Properties

Label 30.4.e.a.17.5
Level $30$
Weight $4$
Character 30.17
Analytic conductor $1.770$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [30,4,Mod(17,30)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("30.17"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(30, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 30 = 2 \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 30.e (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.77005730017\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 1577x^{8} + 284056x^{4} + 810000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{7}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 17.5
Root \(-2.67233 + 2.67233i\) of defining polynomial
Character \(\chi\) \(=\) 30.17
Dual form 30.4.e.a.23.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.41421 - 1.41421i) q^{2} +(2.01170 + 4.79094i) q^{3} -4.00000i q^{4} +(10.8454 + 2.71609i) q^{5} +(9.62038 + 3.93044i) q^{6} +(-16.1789 - 16.1789i) q^{7} +(-5.65685 - 5.65685i) q^{8} +(-18.9062 + 19.2758i) q^{9} +(19.1789 - 11.4966i) q^{10} -12.7562i q^{11} +(19.1637 - 8.04679i) q^{12} +(-34.2057 + 34.2057i) q^{13} -45.7607 q^{14} +(8.80503 + 57.4236i) q^{15} -16.0000 q^{16} +(-26.9917 + 26.9917i) q^{17} +(0.522794 + 53.9975i) q^{18} -136.755i q^{19} +(10.8644 - 43.3816i) q^{20} +(44.9649 - 110.059i) q^{21} +(-18.0400 - 18.0400i) q^{22} +(72.2934 + 72.2934i) q^{23} +(15.7218 - 38.4815i) q^{24} +(110.246 + 58.9143i) q^{25} +96.7483i q^{26} +(-130.383 - 51.8011i) q^{27} +(-64.7154 + 64.7154i) q^{28} +206.570 q^{29} +(93.6615 + 68.7571i) q^{30} +6.41137 q^{31} +(-22.6274 + 22.6274i) q^{32} +(61.1141 - 25.6616i) q^{33} +76.3440i q^{34} +(-131.523 - 219.410i) q^{35} +(77.1033 + 75.6246i) q^{36} +(148.178 + 148.178i) q^{37} +(-193.401 - 193.401i) q^{38} +(-232.689 - 95.0658i) q^{39} +(-45.9863 - 76.7154i) q^{40} +20.5652i q^{41} +(-92.0567 - 219.237i) q^{42} +(-162.284 + 162.284i) q^{43} -51.0248 q^{44} +(-257.400 + 157.703i) q^{45} +204.477 q^{46} +(-191.575 + 191.575i) q^{47} +(-32.1871 - 76.6550i) q^{48} +180.511i q^{49} +(239.228 - 72.5935i) q^{50} +(-183.615 - 75.0164i) q^{51} +(136.823 + 136.823i) q^{52} +(-12.0238 - 12.0238i) q^{53} +(-257.647 + 111.131i) q^{54} +(34.6470 - 138.346i) q^{55} +183.043i q^{56} +(655.187 - 275.110i) q^{57} +(292.134 - 292.134i) q^{58} +627.311 q^{59} +(229.694 - 35.2201i) q^{60} -543.776 q^{61} +(9.06704 - 9.06704i) q^{62} +(617.741 - 5.98086i) q^{63} +64.0000i q^{64} +(-463.880 + 278.069i) q^{65} +(50.1375 - 122.719i) q^{66} +(-120.548 - 120.548i) q^{67} +(107.967 + 107.967i) q^{68} +(-200.921 + 491.786i) q^{69} +(-496.294 - 124.290i) q^{70} -149.269i q^{71} +(215.990 - 2.09118i) q^{72} +(771.809 - 771.809i) q^{73} +419.112 q^{74} +(-60.4737 + 646.698i) q^{75} -547.022 q^{76} +(-206.381 + 206.381i) q^{77} +(-463.515 + 194.628i) q^{78} -97.9422i q^{79} +(-173.526 - 43.4575i) q^{80} +(-14.1148 - 728.863i) q^{81} +(29.0836 + 29.0836i) q^{82} +(-735.158 - 735.158i) q^{83} +(-440.235 - 179.860i) q^{84} +(-366.048 + 219.424i) q^{85} +459.009i q^{86} +(415.556 + 989.662i) q^{87} +(-72.1599 + 72.1599i) q^{88} -492.823 q^{89} +(-140.992 + 587.044i) q^{90} +1106.82 q^{91} +(289.174 - 289.174i) q^{92} +(12.8977 + 30.7164i) q^{93} +541.857i q^{94} +(371.441 - 1483.17i) q^{95} +(-153.926 - 62.8870i) q^{96} +(-811.978 - 811.978i) q^{97} +(255.281 + 255.281i) q^{98} +(245.886 + 241.171i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 8 q^{3} + 8 q^{6} + 12 q^{7} + 24 q^{10} - 32 q^{12} - 120 q^{13} - 172 q^{15} - 192 q^{16} - 16 q^{18} + 464 q^{21} + 312 q^{22} + 504 q^{25} - 688 q^{27} + 48 q^{28} + 168 q^{30} - 504 q^{31} + 788 q^{33}+ \cdots - 7596 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/30\mathbb{Z}\right)^\times\).

