 0.721248i
\(533\) 703.448 703.448i 0.0571664 0.0571664i
\(534\) 4741.14 + 1937.01i 0.384212 + 0.156971i
\(535\) −1414.09 847.660i −0.114273 0.0685001i
\(536\) 1363.85i 0.109905i
\(537\) 6094.67 2559.13i 0.489766 0.205651i
\(538\) −2964.54 2964.54i −0.237566 0.237566i
\(539\) −2302.63 −0.184010
\(540\) 6219.00 + 830.688i 0.495598 + 0.0661984i
\(541\) 17947.7 1.42630 0.713152 0.701010i \(-0.247267\pi\)
0.713152 + 0.701010i \(0.247267\pi\)
\(542\) 832.820 + 832.820i 0.0660012 + 0.0660012i
\(543\) −300.526 + 126.190i −0.0237510 + 0.00997297i
\(544\) 1221.50i 0.0962713i
\(545\) −1979.29 7903.33i −0.155566 0.621177i
\(546\) 10648.0 + 4350.28i 0.834602 + 0.340979i
\(547\) −6743.17 + 6743.17i −0.527088 + 0.527088i −0.919703 0.392615i \(-0.871571\pi\)
0.392615 + 0.919703i \(0.371571\pi\)
\(548\) 408.464 408.464i 0.0318407 0.0318407i
\(549\) −10280.7 + 10481.7i −0.799217 + 0.814844i
\(550\) −926.018 + 3051.64i −0.0717919 + 0.236586i
\(551\) 28249.5i 2.18416i
\(552\) −1645.38 3918.54i −0.126870 0.302145i
\(553\) −1584.59 1584.59i −0.121851 0.121851i
\(554\) 4220.13 0.323639
\(555\) 1728.56 12050.8i 0.132204 0.921668i
\(556\) −1345.34 −0.102617
\(557\) 14440.2 + 14440.2i 1.09847 + 1.09847i 0.994589 + 0.103884i \(0.0331270\pi\)
0.103884 + 0.994589i \(0.466873\pi\)
\(558\) −346.198 + 3.35183i −0.0262647 + 0.000254291i
\(559\) 11102.1i 0.840014i
\(560\) −2104.37 + 3510.55i −0.158796 + 0.264907i
\(561\) −956.924 + 2342.22i −0.0720167 + 0.176272i
\(562\) −7310.19 + 7310.19i −0.548686 + 0.548686i
\(563\) 13865.7 13865.7i 1.03796 1.03796i 0.0387094 0.999251i \(-0.487675\pi\)
0.999251 0.0387094i \(-0.0123247\pi\)
\(564\) 2129.74 5212.87i 0.159004 0.389187i
\(565\) 1013.38 1690.54i 0.0754569 0.125879i
\(566\) 2524.43i 0.187473i
\(567\) 12020.5 + 11563.8i 0.890326 + 0.856498i
\(568\) −844.394 844.394i −0.0623767 0.0623767i
\(569\) −18660.0 −1.37481 −0.687405 0.726274i \(-0.741250\pi\)
−0.687405 + 0.726274i \(0.741250\pi\)
\(570\) 2256.10 15728.6i 0.165786 1.15578i
\(571\) 6653.04 0.487602 0.243801 0.969825i \(-0.421606\pi\)
0.243801 + 0.969825i \(0.421606\pi\)
\(572\) −1745.34 1745.34i −0.127581 0.127581i
\(573\) −4103.66 9773.03i −0.299185 0.712520i
\(574\) 941.080i 0.0684319i
\(575\) −3710.92 + 12229.2i −0.269141 + 0.886941i
\(576\) −1233.65 1209.99i −0.0892399 0.0875285i
\(577\) −18037.4 + 18037.4i −1.30140 + 1.30140i −0.373944 + 0.927451i \(0.621995\pi\)
−0.927451 + 0.373944i \(0.878005\pi\)
\(578\) −4887.38 + 4887.38i −0.351709 + 0.351709i
\(579\) −8669.87 3542.11i −0.622293 0.254240i
\(580\) 2244.25 + 8961.33i 0.160668 + 0.641550i
\(581\) 23788.0i 1.69861i
\(582\) −11003.0 + 4620.11i −0.783656 + 0.329054i
\(583\) −153.378 153.378i −0.0108958 0.0108958i
\(584\) 8732.02 0.618722
\(585\) 14130.2 3684.47i 0.998652 0.260400i
\(586\) −9400.21 −0.662661
\(587\) −14567.2 14567.2i −1.02428 1.02428i −0.999698 0.0245838i \(-0.992174\pi\)
−0.0245838 0.999698i \(-0.507826\pi\)
\(588\) −3459.26 + 1452.53i −0.242615 + 0.101873i
\(589\) 876.789i 0.0613369i
\(590\) −12031.1 7211.94i −0.839514 0.503239i
\(591\) 13494.0 + 5513.04i 0.939205 + 0.383716i
\(592\) −2370.85 + 2370.85i −0.164597 + 0.164597i
\(593\) −20017.5 + 20017.5i −1.38621 + 1.38621i −0.553080 + 0.833128i \(0.686547\pi\)