\(n\) \(7\) \(11\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421 1.41421i 0.500000 0.500000i
\(3\) 2.01170 + 4.79094i 0.387151 + 0.922016i
\(4\) 4.00000i 0.500000i
\(5\) 10.8454 + 2.71609i 0.970043 + 0.242935i
\(6\) 9.62038 + 3.93044i 0.654584 + 0.267433i
\(7\) −16.1789 16.1789i −0.873576 0.873576i 0.119284 0.992860i \(-0.461940\pi\)
−0.992860 + 0.119284i \(0.961940\pi\)
\(8\) −5.65685 5.65685i −0.250000 0.250000i
\(9\) −18.9062 + 19.2758i −0.700228 + 0.713919i
\(10\) 19.1789 11.4966i 0.606489 0.363554i
\(11\) 12.7562i 0.349649i −0.984600 0.174824i \(-0.944064\pi\)
0.984600 0.174824i \(-0.0559358\pi\)
\(12\) 19.1637 8.04679i 0.461008 0.193576i
\(13\) −34.2057 + 34.2057i −0.729765 + 0.729765i −0.970573 0.240808i \(-0.922588\pi\)
0.240808 + 0.970573i \(0.422588\pi\)
\(14\) −45.7607 −0.873576
\(15\) 8.80503 + 57.4236i 0.151563 + 0.988448i
\(16\) −16.0000 −0.250000
\(17\) −26.9917 + 26.9917i −0.385085 + 0.385085i −0.872930 0.487845i \(-0.837783\pi\)
0.487845 + 0.872930i \(0.337783\pi\)
\(18\) 0.522794 + 53.9975i 0.00684577 + 0.707074i
\(19\) 136.755i 1.65125i −0.564216 0.825627i \(-0.690821\pi\)
0.564216 0.825627i \(-0.309179\pi\)
\(20\) 10.8644 43.3816i 0.121467 0.485021i
\(21\) 44.9649 110.059i 0.467245 1.14366i
\(22\) −18.0400 18.0400i −0.174824 0.174824i
\(23\) 72.2934 + 72.2934i 0.655401 + 0.655401i 0.954288 0.298887i \(-0.0966155\pi\)
−0.298887 + 0.954288i \(0.596616\pi\)
\(24\) 15.7218 38.4815i 0.133716 0.327292i
\(25\) 110.246 + 58.9143i 0.881965 + 0.471314i
\(26\) 96.7483i 0.729765i
\(27\) −130.383 51.8011i −0.929339 0.369227i
\(28\) −64.7154 + 64.7154i −0.436788 + 0.436788i
\(29\) 206.570 1.32272 0.661362 0.750066i \(-0.269979\pi\)
0.661362 + 0.750066i \(0.269979\pi\)
\(30\) 93.6615 + 68.7571i 0.570005 + 0.418442i
\(31\) 6.41137 0.0371457 0.0185728 0.999828i \(-0.494088\pi\)
0.0185728 + 0.999828i \(0.494088\pi\)
\(32\) −22.6274 + 22.6274i −0.125000 + 0.125000i
\(33\) 61.1141 25.6616i 0.322382 0.135367i
\(34\) 76.3440i 0.385085i
\(35\) −131.523 219.410i −0.635184 1.05963i
\(36\) 77.1033 + 75.6246i 0.356960 + 0.350114i
\(37\) 148.178 + 148.178i 0.658388 + 0.658388i 0.954999 0.296610i \(-0.0958562\pi\)
−0.296610 + 0.954999i \(0.595856\pi\)
\(38\) −193.401 193.401i −0.825627 0.825627i
\(39\) −232.689 95.0658i −0.955385 0.390326i
\(40\) −45.9863 76.7154i −0.181777 0.303244i
\(41\) 20.5652i 0.0783354i 0.999233 + 0.0391677i \(0.0124706\pi\)
−0.999233 + 0.0391677i \(0.987529\pi\)
\(42\) −92.0567 219.237i −0.338206 0.805451i
\(43\) −162.284 + 162.284i −0.575537 + 0.575537i −0.933670 0.358133i \(-0.883413\pi\)
0.358133 + 0.933670i \(0.383413\pi\)
\(44\) −51.0248 −0.174824
\(45\) −257.400 + 157.703i −0.852687 + 0.522423i
\(46\) 204.477 0.655401
\(47\) −191.575 + 191.575i −0.594556 + 0.594556i −0.938859 0.344303i \(-0.888115\pi\)
0.344303 + 0.938859i \(0.388115\pi\)
\(48\) −32.1871 76.6550i −0.0967878 0.230504i
\(49\) 180.511i 0.526271i
\(50\) 239.228 72.5935i 0.676640 0.205326i
\(51\) −183.615 75.0164i −0.504141 0.205969i
\(52\) 136.823 + 136.823i 0.364883 + 0.364883i
\(53\) −12.0238 12.0238i −0.0311622 0.0311622i 0.691354 0.722516i \(-0.257015\pi\)
−0.722516 + 0.691354i \(0.757015\pi\)
\(54\) −257.647 + 111.131i −0.649283 + 0.280056i
\(55\) 34.6470 138.346i 0.0849419 0.339174i
\(56\) 183.043i 0.436788i
\(57\) 655.187 275.110i 1.52248 0.639285i
\(58\) 292.134 292.134i 0.661362 0.661362i
\(59\) 627.311 1.38422 0.692110 0.721792i \(-0.256681\pi\)
0.692110 + 0.721792i \(0.256681\pi\)
\(60\) 229.694 35.2201i 0.494224 0.0757817i
\(61\) −543.776 −1.14137 −0.570684 0.821170i \(-0.693322\pi\)
−0.570684 + 0.821170i \(0.693322\pi\)
\(62\) 9.06704 9.06704i 0.0185728 0.0185728i
\(63\) 617.741 5.98086i 1.23537 0.0119606i
\(64\) 64.0000i 0.125000i
\(65\) −463.880 + 278.069i −0.885189 + 0.530618i
\(66\) 50.1375 122.719i 0.0935075 0.228874i
\(67\) −120.548 120.548i −0.219810 0.219810i 0.588608 0.808419i \(-0.299676\pi\)
−0.808419 + 0.588608i \(0.799676\pi\)
\(68\) 107.967 + 107.967i 0.192543 + 0.192543i
\(69\) −200.921 + 491.786i −0.350551 + 0.858029i
\(70\) −496.294 124.290i −0.847406 0.212222i
\(71\) 149.269i 0.249507i −0.992188 0.124753i \(-0.960186\pi\)
0.992188 0.124753i \(-0.0398140\pi\)
\(72\) 215.990 2.09118i 0.353537 0.00342288i
\(73\) 771.809 771.809i 1.23744 1.23744i 0.276402 0.961042i \(-0.410858\pi\)
0.961042 0.276402i \(-0.0891422\pi\)
\(74\) 419.112 0.658388
\(75\) −60.4737 + 646.698i −0.0931054 + 0.995656i
\(76\) −547.022 −0.825627
\(77\) −206.381 + 206.381i −0.305445 + 0.305445i
\(78\) −463.515 + 194.628i −0.672855 + 0.282530i
\(79\) 97.9422i 0.139486i −0.997565 0.0697428i \(-0.977782\pi\)
0.997565 0.0697428i \(-0.0222178\pi\)
\(80\) −173.526 43.4575i −0.242511 0.0607337i
\(81\) −14.1148 728.863i −0.0193619 0.999813i
\(82\) 29.0836 + 29.0836i 0.0391677 + 0.0391677i
\(83\) −735.158 735.158i −0.972218 0.972218i 0.0274067 0.999624i \(-0.491275\pi\)
−0.999624 + 0.0274067i \(0.991275\pi\)
\(84\) −440.235 179.860i −0.571829 0.233623i
\(85\) −366.048 + 219.424i −0.467100 + 0.279998i
\(86\) 459.009i 0.575537i
\(87\) 415.556 + 989.662i 0.512095 + 1.21957i
\(88\) −72.1599 + 72.1599i −0.0874122 + 0.0874122i
\(89\) −492.823 −0.586956 −0.293478 0.955966i \(-0.594813\pi\)
−0.293478 + 0.955966i \(0.594813\pi\)
\(90\) −140.992 + 587.044i −0.165132 + 0.687555i
\(91\) 1106.82 1.27501
\(92\) 289.174 289.174i 0.327700 0.327700i
\(93\) 12.8977 + 30.7164i 0.0143810 + 0.0342489i
\(94\) 541.857i 0.594556i
\(95\) 371.441 1483.17i 0.401147 1.60179i
\(96\) −153.926 62.8870i −0.163646 0.0668581i
\(97\) −811.978 811.978i −0.849937 0.849937i 0.140188 0.990125i \(-0.455229\pi\)
−0.990125 + 0.140188i \(0.955229\pi\)
\(98\) 255.281 + 255.281i 0.263135 + 0.263135i
\(99\) 245.886 + 241.171i 0.249621 + 0.244834i
\(100\) 235.657 440.983i 0.235657 0.440983i
\(101\) 1221.28i 1.20319i 0.798801 + 0.601596i \(0.205468\pi\)
−0.798801 + 0.601596i \(0.794532\pi\)
\(102\) −365.760 + 153.581i −0.355055 + 0.149086i
\(103\) −1013.81 + 1013.81i −0.969841 + 0.969841i −0.999558 0.0297171i \(-0.990539\pi\)
0.0297171 + 0.999558i \(0.490539\pi\)
\(104\) 386.993 0.364883
\(105\) 786.593 1071.50i 0.731082 0.995886i
\(106\) −34.0085 −0.0311622
\(107\) −104.272 + 104.272i −0.0942090 + 0.0942090i −0.752641 0.658432i \(-0.771220\pi\)
0.658432 + 0.752641i \(0.271220\pi\)
\(108\) −207.204 + 521.531i −0.184613 + 0.464670i
\(109\) 728.726i 0.640360i −0.947357 0.320180i \(-0.896257\pi\)
0.947357 0.320180i \(-0.103743\pi\)
\(110\) −146.653 244.649i −0.127116 0.212058i
\(111\) −411.823 + 1008.00i −0.352149 + 0.861941i
\(112\) 258.862 + 258.862i 0.218394 + 0.218394i
\(113\) 124.657 + 124.657i 0.103777 + 0.103777i 0.757089 0.653312i \(-0.226621\pi\)
−0.653312 + 0.757089i \(0.726621\pi\)
\(114\) 537.509 1315.64i 0.441599 1.08088i
\(115\) 587.696 + 980.407i 0.476547 + 0.794986i
\(116\) 826.279i 0.661362i
\(117\) −12.6449 1306.04i −0.00999161 1.03200i
\(118\) 887.152 887.152i 0.692110 0.692110i
\(119\) 873.390 0.672802
\(120\) 275.028 374.646i 0.209221 0.285003i
\(121\) 1168.28 0.877746
\(122\) −769.015 + 769.015i −0.570684 + 0.570684i
\(123\) −98.5267 + 41.3710i −0.0722265 + 0.0303276i
\(124\) 25.6455i 0.0185728i
\(125\) 1035.64 + 938.387i 0.741045 + 0.671455i
\(126\) 865.159 882.076i 0.611702 0.623663i
\(127\) 292.476 + 292.476i 0.204355 + 0.204355i 0.801863 0.597508i \(-0.203842\pi\)
−0.597508 + 0.801863i \(0.703842\pi\)
\(128\) 90.5097 + 90.5097i 0.0625000 + 0.0625000i
\(129\) −1103.96 451.026i −0.753474 0.307835i
\(130\) −262.777 + 1049.27i −0.177285 + 0.707903i
\(131\) 464.976i 0.310115i 0.987905 + 0.155058i \(0.0495563\pi\)
−0.987905 + 0.155058i \(0.950444\pi\)
\(132\) −102.646 244.457i −0.0676835 0.161191i
\(133\) −2212.55 + 2212.55i −1.44250 + 1.44250i
\(134\) −340.962 −0.219810
\(135\) −1273.36 915.935i −0.811801 0.583935i
\(136\) 305.376 0.192543
\(137\) 102.116 102.116i 0.0636815 0.0636815i −0.674549 0.738230i \(-0.735662\pi\)
0.738230 + 0.674549i \(0.235662\pi\)
\(138\) 411.345 + 979.635i 0.253739 + 0.604290i
\(139\) 336.335i 0.205234i −0.994721 0.102617i \(-0.967278\pi\)
0.994721 0.102617i \(-0.0327216\pi\)
\(140\) −877.638 + 526.092i −0.529814 + 0.317592i
\(141\) −1303.22 532.434i −0.778373 0.318007i
\(142\) −211.098 211.098i −0.124753 0.124753i
\(143\) 436.334 + 436.334i 0.255162 + 0.255162i
\(144\) 302.498 308.413i 0.175057 0.178480i
\(145\) 2240.33 + 561.063i 1.28310 + 0.321336i
\(146\) 2183.01i 1.23744i
\(147\) −864.816 + 363.133i −0.485230 + 0.203746i
\(148\) 592.713 592.713i 0.329194 0.329194i
\(149\) −3241.32 −1.78214 −0.891071 0.453864i \(-0.850045\pi\)
−0.891071 + 0.453864i \(0.850045\pi\)
\(150\) 829.046 + 1000.09i 0.451275 + 0.544381i
\(151\) −224.154 −0.120804 −0.0604019 0.998174i \(-0.519238\pi\)
−0.0604019 + 0.998174i \(0.519238\pi\)
\(152\) −773.605 + 773.605i −0.412814 + 0.412814i
\(153\) −9.97806 1030.60i −0.00527241 0.544567i
\(154\) 583.733i 0.305445i
\(155\) 69.5339 + 17.4139i 0.0360329 + 0.00902397i
\(156\) −380.263 + 930.755i −0.195163 + 0.477693i
\(157\) −1006.73 1006.73i −0.511759 0.511759i 0.403306 0.915065i \(-0.367861\pi\)
−0.915065 + 0.403306i \(0.867861\pi\)
\(158\) −138.511 138.511i −0.0697428 0.0697428i
\(159\) 33.4171 81.7936i 0.0166676 0.0407966i
\(160\) −306.862 + 183.945i −0.151622 + 0.0908885i
\(161\) 2339.25i 1.14509i
\(162\) −1050.73 1010.81i −0.509587 0.490225i
\(163\) 694.457 694.457i 0.333706 0.333706i −0.520286 0.853992i \(-0.674175\pi\)
0.853992 + 0.520286i \(0.174175\pi\)
\(164\) 82.2609 0.0391677
\(165\) 732.507 112.319i 0.345610 0.0529940i
\(166\) −2079.34 −0.972218
\(167\) 1875.50 1875.50i 0.869044 0.869044i −0.123322 0.992367i \(-0.539355\pi\)
0.992367 + 0.123322i \(0.0393550\pi\)
\(168\) −876.947 + 368.227i −0.402726 + 0.169103i