−0.833128 + 0.553080i \(0.813453\pi\)
\(594\) −1417.61 3286.59i −0.0979214 0.227021i
\(595\) 9472.27 2372.21i 0.652647 0.163447i
\(596\) 12965.3i 0.891071i
\(597\) −3651.93 8697.21i −0.250357 0.596236i
\(598\) −6994.26 6994.26i −0.478289 0.478289i
\(599\) 19821.1 1.35203 0.676017 0.736886i \(-0.263705\pi\)
0.676017 + 0.736886i \(0.263705\pi\)
\(600\) 533.855 + 5168.66i 0.0363242 + 0.351682i
\(601\) 9850.79 0.668589 0.334294 0.942469i \(-0.391502\pi\)
0.334294 + 0.942469i \(0.391502\pi\)
\(602\) −7426.24 7426.24i −0.502775 0.502775i
\(603\) 44.5632 + 4602.77i 0.00300954 + 0.310844i
\(604\) 896.614i 0.0604019i
\(605\) −12670.5 + 3173.16i −0.851451 + 0.213235i
\(606\) −4800.18 + 11749.2i −0.321772 + 0.787589i
\(607\) 403.095 403.095i 0.0269540 0.0269540i −0.693501 0.720455i \(-0.743933\pi\)
0.720455 + 0.693501i \(0.243933\pi\)
\(608\) −3094.42 + 3094.42i −0.206407 + 0.206407i
\(609\) −9288.39 + 22734.8i −0.618037 + 1.51274i
\(610\) −10429.0 6251.57i −0.692226 0.414948i
\(611\) 13105.9i 0.867773i
\(612\) 39.9122 + 4122.39i 0.00263620 + 0.272284i
\(613\) 4616.26 + 4616.26i 0.304158 + 0.304158i 0.842638 0.538480i \(-0.181001\pi\)
−0.538480 + 0.842638i \(0.681001\pi\)
\(614\) 7235.13 0.475547
\(615\) 716.293 + 956.195i 0.0469654 + 0.0626951i
\(616\) 2334.93 0.152722
\(617\) 14556.9 + 14556.9i 0.949818 + 0.949818i 0.998800 0.0489818i \(-0.0155976\pi\)
−0.0489818 + 0.998800i \(0.515598\pi\)
\(618\) −5768.51 13738.0i −0.375475 0.894209i
\(619\) 12601.3i 0.818236i −0.912482 0.409118i \(-0.865837\pi\)
0.912482 0.409118i \(-0.134163\pi\)
\(620\) −69.6555 278.135i −0.00451199 0.0180164i
\(621\) −5680.93 13170.7i −0.367098 0.851081i
\(622\) 11458.5 11458.5i 0.738655 0.738655i
\(623\) −7973.31 + 7973.31i −0.512751 + 0.512751i
\(624\) −3723.02 1521.05i −0.238846 0.0975815i
\(625\) 8683.22 12990.1i 0.555726 0.831366i
\(626\) 300.509i 0.0191865i
\(627\) −8357.69 + 3509.36i −0.532335 + 0.223525i
\(628\) −4026.94 4026.94i −0.255879 0.255879i
\(629\) 7999.17 0.507071
\(630\) −6987.20 + 11916.3i −0.441868 + 0.753583i
\(631\) 20754.9 1.30942 0.654708 0.755882i \(-0.272792\pi\)
0.654708 + 0.755882i \(0.272792\pi\)
\(632\) 554.045 + 554.045i 0.0348714 + 0.0348714i
\(633\) 17160.5 7205.64i 1.07752 0.452446i
\(634\) 3321.93i 0.208093i
\(635\) −2377.63 + 3966.41i −0.148588 + 0.247877i
\(636\) −327.174 133.668i −0.0203983 0.00833379i
\(637\) −6174.50 + 6174.50i −0.384054 + 0.384054i
\(638\) 3726.51 3726.51i 0.231245 0.231245i
\(639\) −2877.29 2822.11i −0.178128 0.174712i
\(640\) 735.781 1227.45i 0.0454442 0.0758111i
\(641\) 28695.5i 1.76818i −0.467313 0.884092i \(-0.654778\pi\)
0.467313 0.884092i \(-0.345222\pi\)
\(642\) 593.301 + 1412.97i 0.0364731 + 0.0868622i
\(643\) −7444.99 7444.99i −0.456612 0.456612i 0.440930 0.897542i \(-0.354649\pi\)
−0.897542 + 0.440930i \(0.854649\pi\)
\(644\) 9357.00 0.572543
\(645\) −13197.9 1893.11i −0.805686 0.115568i
\(646\) 10440.5 0.635874
\(647\) −15997.5 15997.5i −0.972065 0.972065i 0.0275552 0.999620i \(-0.491228\pi\)
−0.999620 + 0.0275552i \(0.991228\pi\)
\(648\) −4202.92 4043.23i −0.254794 0.245113i
\(649\) 8002.11i 0.483991i
\(650\) 5699.86 + 10666.1i 0.343949 + 0.643628i
\(651\) 288.287 705.627i 0.0173561 0.0424819i
\(652\) −2777.83 + 2777.83i −0.166853 + 0.166853i
\(653\) 4592.90 4592.90i 0.275243 0.275243i −0.555963 0.831207i \(-0.687651\pi\)
0.831207 + 0.555963i \(0.187651\pi\)
\(654\) −2864.21 + 7010.62i −0.171253 + 0.419170i
\(655\) −1262.92 5042.85i −0.0753378 0.300825i
\(656\) 329.044i 0.0195838i
\(657\) 29469.2 285.316i 1.74993 0.0169425i
\(658\) 8766.63 + 8766.63i 0.519390 + 0.519390i
\(659\) 12460.6 0.736565 0.368282 0.929714i \(-0.379946\pi\)
0.368282 + 0.929714i \(0.379946\pi\)
\(660\) 2372.43 1777.21i 0.139919 0.104815i
\(661\) −21945.5 −1.29135 −0.645675 0.763612i \(-0.723424\pi\)
−0.645675 + 0.763612i \(0.723424\pi\)
\(662\) −4005.71 4005.71i −0.235176 0.235176i
\(663\) 3714.68 + 8846.65i 0.217596 + 0.518213i
\(664\) 8317.36i 0.486109i
\(665\) 30005.4 + 17986.5i 1.74972 + 1.04885i
\(666\) −7923.79 + 8078.72i −0.461022 + 0.470036i
\(667\) 14933.6 14933.6i 0.866915 0.866915i
\(668\) 7501.99 7501.99i 0.434522 0.434522i
\(669\) 1943.45 + 794.005i 0.112314 + 0.0458864i
\(670\) −3697.87 + 926.084i −0.213225 + 0.0533996i
\(671\) 6936.51i 0.399078i
\(672\) 3507.79 1472.91i 0.201363 0.0845515i
\(673\) 5271.96 + 5271.96i 0.301960 + 0.301960i 0.841780 0.539820i \(-0.181508\pi\)
−0.539820 + 0.841780i \(0.681508\pi\)
\(674\) 13547.8 0.774244
\(675\) 1970.56 + 17426.0i 0.112366 + 0.993667i
\(676\) −572.230 −0.0325575
\(677\) −6270.55 6270.55i −0.355977 0.355977i 0.506350 0.862328i \(-0.330994\pi\)
−0.862328 + 0.506350i \(0.830994\pi\)
\(678\) −1689.21 + 709.293i −0.0956839 + 0.0401773i
\(679\) 26273.8i 1.48497i
\(680\) −3311.93 + 829.430i −0.186775 + 0.0467753i
\(681\) −32513.2 13283.4i −1.82953 0.747461i
\(682\) −115.661 + 115.661i −0.00649397 + 0.00649397i
\(683\) −16616.6 + 16616.6i −0.930917 + 0.930917i −0.997763 0.0668461i \(-0.978706\pi\)
0.0668461 + 0.997763i \(0.478706\pi\)
\(684\) −10342.1 + 10544.3i −0.578127 + 0.589431i
\(685\) 1384.85 + 830.133i 0.0772442 + 0.0463033i
\(686\) 7435.62i 0.413839i
\(687\) 10183.3 + 24251.9i 0.565526 + 1.34682i
\(688\) 2596.55 + 2596.55i 0.143884 + 0.143884i
\(689\) −822.565 −0.0454822
\(690\) 9507.29 7121.98i 0.524545 0.392941i
\(691\) −35477.3 −1.95314 −0.976571 0.215197i \(-0.930961\pi\)
−0.976571 + 0.215197i \(0.930961\pi\)
\(692\) −8402.89 8402.89i −0.461604 0.461604i
\(693\) 7880.02 76.2931i 0.431944 0.00418201i
\(694\) 6008.07i 0.328621i
\(695\) −913.516 3647.68i −0.0498585 0.199086i
\(696\) 3247.64 7949.11i 0.176870 0.432917i
\(697\) −555.091 + 555.091i −0.0301658 + 0.0301658i
\(698\) 13060.4 13060.4i 0.708229 0.708229i
\(699\) 2814.79 6889.65i 0.152311 0.372805i
\(700\) −10947.3 3321.93i −0.591096 0.179368i
\(701\) 6316.02i 0.340304i 0.985418 + 0.170152i \(0.0544258\pi\)
−0.985418 + 0.170152i \(0.945574\pi\)
\(702\) −12614.3 5011.66i −0.678200 0.269449i
\(703\) 20264.2 + 20264.2i 1.08717 + 1.08717i
\(704\) −816.397 −0.0437061
\(705\) 15580.1 + 2234.80i 0.832310 + 0.119387i
\(706\) 2791.01 0.148784
\(707\) −19759.0 19759.0i −1.05108 1.05108i
\(708\) 5047.84 + 12021.6i 0.267951 + 0.638137i
\(709\) 4327.74i 0.229241i −0.993409 0.114620i \(-0.963435\pi\)
0.993409 0.114620i \(-0.0365652\pi\)
\(710\) 1716.09 2862.81i 0.0907092 0.151323i
\(711\) 1887.92 + 1851.71i 0.0995814 + 0.0976716i