\(169\) 143.057i 0.0651149i
\(170\) −207.358 + 827.982i −0.0935506 + 0.373549i
\(171\) 2636.07 + 2585.52i 1.17886 + 1.15625i
\(172\) 649.136 + 649.136i 0.287768 + 0.287768i
\(173\) 2100.72 + 2100.72i 0.923208 + 0.923208i 0.997255 0.0740463i \(-0.0235913\pi\)
−0.0740463 + 0.997255i \(0.523591\pi\)
\(174\) 1987.28 + 811.910i 0.865834 + 0.353740i
\(175\) −830.483 2736.81i −0.358735 1.18219i
\(176\) 204.099i 0.0874122i
\(177\) 1261.96 + 3005.41i 0.535902 + 1.27627i
\(178\) −696.957 + 696.957i −0.293478 + 0.293478i
\(179\) 1272.12 0.531190 0.265595 0.964085i \(-0.414432\pi\)
0.265595 + 0.964085i \(0.414432\pi\)
\(180\) 630.813 + 1029.60i 0.261211 + 0.426343i
\(181\) 62.7280 0.0257599 0.0128799 0.999917i \(-0.495900\pi\)
0.0128799 + 0.999917i \(0.495900\pi\)
\(182\) 1565.28 1565.28i 0.637506 0.637506i
\(183\) −1093.91 2605.20i −0.441882 1.05236i
\(184\) 817.907i 0.327700i
\(185\) 1204.59 + 2009.52i 0.478719 + 0.798610i
\(186\) 61.6798 + 25.1995i 0.0243149 + 0.00993396i
\(187\) 344.311 + 344.311i 0.134645 + 0.134645i
\(188\) 766.301 + 766.301i 0.297278 + 0.297278i
\(189\) 1271.36 + 2947.53i 0.489301 + 1.13440i
\(190\) −1572.22 2622.81i −0.600320 1.00147i
\(191\) 2039.90i 0.772785i 0.922335 + 0.386392i \(0.126279\pi\)
−0.922335 + 0.386392i \(0.873721\pi\)
\(192\) −306.620 + 128.749i −0.115252 + 0.0483939i
\(193\) 1274.49 1274.49i 0.475335 0.475335i −0.428301 0.903636i \(-0.640888\pi\)
0.903636 + 0.428301i \(0.140888\pi\)
\(194\) −2296.62 −0.849937
\(195\) −2265.40 1663.03i −0.831940 0.610729i
\(196\) 722.043 0.263135
\(197\) 1983.65 1983.65i 0.717407 0.717407i −0.250667 0.968073i \(-0.580650\pi\)
0.968073 + 0.250667i \(0.0806499\pi\)
\(198\) 688.802 6.66887i 0.247228 0.00239362i
\(199\) 1815.35i 0.646666i −0.946285 0.323333i \(-0.895197\pi\)
0.946285 0.323333i \(-0.104803\pi\)
\(200\) −290.374 956.913i −0.102663 0.338320i
\(201\) 335.032 820.045i 0.117569 0.287769i
\(202\) 1727.16 + 1727.16i 0.601596 + 0.601596i
\(203\) −3342.06 3342.06i −1.15550 1.15550i
\(204\) −300.066 + 734.459i −0.102984 + 0.252070i
\(205\) −55.8571 + 223.038i −0.0190304 + 0.0759886i
\(206\) 2867.49i 0.969841i
\(207\) −2760.31 + 26.7248i −0.926833 + 0.00897345i
\(208\) 547.291 547.291i 0.182441 0.182441i
\(209\) −1744.48 −0.577360
\(210\) −402.925 2627.75i −0.132402 0.863484i
\(211\) −3581.87 −1.16865 −0.584327 0.811518i \(-0.698642\pi\)
−0.584327 + 0.811518i \(0.698642\pi\)
\(212\) −48.0952 + 48.0952i −0.0155811 + 0.0155811i
\(213\) 715.139 300.284i 0.230049 0.0965969i
\(214\) 294.926i 0.0942090i
\(215\) −2200.82 + 1319.26i −0.698113 + 0.418477i
\(216\) 444.525 + 1030.59i 0.140028 + 0.324642i
\(217\) −103.729 103.729i −0.0324496 0.0324496i
\(218\) −1030.57 1030.57i −0.320180 0.320180i
\(219\) 5250.34 + 2145.04i 1.62002 + 0.661866i
\(220\) −553.385 138.588i −0.169587 0.0424709i
\(221\) 1846.54i 0.562044i
\(222\) 843.126 + 2007.94i 0.254896 + 0.607045i
\(223\) −285.691 + 285.691i −0.0857906 + 0.0857906i −0.748700 0.662909i \(-0.769322\pi\)
0.662909 + 0.748700i \(0.269322\pi\)
\(224\) 732.171 0.218394
\(225\) −3219.94 + 1011.23i −0.954057 + 0.299625i
\(226\) 352.584 0.103777
\(227\) −4779.51 + 4779.51i −1.39748 + 1.39748i −0.590270 + 0.807206i \(0.700979\pi\)
−0.807206 + 0.590270i \(0.799021\pi\)
\(228\) −1100.44 2620.75i −0.319643 0.761242i
\(229\) 5062.03i 1.46074i 0.683054 + 0.730368i \(0.260651\pi\)
−0.683054 + 0.730368i \(0.739349\pi\)
\(230\) 2217.63 + 555.378i 0.635767 + 0.159220i
\(231\) −1403.93 573.582i −0.399879 0.163372i
\(232\) −1168.53 1168.53i −0.330681 0.330681i
\(233\) 1012.79 + 1012.79i 0.284765 + 0.284765i 0.835006 0.550241i \(-0.185464\pi\)
−0.550241 + 0.835006i \(0.685464\pi\)
\(234\) −1864.90 1829.14i −0.520994 0.511002i
\(235\) −2598.05 + 1557.38i −0.721183 + 0.432306i
\(236\) 2509.25i 0.692110i
\(237\) 469.235 197.030i 0.128608 0.0540020i
\(238\) 1235.16 1235.16i 0.336401 0.336401i
\(239\) 1140.60 0.308701 0.154350 0.988016i \(-0.450672\pi\)
0.154350 + 0.988016i \(0.450672\pi\)
\(240\) −140.881 918.778i −0.0378908 0.247112i
\(241\) 894.509 0.239089 0.119544 0.992829i \(-0.461857\pi\)
0.119544 + 0.992829i \(0.461857\pi\)
\(242\) 1652.20 1652.20i 0.438873 0.438873i
\(243\) 3463.54 1533.88i 0.914347 0.404931i
\(244\) 2175.10i 0.570684i
\(245\) −490.284 + 1957.71i −0.127849 + 0.510505i
\(246\) −80.8304 + 197.845i −0.0209494 + 0.0512771i
\(247\) 4677.81 + 4677.81i 1.20503 + 1.20503i
\(248\) −36.2682 36.2682i −0.00928641 0.00928641i
\(249\) 2043.18 5001.01i 0.520005 1.27280i
\(250\) 2791.70 137.540i 0.706250 0.0347952i
\(251\) 4198.52i 1.05581i −0.849304 0.527905i \(-0.822978\pi\)
0.849304 0.527905i \(-0.177022\pi\)
\(252\) −23.9235 2470.96i −0.00598030 0.617683i
\(253\) 922.189 922.189i 0.229160 0.229160i
\(254\) 827.246 0.204355
\(255\) −1787.62 1312.30i −0.439001 0.322272i
\(256\) 256.000 0.0625000