\(712\) 2787.83 2787.83i 0.146739 0.146739i
\(713\) −463.500 + 463.500i −0.0243453 + 0.0243453i
\(714\) −8402.34 3432.80i −0.440406 0.179929i
\(715\) 3547.10 5917.35i 0.185530 0.309505i
\(716\) 5088.50i 0.265595i
\(717\) 5464.55 2294.55i 0.284627 0.119514i
\(718\) 15134.2 + 15134.2i 0.786635 + 0.786635i
\(719\) −26854.1 −1.39289 −0.696447 0.717609i \(-0.745237\pi\)
−0.696447 + 0.717609i \(0.745237\pi\)
\(720\) 2443.04 4166.48i 0.126454 0.215660i
\(721\) 32804.6 1.69446
\(722\) 16748.6 + 16748.6i 0.863321 + 0.863321i
\(723\) −4285.53 + 1799.48i −0.220444 + 0.0925635i
\(724\) 250.912i 0.0128799i
\(725\) −22773.4 + 12169.9i −1.16660 + 0.623419i
\(726\) 11239.3 + 4591.85i 0.574558 + 0.234738i
\(727\) 15761.3 15761.3i 0.804065 0.804065i −0.179663 0.983728i \(-0.557501\pi\)
0.983728 + 0.179663i \(0.0575007\pi\)
\(728\) 6261.11 6261.11i 0.318753 0.318753i
\(729\) −14316.3 13507.9i −0.727343 0.686274i
\(730\) 5929.25 + 23675.6i 0.300618 + 1.20037i
\(731\) 8760.65i 0.443262i
\(732\) 4375.65 + 10420.8i 0.220941 + 0.526179i
\(733\) −16481.2 16481.2i −0.830487 0.830487i 0.157096 0.987583i \(-0.449787\pi\)
−0.987583 + 0.157096i \(0.949787\pi\)
\(734\) −2842.14 −0.142923
\(735\) −6287.25 8392.98i −0.315522 0.421197i
\(736\) −3271.63 −0.163850
\(737\) 1537.74 + 1537.74i 0.0768565 + 0.0768565i
\(738\) −10.7514 1110.47i −0.000536266 0.0553889i
\(739\) 18693.3i 0.930505i 0.885178 + 0.465253i \(0.154037\pi\)
−0.885178 + 0.465253i \(0.845963\pi\)
\(740\) −8038.08 4818.35i −0.399305 0.239360i
\(741\) −13000.8 + 31821.4i −0.644528 + 1.57758i
\(742\) 550.218 550.218i 0.0272226 0.0272226i
\(743\) 2518.82 2518.82i 0.124369 0.124369i −0.642182 0.766552i \(-0.721971\pi\)
0.766552 + 0.642182i \(0.221971\pi\)
\(744\) −100.798 + 246.719i −0.00496698 + 0.0121575i
\(745\) −35153.4 + 8803.72i −1.72875 + 0.432944i
\(746\) 24544.2i 1.20460i
\(747\) −271.767 28069.8i −0.0133112 1.37486i
\(748\) 1377.25 + 1377.25i 0.0673223 + 0.0673223i
\(749\) −3374.01 −0.164597
\(750\) −13651.5 + 4957.11i −0.664645 + 0.241344i
\(751\) −2523.97 −0.122638 −0.0613190 0.998118i \(-0.519531\pi\)
−0.0613190 + 0.998118i \(0.519531\pi\)
\(752\) −3065.21 3065.21i −0.148639 0.148639i
\(753\) 8446.15 + 20114.8i 0.408758 + 0.973474i
\(754\) 19985.3i 0.965279i
\(755\) 2431.04 608.822i 0.117185 0.0293474i
\(756\) 11790.1 5085.44i 0.567198 0.244651i
\(757\) −23079.0 + 23079.0i −1.10809 + 1.10809i −0.114684 + 0.993402i \(0.536585\pi\)
−0.993402 + 0.114684i \(0.963415\pi\)
\(758\) −20779.1 + 20779.1i −0.995687 + 0.995687i
\(759\) −6273.31 2562.99i −0.300009 0.122570i
\(760\) −10491.3 6288.88i −0.500734 0.300160i
\(761\) 30848.4i 1.46945i 0.678364 + 0.734726i \(0.262689\pi\)
−0.678364 + 0.734726i \(0.737311\pi\)
\(762\) 3963.28 1664.17i 0.188418 0.0791161i
\(763\) −11790.0 11790.0i −0.559404 0.559404i
\(764\) −8159.59 −0.386392
\(765\) −11150.1 + 2907.41i −0.526973 + 0.137409i
\(766\) −5235.16 −0.246937
\(767\) 21457.6 + 21457.6i 1.01016 + 1.01016i
\(768\) −1226.48 + 514.994i −0.0576260 + 0.0241970i
\(769\) 24831.0i 1.16441i 0.813043 + 0.582204i \(0.197809\pi\)
−0.813043 + 0.582204i \(0.802191\pi\)
\(770\) 1585.47 + 6330.82i 0.0742032 + 0.296295i
\(771\) 20439.8 + 8350.77i 0.954764 + 0.390072i
\(772\) −5097.95 + 5097.95i −0.237667 + 0.237667i
\(773\) 17900.7 17900.7i 0.832913 0.832913i −0.155001 0.987914i \(-0.549538\pi\)
0.987914 + 0.155001i \(0.0495380\pi\)
\(774\) 8847.77 + 8678.09i 0.410887 + 0.403007i
\(775\) 706.825 377.721i 0.0327612 0.0175073i
\(776\) 9186.49i 0.424969i
\(777\) −9645.51 22971.2i −0.445342 1.06060i
\(778\) 13147.4 + 13147.4i 0.605856 + 0.605856i
\(779\) −2812.41 −0.129352
\(780\) 1596.09 11127.2i 0.0732683 0.510794i
\(781\) −1904.11 −0.0872398
\(782\) 5519.17 + 5519.17i 0.252385 + 0.252385i
\(783\) 10700.5 26933.1i 0.488385 1.22926i
\(784\) 2888.17i 0.131568i
\(785\) 8184.06 13652.8i 0.372104 0.620752i
\(786\) −1827.56 + 4473.24i −0.0829349 + 0.202996i
\(787\) −3928.66 + 3928.66i −0.177944 + 0.177944i −0.790459 0.612515i \(-0.790158\pi\)
0.612515 + 0.790459i \(0.290158\pi\)
\(788\) 7934.59 7934.59i 0.358703 0.358703i
\(789\) 9990.11 24452.4i 0.450770 1.10333i
\(790\) −1126.00 + 1878.42i −0.0507105 + 0.0845964i
\(791\) 4033.63i 0.181314i
\(792\) −2755.21 + 26.6755i −0.123614 + 0.00119681i
\(793\) 18600.2 + 18600.2i 0.832930 + 0.832930i
\(794\) −2398.92 −0.107222
\(795\) 140.263 977.849i 0.00625736 0.0436235i
\(796\) −7261.38 −0.323333
\(797\) −10942.0 10942.0i −0.486307 0.486307i 0.420832 0.907139i \(-0.361738\pi\)
−0.907139 + 0.420832i \(0.861738\pi\)
\(798\) −12589.3 29981.8i −0.558464 1.33001i
\(799\) 10341.9i 0.457909i
\(800\) 3827.65 + 1161.50i 0.169160 + 0.0513314i
\(801\) 9317.38 9499.56i 0.411003 0.419039i
\(802\) 12059.2 12059.2i 0.530954 0.530954i
\(803\) 9845.35 9845.35i 0.432671 0.432671i
\(804\) 3280.18 + 1340.13i 0.143884 + 0.0587845i
\(805\) 6353.62 + 25370.1i 0.278181 + 1.11078i
\(806\) 620.289i 0.0271076i
\(807\) −10043.0 + 4217.02i −0.438080 + 0.183948i
\(808\) 6908.63 + 6908.63i 0.300798 + 0.300798i
\(809\) 15310.9 0.665395 0.332697 0.943034i \(-0.392041\pi\)
0.332697 + 0.943034i \(0.392041\pi\)
\(810\) 8108.73 14141.0i 0.351743 0.613414i
\(811\) −3667.20 −0.158783 −0.0793915 0.996844i \(-0.525298\pi\)
−0.0793915 + 0.996844i \(0.525298\pi\)
\(812\) 13368.2 + 13368.2i 0.577751 + 0.577751i
\(813\) 2821.35 1184.67i 0.121708 0.0511049i
\(814\) 5346.27i 0.230205i
\(815\) −9417.88 5645.46i −0.404778 0.242640i
\(816\) 2937.83 + 1200.26i 0.126035 + 0.0514921i
\(817\) 22193.2 22193.2i 0.950358 0.950358i
\(818\) −10754.9 + 10754.9i −0.459702 + 0.459702i
\(819\) 20925.7 21334.8i 0.892798 0.910255i
\(820\) 892.153 223.428i 0.0379943 0.00951519i
\(821\) 7128.41i 0.303025i 0.988455 + 0.151512i \(0.0484143\pi\)
−0.988455 + 0.151512i \(0.951586\pi\)
\(822\) −581.034 1383.76i −0.0246544 0.0587153i
\(823\) −17408.3 17408.3i −0.737321 0.737321i 0.234738 0.972059i \(-0.424577\pi\)
−0.972059 + 0.234738i \(0.924577\pi\)
\(824\) −11469.9 −0.484921
\(825\) 6429.58 + 5225.73i 0.271332 + 0.220529i
\(826\) −28706.2 −1.20922
\(827\) 25331.1 + 25331.1i 1.06511 + 1.06511i 0.997727 + 0.0673858i \(0.0214658\pi\)
0.0673858 + 0.997727i \(0.478534\pi\)
\(828\) −11041.2 + 106.899i −0.463417 + 0.00448672i
\(829\) 37685.9i 1.57887i −0.613832 0.789437i \(-0.710373\pi\)
0.613832 0.789437i \(-0.289627\pi\)
\(830\) 22551.3 5647.68i 0.943093 0.236186i
\(831\) 4146.74 10149.8i 0.173103 0.423698i
\(832\) −2189.16 + 2189.16i −0.0912207 + 0.0912207i