\(257\) 3004.70 3004.70i 0.729291 0.729291i −0.241188 0.970479i \(-0.577537\pi\)
0.970479 + 0.241188i \(0.0775369\pi\)
\(258\) −2199.08 + 923.386i −0.530654 + 0.222820i
\(259\) 4794.71i 1.15030i
\(260\) 1112.27 + 1855.52i 0.265309 + 0.442594i
\(261\) −3905.44 + 3981.80i −0.926209 + 0.944319i
\(262\) 657.575 + 657.575i 0.155058 + 0.155058i
\(263\) 3594.55 + 3594.55i 0.842773 + 0.842773i 0.989219 0.146446i \(-0.0467834\pi\)
−0.146446 + 0.989219i \(0.546783\pi\)
\(264\) −490.878 200.550i −0.114437 0.0467537i
\(265\) −97.7453 163.061i −0.0226583 0.0377991i
\(266\) 6258.03i 1.44250i
\(267\) −991.410 2361.08i −0.227241 0.541183i
\(268\) −482.193 + 482.193i −0.109905 + 0.109905i
\(269\) −2096.25 −0.475132 −0.237566 0.971371i \(-0.576350\pi\)
−0.237566 + 0.971371i \(0.576350\pi\)
\(270\) −3096.13 + 505.470i −0.697868 + 0.113933i
\(271\) −588.893 −0.132002 −0.0660012 0.997820i \(-0.521024\pi\)
−0.0660012 + 0.997820i \(0.521024\pi\)
\(272\) 431.867 431.867i 0.0962713 0.0962713i
\(273\) 2226.58 + 5302.69i 0.493622 + 1.17558i
\(274\) 288.828i 0.0636815i
\(275\) 751.522 1406.32i 0.164795 0.308378i
\(276\) 1967.14 + 803.683i 0.429015 + 0.175276i
\(277\) −1492.04 1492.04i −0.323639 0.323639i 0.526522 0.850161i \(-0.323496\pi\)
−0.850161 + 0.526522i \(0.823496\pi\)
\(278\) −475.649 475.649i −0.102617 0.102617i
\(279\) −121.214 + 123.584i −0.0260104 + 0.0265190i
\(280\) −497.162 + 1985.17i −0.106111 + 0.423703i
\(281\) 5169.08i 1.09737i −0.836028 0.548686i \(-0.815128\pi\)
0.836028 0.548686i \(-0.184872\pi\)
\(282\) −2596.00 + 1090.05i −0.548190 + 0.230183i
\(283\) −892.521 + 892.521i −0.187473 + 0.187473i −0.794603 0.607130i \(-0.792321\pi\)
0.607130 + 0.794603i \(0.292321\pi\)
\(284\) −597.077 −0.124753
\(285\) 7852.99 1204.14i 1.63218 0.250270i
\(286\) 1234.14 0.255162
\(287\) 332.722 332.722i 0.0684319 0.0684319i
\(288\) −8.36471 863.960i −0.00171144 0.176768i
\(289\) 3455.90i 0.703419i
\(290\) 3961.77 2374.85i 0.802218 0.480882i
\(291\) 2256.68 5523.59i 0.454602 1.11271i
\(292\) −3087.24 3087.24i −0.618722 0.618722i
\(293\) −3323.48 3323.48i −0.662661 0.662661i 0.293346 0.956006i \(-0.405231\pi\)
−0.956006 + 0.293346i \(0.905231\pi\)
\(294\) −709.487 + 1736.58i −0.140742 + 0.344488i
\(295\) 6803.45 + 1703.84i 1.34275 + 0.336275i
\(296\) 1676.45i 0.329194i
\(297\) −660.785 + 1663.19i −0.129100 + 0.324943i
\(298\) −4583.92 + 4583.92i −0.891071 + 0.891071i
\(299\) −4945.69 −0.956578
\(300\) 2586.79 + 241.895i 0.497828 + 0.0465527i
\(301\) 5251.14 1.00555
\(302\) −317.001 + 317.001i −0.0604019 + 0.0604019i
\(303\) −5851.09 + 2456.85i −1.10936 + 0.465817i
\(304\) 2188.09i 0.412814i
\(305\) −5897.47 1476.95i −1.10717 0.277278i
\(306\) −1471.59 1443.37i −0.274920 0.269647i
\(307\) −2558.00 2558.00i −0.475547 0.475547i 0.428157 0.903704i \(-0.359163\pi\)
−0.903704 + 0.428157i \(0.859163\pi\)
\(308\) 825.523 + 825.523i 0.152722 + 0.152722i
\(309\) −6896.58 2817.62i −1.26968 0.518734i
\(310\) 122.963 73.7088i 0.0225284 0.0135044i
\(311\) 8102.38i 1.47731i 0.674083 + 0.738655i \(0.264539\pi\)
−0.674083 + 0.738655i \(0.735461\pi\)
\(312\) 778.513 + 1854.06i 0.141265 + 0.336428i
\(313\) 106.246 106.246i 0.0191865 0.0191865i −0.697448 0.716635i \(-0.745681\pi\)
0.716635 + 0.697448i \(0.245681\pi\)
\(314\) −2847.47 −0.511759
\(315\) 6715.89 + 1612.98i 1.20126 + 0.288511i
\(316\) −391.769 −0.0697428
\(317\) −1174.48 + 1174.48i −0.208093 + 0.208093i −0.803456 0.595364i \(-0.797008\pi\)
0.595364 + 0.803456i \(0.297008\pi\)
\(318\) −68.4147 162.932i −0.0120645 0.0287321i
\(319\) 2635.04i 0.462489i
\(320\) −173.830 + 694.106i −0.0303669 + 0.121255i
\(321\) −709.325 289.797i −0.123335 0.0503891i
\(322\) −3308.20 3308.20i −0.572543 0.572543i
\(323\) 3691.26 + 3691.26i 0.635874 + 0.635874i
\(324\) −2915.45 + 56.4592i −0.499906 + 0.00968093i
\(325\) −5786.23 + 1755.83i −0.987577 + 0.299679i
\(326\) 1964.22i 0.333706i
\(327\) 3491.28 1465.98i 0.590423 0.247916i
\(328\) 116.335 116.335i 0.0195838 0.0195838i
\(329\) 6198.94 1.03878
\(330\) 877.079 1194.76i 0.146308 0.199302i
\(331\) 2832.47 0.470352 0.235176 0.971953i \(-0.424433\pi\)
0.235176 + 0.971953i \(0.424433\pi\)
\(332\) −2940.63 + 2940.63i −0.486109 + 0.486109i
\(333\) −5657.74 + 54.7773i −0.931058 + 0.00901435i
\(334\) 5304.71i 0.869044i
\(335\) −979.974 1634.81i −0.159826 0.266625i
\(336\) −719.439 + 1760.94i −0.116811 + 0.285914i
\(337\) −4789.86 4789.86i −0.774244 0.774244i 0.204601 0.978845i \(-0.434410\pi\)
−0.978845 + 0.204601i \(0.934410\pi\)
\(338\) −202.314 202.314i −0.0325575 0.0325575i
\(339\) −346.453 + 847.998i −0.0555066 + 0.135861i
\(340\) 877.696 + 1464.19i 0.139999 + 0.233550i
\(341\) 81.7846i 0.0129879i
\(342\) 7384.45 71.4950i 1.16756 0.0113041i
\(343\) −2628.89 + 2628.89i −0.413839 + 0.413839i
\(344\) 1836.03 0.287768
\(345\) −3514.80 + 4787.90i −0.548495 + 0.747164i
\(346\) 5941.74 0.923208
\(347\) −2124.17 + 2124.17i −0.328621 + 0.328621i −0.852062 0.523441i \(-0.824648\pi\)
0.523441 + 0.852062i \(0.324648\pi\)
\(348\) 3958.65 1662.22i 0.609787 0.256047i
\(349\) 9235.10i 1.41646i −0.705983 0.708229i \(-0.749495\pi\)
0.705983 0.708229i \(-0.250505\pi\)
\(350\) −5044.92 2695.96i −0.770464 0.411729i
\(351\) 6231.72 2687.94i 0.947649 0.408751i
\(352\) 288.640 + 288.640i 0.0437061 + 0.0437061i
\(353\) 986.773 + 986.773i 0.148784 + 0.148784i 0.777574 0.628791i \(-0.216450\pi\)
−0.628791 + 0.777574i \(0.716450\pi\)
\(354\) 6034.97 + 2465.61i 0.906088 + 0.370185i
\(355\) 405.429 1618.88i 0.0606139 0.242032i
\(356\) 1971.29i 0.293478i
\(357\) 1757.00 + 4184.35i 0.260476 + 0.620335i
\(358\) 1799.06 1799.06i 0.265595 0.265595i
\(359\) 10701.5 1.57327 0.786635 0.617419i \(-0.211822\pi\)
0.786635 + 0.617419i \(0.211822\pi\)
\(360\) 2348.18 + 563.969i 0.343777 + 0.0825661i
\(361\) −11843.0 −1.72664
\(362\) 88.7108 88.7108i 0.0128799 0.0128799i
\(363\) 2350.22 + 5597.15i 0.339820 + 0.809296i
\(364\) 4427.27i 0.637506i
\(365\) 10466.9 6274.28i 1.50099 0.899755i
\(366\) −5231.33 2137.28i −0.747120 0.305239i
\(367\) 1004.85 + 1004.85i 0.142923 + 0.142923i 0.774948 0.632025i \(-0.217776\pi\)
−0.632025 + 0.774948i \(0.717776\pi\)
\(368\) −1156.69 1156.69i −0.163850 0.163850i
\(369\) −396.412 388.809i −0.0559251 0.0548526i
\(370\) 4545.44 + 1138.35i 0.638665 + 0.159945i
\(371\) 389.063i 0.0544451i
\(372\) 122.866 51.5909i 0.0171244 0.00719049i
\(373\) 8677.69 8677.69i 1.20460 1.20460i 0.231842 0.972754i \(-0.425525\pi\)
0.972754 0.231842i \(-0.0744751\pi\)
\(374\) 973.860 0.134645
\(375\) −2412.35 + 6849.45i −0.332196 + 0.943210i
\(376\) 2167.43 0.297278
\(377\) −7065.86 + 7065.86i −0.965279 + 0.965279i
\(378\) 5966.41 + 2370.45i 0.811849 + 0.322548i
\(379\) 14693.0i 1.99137i 0.0927715 + 0.995687i \(0.470427\pi\)
−0.0927715 + 0.995687i \(0.529573\pi\)
\(380\) −5932.67 1485.76i −0.800894 0.200574i
\(381\) −812.860 + 1989.61i −0.109302 + 0.267534i
\(382\) 2884.85 + 2884.85i 0.386392 + 0.386392i
\(383\) −1850.91 1850.91i −0.246937 0.246937i 0.572775 0.819713i \(-0.305867\pi\)
−0.819713 + 0.572775i \(0.805867\pi\)
\(384\) −251.548 + 615.704i −0.0334291 + 0.0818230i
\(385\) −2798.83 + 1677.73i −0.370498 + 0.222091i
\(386\) 3604.80i 0.475335i
\(387\) −59.9918 6196.33i −0.00787999 0.813894i
\(388\) −3247.91 + 3247.91i −0.424969 + 0.424969i
\(389\) 9296.60 1.21171 0.605856 0.795574i \(-0.292831\pi\)
0.605856 + 0.795574i \(0.292831\pi\)
\(390\) −5555.64 + 851.872i −0.721335 + 0.110606i
\(391\) −3902.64 −0.504770
\(392\) 1021.12 1021.12i 0.131568 0.131568i
\(393\) −2227.67 + 935.390i −0.285931 + 0.120062i
\(394\) 5610.60i 0.717407i
\(395\) 266.020 1062.22i 0.0338859 0.135307i
\(396\) 964.682 983.545i 0.122417 0.124811i
\(397\) 848.145 + 848.145i 0.107222 + 0.107222i 0.758683 0.651460i \(-0.225843\pi\)
−0.651460 + 0.758683i \(0.725843\pi\)
\(398\) −2567.29 2567.29i −0.323333 0.323333i
\(399\) −15051.1 6149.20i −1.88847 0.771541i
\(400\) −1763.93 942.628i −0.220491 0.117829i
\(401\) 8527.15i 1.06191i 0.847400 + 0.530954i \(0.178166\pi\)
−0.847400 + 0.530954i \(0.821834\pi\)
\(402\) −685.911 1633.53i −0.0850999 0.202669i
\(403\) −219.305 + 219.305i −0.0271076 + 0.0271076i
\(404\) 4885.14 0.601596
\(405\) 1826.58 7943.16i 0.224107 0.974564i
\(406\) −9452.78 −1.15550
\(407\) 1890.19 1890.19i 0.230205 0.230205i
\(408\) 614.324 + 1463.04i 0.0745431 + 0.177527i
\(409\) 7604.85i 0.919403i 0.888073 + 0.459702i \(0.152044\pi\)
−0.888073 + 0.459702i \(0.847956\pi\)
\(410\) 236.430 + 394.418i 0.0284791 + 0.0475095i
\(411\) 694.658 + 283.805i 0.0833697 + 0.0340610i
\(412\) 4055.24 + 4055.24i 0.484921 + 0.484921i
\(413\) −10149.2 10149.2i −1.20922 1.20922i
\(414\) −3865.87 + 3941.46i −0.458930 + 0.467903i
\(415\) −5976.33 9969.84i −0.706907 1.17928i
\(416\) 1547.97i 0.182441i
\(417\) 1611.36 676.603i 0.189229 0.0794566i
\(418\) −2467.07 + 2467.07i −0.288680 + 0.288680i
\(419\) −13904.7 −1.62122 −0.810609 0.585588i \(-0.800864\pi\)
−0.810609 + 0.585588i \(0.800864\pi\)
\(420\) −4286.02 3146.37i −0.497943 0.365541i
\(421\) 15613.5 1.80749 0.903745 0.428071i \(-0.140807\pi\)
0.903745 + 0.428071i \(0.140807\pi\)
\(422\) −5065.53 + 5065.53i −0.584327 + 0.584327i
\(423\) −70.8200 7314.73i −0.00814039 0.840790i
\(424\) 136.034i 0.0155811i
\(425\) −4565.91 + 1385.52i −0.521128 + 0.158136i
\(426\) 586.693 1436.03i 0.0667263 0.163323i
\(427\) 8797.68 + 8797.68i 0.997071 + 0.997071i
\(428\) 417.088 + 417.088i 0.0471045 + 0.0471045i
\(429\) −1212.68 + 2968.22i −0.136477 + 0.334049i
\(430\) −1246.71 + 4978.14i −0.139818 + 0.558295i
\(431\) 1687.62i 0.188607i 0.995544 + 0.0943034i \(0.0300624\pi\)
−0.995544 + 0.0943034i \(0.969938\pi\)
\(432\) 2086.12 + 828.817i 0.232335 + 0.0923067i
\(433\) 3605.54 3605.54i 0.400164 0.400164i −0.478127 0.878291i \(-0.658684\pi\)