\(833\) 4872.29 4872.29i 0.202659 0.202659i
\(834\) −1321.94 + 3235.67i −0.0548862 + 0.134343i
\(835\) 25434.6 + 15246.5i 1.05413 + 0.631889i
\(836\) 6977.92i 0.288680i
\(837\) −332.116 + 835.931i −0.0137152 + 0.0345209i
\(838\) −19664.2 19664.2i −0.810609 0.810609i
\(839\) 10906.1 0.448774 0.224387 0.974500i \(-0.427962\pi\)
0.224387 + 0.974500i \(0.427962\pi\)
\(840\) 6375.44 + 8510.71i 0.261873 + 0.349580i
\(841\) 18282.0 0.749601
\(842\) −22080.8 22080.8i −0.903745 0.903745i
\(843\) 10398.6 + 24764.7i 0.424849 + 1.01180i
\(844\) 14327.5i 0.584327i
\(845\) −388.557 1551.52i −0.0158187 0.0631642i
\(846\) −10444.7 10244.4i −0.424465 0.416325i
\(847\) −18901.4 + 18901.4i −0.766778 + 0.766778i
\(848\) −192.381 + 192.381i −0.00779055 + 0.00779055i
\(849\) 6071.49 + 2480.53i 0.245434 + 0.100273i
\(850\) −4497.75 8416.60i −0.181496 0.339632i
\(851\) 21424.6i 0.863017i
\(852\) −2860.56 + 1201.14i −0.115025 + 0.0482984i
\(853\) −14701.8 14701.8i −0.590131 0.590131i 0.347536 0.937667i \(-0.387018\pi\)
−0.937667 + 0.347536i \(0.887018\pi\)
\(854\) −24883.6 −0.997071
\(855\) −35611.8 20881.2i −1.42444 0.835230i
\(856\) 1179.70 0.0471045
\(857\) −14745.6 14745.6i −0.587749 0.587749i 0.349272 0.937021i \(-0.386429\pi\)
−0.937021 + 0.349272i \(0.886429\pi\)
\(858\) −5912.69 + 2482.72i −0.235263 + 0.0987862i
\(859\) 45884.6i 1.82254i 0.411808 + 0.911271i \(0.364897\pi\)
−0.411808 + 0.911271i \(0.635103\pi\)
\(860\) −5277.03 + 8803.26i −0.209239 + 0.349057i
\(861\) 2263.39 + 924.714i 0.0895888 + 0.0366018i
\(862\) 2386.65 2386.65i 0.0943034 0.0943034i
\(863\) 10936.4 10936.4i 0.431376 0.431376i −0.457720 0.889096i \(-0.651334\pi\)
0.889096 + 0.457720i \(0.151334\pi\)
\(864\) −4122.35 + 1778.10i −0.162321 + 0.0700141i
\(865\) 17077.4 28489.0i 0.671272 1.11983i
\(866\) 10198.0i 0.400164i
\(867\) 6952.22 + 16557.0i 0.272329 + 0.648564i
\(868\) −414.914 414.914i −0.0162248 0.0162248i
\(869\) 1249.37 0.0487710
\(870\) 23758.1 + 3407.86i 0.925832 + 0.132801i
\(871\) 8246.86 0.320820
\(872\) 4122.30 + 4122.30i 0.160090 + 0.160090i
\(873\) 300.165 + 31002.9i 0.0116370 + 1.20194i
\(874\) 27963.3i 1.08223i
\(875\) 1573.48 31937.5i 0.0607925 1.23393i
\(876\) 8580.17 21001.3i 0.330933 0.810011i
\(877\) −4986.22 + 4986.22i −0.191987 + 0.191987i −0.796554 0.604567i \(-0.793346\pi\)
0.604567 + 0.796554i \(0.293346\pi\)
\(878\) −11334.8 + 11334.8i −0.435685 + 0.435685i
\(879\) −9236.74 + 22608.4i −0.354434 + 0.867534i
\(880\) −554.352 2213.54i −0.0212355 0.0847936i
\(881\) 40395.0i 1.54477i −0.635155 0.772385i \(-0.719064\pi\)
0.635155 0.772385i \(-0.280936\pi\)
\(882\) 94.3701 + 9747.13i 0.00360273 + 0.372112i
\(883\) −16473.1 16473.1i −0.627819 0.627819i 0.319700 0.947519i \(-0.396418\pi\)
−0.947519 + 0.319700i \(0.896418\pi\)
\(884\) 7386.16 0.281022
\(885\) −29167.3 + 21849.4i −1.10785 + 0.829899i
\(886\) −13544.5 −0.513584
\(887\) 8236.06 + 8236.06i 0.311770 + 0.311770i 0.845595 0.533825i \(-0.179246\pi\)
−0.533825 + 0.845595i \(0.679246\pi\)
\(888\) 3372.50 + 8031.75i 0.127448 + 0.303522i
\(889\) 9463.85i 0.357038i
\(890\) 9451.78 + 5665.78i 0.355982 + 0.213390i
\(891\) −9297.52 + 180.051i −0.349583 + 0.00676985i
\(892\) 1142.77 1142.77i 0.0428953 0.0428953i
\(893\) −26199.0 + 26199.0i −0.981764 + 0.981764i
\(894\) 31182.7 + 12739.8i 1.16656 + 0.476603i
\(895\) 13796.7 3455.21i 0.515277 0.129045i
\(896\) 2928.69i 0.109197i
\(897\) −23694.5 + 9949.23i −0.881980 + 0.370340i
\(898\) 9103.51 + 9103.51i 0.338294 + 0.338294i
\(899\) −1324.39 −0.0491335
\(900\) 12955.7 + 3794.80i 0.479840 + 0.140548i
\(901\) 649.086 0.0240002
\(902\) −370.997 370.997i −0.0136949 0.0136949i
\(903\) −25157.9 + 10563.7i −0.927134 + 0.389300i
\(904\) 1410.34i 0.0518884i
\(905\) −680.311 + 170.375i −0.0249882 + 0.00625797i
\(906\) −2156.44 881.022i −0.0790761 0.0323068i
\(907\) −5461.54 + 5461.54i −0.199942 + 0.199942i −0.799975 0.600033i \(-0.795154\pi\)
0.600033 + 0.799975i \(0.295154\pi\)
\(908\) −19118.0 + 19118.0i −0.698738 + 0.698738i
\(909\) 23541.3 + 23089.8i 0.858982 + 0.842508i
\(910\) 21227.5 + 12724.6i 0.773280 + 0.463535i
\(911\) 1893.10i 0.0688486i 0.999407 + 0.0344243i \(0.0109598\pi\)
−0.999407 + 0.0344243i \(0.989040\pi\)
\(912\) 4401.77 + 10483.0i 0.159821 + 0.380621i
\(913\) −9377.82 9377.82i −0.339935 0.339935i
\(914\) −21024.1 −0.760850
\(915\) −25283.2 + 18939.9i −0.913485 + 0.684299i
\(916\) 20248.1 0.730368
\(917\) −7522.77 7522.77i −0.270909 0.270909i
\(918\) 9953.94 + 3954.70i 0.357875 + 0.142184i
\(919\) 6455.86i 0.231729i 0.993265 + 0.115865i \(0.0369638\pi\)
−0.993265 + 0.115865i \(0.963036\pi\)
\(920\) −2221.51 8870.53i −0.0796098 0.317883i
\(921\) 7109.31 17401.2i 0.254354 0.622571i
\(922\) 22263.6 22263.6i 0.795243 0.795243i
\(923\) −5105.85 + 5105.85i −0.182081 + 0.182081i
\(924\) 2294.33 5615.73i 0.0816859 0.199939i
\(925\) 7606.20 25065.8i 0.270368 0.890984i
\(926\) 12403.0i 0.440160i
\(927\) −38709.3 + 374.777i −1.37150 + 0.0132786i
\(928\) −4674.14 4674.14i −0.165341 0.165341i
\(929\) −14798.5 −0.522628 −0.261314 0.965254i \(-0.584156\pi\)
−0.261314 + 0.965254i \(0.584156\pi\)
\(930\) −737.386 105.771i −0.0259998 0.00372941i
\(931\) 24685.8 0.869007
\(932\) −4051.17 4051.17i −0.142382 0.142382i
\(933\) −16299.5 38818.0i −0.571943 1.36210i
\(934\) 1146.51i 0.0401659i
\(935\) −2799.02 + 4669.38i −0.0979012 + 0.163321i
\(936\) −7316.55 + 7459.61i −0.255501 + 0.260497i
\(937\) 5568.25 5568.25i 0.194137 0.194137i −0.603344 0.797481i \(-0.706165\pi\)
0.797481 + 0.603344i \(0.206165\pi\)
\(938\) −5516.37 + 5516.37i −0.192021 + 0.192021i
\(939\) −722.754 295.284i −0.0251184 0.0102622i
\(940\) 6229.50 10392.2i 0.216153 0.360592i
\(941\) 26799.4i 0.928413i 0.885727 + 0.464207i \(0.153660\pi\)
−0.885727 + 0.464207i \(0.846340\pi\)
\(942\) −13642.1 + 5728.25i −0.471850 + 0.198128i
\(943\) −1486.73 1486.73i −0.0513411 0.0513411i
\(944\) 10037.0 0.346055
\(945\) 21794.2 + 28514.0i 0.750227 + 0.981545i
\(946\) 5855.21 0.201236
\(947\) 20065.7 + 20065.7i 0.688540 + 0.688540i 0.961909 0.273369i \(-0.0881379\pi\)
−0.273369 + 0.961909i \(0.588138\pi\)
\(948\) 1876.94 788.120i 0.0643039 0.0270010i
\(949\) 52800.5i 1.80609i
\(950\) 9927.56 32715.8i 0.339045 1.11730i
\(951\) −7989.56 3264.16i −0.272428 0.111302i
\(952\) −4940.64 + 4940.64i −0.168201 + 0.168201i
\(953\) 22947.3 22947.3i 0.779996 0.779996i −0.199834 0.979830i \(-0.564040\pi\)
0.979830 + 0.199834i \(0.0640402\pi\)
\(954\) −642.969 + 655.541i −0.0218207 + 0.0222473i