0.878291 + 0.478127i \(0.158684\pi\)
\(434\) −293.389 −0.0324496
\(435\) 1818.85 + 11862.0i 0.200477 + 1.30744i
\(436\) −2914.90 −0.320180
\(437\) 9886.52 9886.52i 1.08223 1.08223i
\(438\) 10458.6 4391.55i 1.14094 0.479078i
\(439\) 8014.92i 0.871369i 0.900099 + 0.435685i \(0.143494\pi\)
−0.900099 + 0.435685i \(0.856506\pi\)
\(440\) −978.597 + 586.611i −0.106029 + 0.0635581i
\(441\) −3479.50 3412.77i −0.375715 0.368509i
\(442\) −2611.40 2611.40i −0.281022 0.281022i
\(443\) −4788.70 4788.70i −0.513584 0.513584i 0.402039 0.915623i \(-0.368302\pi\)
−0.915623 + 0.402039i \(0.868302\pi\)
\(444\) 4032.01 + 1647.29i 0.430970 + 0.176074i
\(445\) −5344.86 1338.55i −0.569373 0.142592i
\(446\) 808.057i 0.0857906i
\(447\) −6520.55 15528.9i −0.689958 1.64316i
\(448\) 1035.45 1035.45i 0.109197 0.109197i
\(449\) 6437.16 0.676588 0.338294 0.941040i \(-0.390150\pi\)
0.338294 + 0.941040i \(0.390150\pi\)
\(450\) −3123.59 + 5983.79i −0.327216 + 0.626841i
\(451\) 262.334 0.0273899
\(452\) 498.629 498.629i 0.0518884 0.0518884i
\(453\) −450.929 1073.91i −0.0467693 0.111383i
\(454\) 13518.5i 1.39748i
\(455\) 12003.9 + 3006.22i 1.23682 + 0.309745i
\(456\) −5262.55 2150.04i −0.540442 0.220800i
\(457\) 7433.15 + 7433.15i 0.760850 + 0.760850i 0.976476 0.215626i \(-0.0691793\pi\)
−0.215626 + 0.976476i \(0.569179\pi\)
\(458\) 7158.79 + 7158.79i 0.730368 + 0.730368i
\(459\) 4917.45 2121.05i 0.500059 0.215691i
\(460\) 3921.63 2350.78i 0.397493 0.238274i
\(461\) 15742.8i 1.59049i 0.606291 + 0.795243i \(0.292657\pi\)
−0.606291 + 0.795243i \(0.707343\pi\)
\(462\) −2796.63 + 1174.29i −0.281625 + 0.118253i
\(463\) 4385.12 4385.12i 0.440160 0.440160i −0.451906 0.892066i \(-0.649256\pi\)
0.892066 + 0.451906i \(0.149256\pi\)
\(464\) −3305.11 −0.330681
\(465\) 56.4523 + 368.164i 0.00562992 + 0.0367165i
\(466\) 2864.61 0.284765
\(467\) −405.352 + 405.352i −0.0401659 + 0.0401659i −0.726904 0.686739i \(-0.759042\pi\)
0.686739 + 0.726904i \(0.259042\pi\)
\(468\) −5224.16 + 50.5795i −0.515998 + 0.00499581i
\(469\) 3900.66i 0.384042i
\(470\) −1471.73 + 5876.66i −0.144438 + 0.576745i
\(471\) 2797.96 6848.44i 0.273722 0.669978i
\(472\) −3548.61 3548.61i −0.346055 0.346055i
\(473\) 2070.13 + 2070.13i 0.201236 + 0.201236i
\(474\) 384.956 942.241i 0.0373030 0.0913049i
\(475\) 8056.85 15076.7i 0.778260 1.45635i
\(476\) 3493.56i 0.336401i
\(477\) 459.093 4.44486i 0.0440680 0.000426659i
\(478\) 1613.06 1613.06i 0.154350 0.154350i
\(479\) −834.821 −0.0796324 −0.0398162 0.999207i \(-0.512677\pi\)
−0.0398162 + 0.999207i \(0.512677\pi\)
\(480\) −1498.58 1100.11i −0.142501 0.104611i
\(481\) −10137.1 −0.960938
\(482\) 1265.03 1265.03i 0.119544 0.119544i
\(483\) 11207.2 4705.86i 1.05579 0.443321i
\(484\) 4673.12i 0.438873i
\(485\) −6600.83 11011.6i −0.617996 1.03095i
\(486\) 2728.96 7067.42i 0.254708 0.659639i
\(487\) 1123.69 + 1123.69i 0.104557 + 0.104557i 0.757450 0.652893i \(-0.226445\pi\)
−0.652893 + 0.757450i \(0.726445\pi\)
\(488\) 3076.06 + 3076.06i 0.285342 + 0.285342i
\(489\) 4724.14 + 1930.06i 0.436877 + 0.178488i
\(490\) 2075.26 + 3461.99i 0.191328 + 0.319177i
\(491\) 2933.72i 0.269647i 0.990870 + 0.134824i \(0.0430468\pi\)
−0.990870 + 0.134824i \(0.956953\pi\)
\(492\) 165.484 + 394.107i 0.0151638 + 0.0361132i
\(493\) −5575.67 + 5575.67i −0.509362 + 0.509362i
\(494\) 13230.9 1.20503
\(495\) 2011.69 + 3283.44i 0.182664 + 0.298141i
\(496\) −102.582 −0.00928641
\(497\) −2415.00 + 2415.00i −0.217963 + 0.217963i
\(498\) −4183.00 9961.99i −0.376395 0.896401i
\(499\) 19512.5i 1.75050i −0.483668 0.875252i \(-0.660696\pi\)
0.483668 0.875252i \(-0.339304\pi\)
\(500\) 3753.55 4142.57i 0.335727 0.370523i
\(501\) 12758.3 + 5212.46i 1.13772 + 0.464821i
\(502\) −5937.60 5937.60i −0.527905 0.527905i
\(503\) 8770.75 + 8770.75i 0.777472 + 0.777472i 0.979400 0.201928i \(-0.0647208\pi\)
−0.201928 + 0.979400i \(0.564721\pi\)
\(504\) −3528.30 3460.64i −0.311831 0.305851i
\(505\) −3317.12 + 13245.3i −0.292297 + 1.16715i
\(506\) 2608.34i 0.229160i
\(507\) 685.379 287.788i 0.0600370 0.0252093i
\(508\) 1169.90 1169.90i 0.102177 0.102177i
\(509\) −16213.8 −1.41192 −0.705959 0.708253i \(-0.749484\pi\)
−0.705959 + 0.708253i \(0.749484\pi\)
\(510\) −4383.95 + 672.212i −0.380637 + 0.0583648i
\(511\) −24974.0 −2.16200
\(512\) 362.039 362.039i 0.0312500 0.0312500i
\(513\) −7084.08 + 17830.5i −0.609687 + 1.53458i
\(514\) 8498.56i 0.729291i
\(515\) −13748.8 + 8241.58i −1.17640 + 0.705179i
\(516\) −1804.11 + 4415.84i −0.153917 + 0.376737i
\(517\) 2443.77 + 2443.77i 0.207886 + 0.207886i
\(518\) −6780.75 6780.75i −0.575152 0.575152i
\(519\) −5838.42 + 14290.5i −0.493792 + 1.20863i
\(520\) 4197.10 + 1051.11i 0.353952 + 0.0886427i
\(521\) 17031.0i 1.43213i −0.698032 0.716067i \(-0.745941\pi\)
0.698032 0.716067i \(-0.254059\pi\)
\(522\) 107.993 + 11154.2i 0.00905507 + 0.935264i