\(955\) −5540.56 22123.5i −0.187736 0.749634i
\(956\) 4562.41i 0.154350i
\(957\) −5300.91 12624.3i −0.179053 0.426423i
\(958\) −1180.61 1180.61i −0.0398162 0.0398162i
\(959\) 3304.24 0.111261
\(960\) −2229.14 2975.72i −0.0749429 0.100043i
\(961\) −29749.9 −0.998620
\(962\) 14336.0 + 14336.0i 0.480469 + 0.480469i
\(963\) 3981.31 38.5464i 0.133225 0.00128987i
\(964\) 3578.03i 0.119544i
\(965\) −17284.0 10360.7i −0.576571 0.345620i
\(966\) 9194.28 22504.5i 0.306233 0.749554i
\(967\) −15372.5 + 15372.5i −0.511218 + 0.511218i −0.914899 0.403682i \(-0.867730\pi\)
0.403682 + 0.914899i \(0.367730\pi\)
\(968\) 6608.79 6608.79i 0.219436 0.219436i
\(969\) 10258.9 25110.3i 0.340107 0.832465i
\(970\) −24907.8 + 6237.84i −0.824475 + 0.206479i
\(971\) 50515.3i 1.66953i 0.550607 + 0.834765i \(0.314396\pi\)
−0.550607 + 0.834765i \(0.685604\pi\)
\(972\) −13854.2 + 6135.50i −0.457174 + 0.202465i
\(973\) −5441.51 5441.51i −0.179288 0.179288i
\(974\) −3178.29 −0.104557
\(975\) 31253.7 3228.09i 1.02658 0.106033i
\(976\) 8700.42 0.285342
\(977\) 9640.67 + 9640.67i 0.315693 + 0.315693i 0.847110 0.531417i \(-0.178340\pi\)
−0.531417 + 0.847110i \(0.678340\pi\)
\(978\) 3951.42 + 9410.46i 0.129195 + 0.307682i
\(979\) 6286.54i 0.205229i
\(980\) −7830.85 + 1961.14i −0.255252 + 0.0639247i
\(981\) 14046.8 + 13777.4i 0.457166 + 0.448398i
\(982\) 4148.90 4148.90i 0.134824 0.134824i
\(983\) 30440.0 30440.0i 0.987677 0.987677i −0.0122482 0.999925i \(-0.503899\pi\)
0.999925 + 0.0122482i \(0.00389882\pi\)
\(984\) −791.381 323.322i −0.0256385 0.0104747i
\(985\) 26901.2 + 16125.7i 0.870198 + 0.521632i
\(986\) 15770.4i 0.509362i
\(987\) 29698.7 12470.4i 0.957772 0.402165i
\(988\) 18711.2 + 18711.2i 0.602514 + 0.602514i
\(989\) 23464.1 0.754415
\(990\) −1943.18 7452.23i −0.0623821 0.239240i
\(991\) −6167.34 −0.197691 −0.0988455 0.995103i \(-0.531515\pi\)
−0.0988455 + 0.995103i \(0.531515\pi\)
\(992\) 145.073 + 145.073i 0.00464321 + 0.00464321i
\(993\) −13570.2 + 5698.07i −0.433672 + 0.182097i
\(994\) 6830.66i 0.217963i
\(995\) −4930.65 19688.2i −0.157098 0.627293i
\(996\) −20004.0 8172.72i −0.636398 0.260003i
\(997\) 6952.37 6952.37i 0.220846 0.220846i −0.588008 0.808855i \(-0.700088\pi\)
0.808855 + 0.588008i \(0.200088\pi\)
\(998\) 27594.9 27594.9i 0.875252 0.875252i
\(999\) 11644.1 + 26995.7i 0.368772 + 0.854961i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 30.4.e.a.23.1 yes 12
3.2 odd 2 inner 30.4.e.a.23.5 yes 12
4.3 odd 2 240.4.v.d.113.6 12
5.2 odd 4 inner 30.4.e.a.17.5 yes 12
5.3 odd 4 150.4.e.c.107.2 12
5.4 even 2 150.4.e.c.143.6 12
12.11 even 2 240.4.v.d.113.4 12
15.2 even 4 inner 30.4.e.a.17.1 12
15.8 even 4 150.4.e.c.107.6 12
15.14 odd 2 150.4.e.c.143.2 12
20.7 even 4 240.4.v.d.17.4 12
60.47 odd 4 240.4.v.d.17.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.4.e.a.17.1 12 15.2 even 4 inner
30.4.e.a.17.5 yes 12 5.2 odd 4 inner
30.4.e.a.23.1 yes 12 1.1 even 1 trivial
30.4.e.a.23.5 yes 12 3.2 odd 2 inner
150.4.e.c.107.2 12 5.3 odd 4
150.4.e.c.107.6 12 15.8 even 4
150.4.e.c.143.2 12 15.14 odd 2
150.4.e.c.143.6 12 5.4 even 2
240.4.v.d.17.4 12 20.7 even 4
240.4.v.d.17.6 12 60.47 odd 4
240.4.v.d.113.4 12 12.11 even 2
240.4.v.d.113.6 12 4.3 odd 2