\(523\) −6159.97 + 6159.97i −0.515023 + 0.515023i −0.916061 0.401039i \(-0.868649\pi\)
0.401039 + 0.916061i \(0.368649\pi\)
\(524\) 1859.90 0.155058
\(525\) 11441.2 9484.43i 0.951116 0.788447i
\(526\) 10166.9 0.842773
\(527\) −173.054 + 173.054i −0.0143042 + 0.0143042i
\(528\) −977.826 + 410.586i −0.0805955 + 0.0338418i
\(529\) 1714.32i 0.140899i
\(530\) −368.836 92.3702i −0.0302287 0.00757039i
\(531\) −11860.0 + 12091.9i −0.969269 + 0.988221i
\(532\) 8850.19 + 8850.19i 0.721248 + 0.721248i
\(533\) −703.448 703.448i −0.0571664 0.0571664i
\(534\) −4741.14 1937.01i −0.384212 0.156971i
\(535\) −1414.09 + 847.660i −0.114273 + 0.0685001i
\(536\) 1363.85i 0.109905i
\(537\) 2559.13 + 6094.67i 0.205651 + 0.489766i
\(538\) −2964.54 + 2964.54i −0.237566 + 0.237566i
\(539\) 2302.63 0.184010
\(540\) −3663.74 + 5093.43i −0.291967 + 0.405900i
\(541\) 17947.7 1.42630 0.713152 0.701010i \(-0.247267\pi\)
0.713152 + 0.701010i \(0.247267\pi\)
\(542\) −832.820 + 832.820i −0.0660012 + 0.0660012i
\(543\) 126.190 + 300.526i 0.00997297 + 0.0237510i
\(544\) 1221.50i 0.0962713i
\(545\) 1979.29 7903.33i 0.155566 0.621177i
\(546\) 10648.0 + 4350.28i 0.834602 + 0.340979i
\(547\) −6743.17 6743.17i −0.527088 0.527088i 0.392615 0.919703i \(-0.371571\pi\)
−0.919703 + 0.392615i \(0.871571\pi\)
\(548\) −408.464 408.464i −0.0318407 0.0318407i
\(549\) 10280.7 10481.7i 0.799217 0.814844i
\(550\) −926.018 3051.64i −0.0717919 0.236586i
\(551\) 28249.5i 2.18416i
\(552\) 3918.54 1645.38i 0.302145 0.126870i
\(553\) −1584.59 + 1584.59i −0.121851 + 0.121851i
\(554\) −4220.13 −0.323639
\(555\) −7204.22 + 9813.65i −0.550995 + 0.750570i
\(556\) −1345.34 −0.102617
\(557\) −14440.2 + 14440.2i −1.09847 + 1.09847i −0.103884 + 0.994589i \(0.533127\pi\)
−0.994589 + 0.103884i \(0.966873\pi\)
\(558\) 3.35183 + 346.198i 0.000254291 + 0.0262647i
\(559\) 11102.1i 0.840014i
\(560\) 2104.37 + 3510.55i 0.158796 + 0.264907i
\(561\) −956.924 + 2342.22i −0.0720167 + 0.176272i
\(562\) −7310.19 7310.19i −0.548686 0.548686i
\(563\) −13865.7 13865.7i −1.03796 1.03796i −0.999251 0.0387094i \(-0.987675\pi\)
−0.0387094 0.999251i \(-0.512325\pi\)
\(564\) −2129.74 + 5212.87i −0.159004 + 0.389187i
\(565\) 1013.38 + 1690.54i 0.0754569 + 0.125879i
\(566\) 2524.43i 0.187473i
\(567\) −11563.8 + 12020.5i −0.856498 + 0.890326i
\(568\) −844.394 + 844.394i −0.0623767 + 0.0623767i
\(569\) 18660.0 1.37481 0.687405 0.726274i \(-0.258750\pi\)
0.687405 + 0.726274i \(0.258750\pi\)
\(570\) 9402.90 12808.7i 0.690955 0.941224i
\(571\) 6653.04 0.487602 0.243801 0.969825i \(-0.421606\pi\)
0.243801 + 0.969825i \(0.421606\pi\)
\(572\) 1745.34 1745.34i 0.127581 0.127581i
\(573\) −9773.03 + 4103.66i −0.712520 + 0.299185i
\(574\) 941.080i 0.0684319i
\(575\) 3710.92 + 12229.2i 0.269141 + 0.886941i
\(576\) −1233.65 1209.99i −0.0892399 0.0875285i
\(577\) −18037.4 18037.4i −1.30140 1.30140i −0.927451 0.373944i \(-0.878005\pi\)
−0.373944 0.927451i \(-0.621995\pi\)
\(578\) 4887.38 + 4887.38i 0.351709 + 0.351709i
\(579\) 8669.87 + 3542.11i 0.622293 + 0.254240i
\(580\) 2244.25 8961.33i 0.160668 0.641550i
\(581\) 23788.0i 1.69861i
\(582\) −4620.11 11003.0i −0.329054 0.783656i
\(583\) −153.378 + 153.378i −0.0108958 + 0.0108958i
\(584\) −8732.02 −0.618722
\(585\) 3410.19 14198.9i 0.241015 1.00351i
\(586\) −9400.21 −0.662661
\(587\) 14567.2 14567.2i 1.02428 1.02428i 0.0245838 0.999698i \(-0.492174\pi\)
0.999698 0.0245838i \(-0.00782605\pi\)
\(588\) 1452.53 + 3459.26i 0.101873 + 0.242615i
\(589\) 876.789i 0.0613369i
\(590\) 12031.1 7211.94i 0.839514 0.503239i
\(591\) 13494.0 + 5513.04i 0.939205 + 0.383716i
\(592\) −2370.85 2370.85i −0.164597 0.164597i
\(593\) 20017.5 + 20017.5i 1.38621 + 1.38621i 0.833128 + 0.553080i \(0.186547\pi\)
0.553080 + 0.833128i \(0.313453\pi\)
\(594\) 1417.61 + 3286.59i 0.0979214 + 0.227021i
\(595\) 9472.27 + 2372.21i 0.652647 + 0.163447i
\(596\) 12965.3i 0.891071i
\(597\) 8697.21 3651.93i 0.596236 0.250357i
\(598\) −6994.26 + 6994.26i −0.478289 + 0.478289i
\(599\) −19821.1 −1.35203 −0.676017 0.736886i \(-0.736295\pi\)
−0.676017 + 0.736886i \(0.736295\pi\)
\(600\) 4000.37 3316.18i 0.272190 0.225638i
\(601\) 9850.79 0.668589 0.334294 0.942469i \(-0.391502\pi\)
0.334294 + 0.942469i \(0.391502\pi\)
\(602\) 7426.24 7426.24i 0.502775 0.502775i
\(603\) 4602.77 44.5632i 0.310844 0.00300954i
\(604\) 896.614i 0.0604019i
\(605\) 12670.5 + 3173.16i 0.851451 + 0.213235i
\(606\) −4800.18 + 11749.2i −0.321772 + 0.787589i
\(607\) 403.095 + 403.095i 0.0269540 + 0.0269540i 0.720455 0.693501i \(-0.243933\pi\)
−0.693501 + 0.720455i \(0.743933\pi\)
\(608\) 3094.42 + 3094.42i 0.206407 + 0.206407i
\(609\) 9288.39 22734.8i 0.618037 1.51274i
\(610\) −10429.0 + 6251.57i −0.692226 + 0.414948i
\(611\) 13105.9i 0.867773i
\(612\) −4122.39 + 39.9122i −0.272284 + 0.00263620i
\(613\) 4616.26 4616.26i 0.304158 0.304158i −0.538480 0.842638i \(-0.681001\pi\)
0.842638 + 0.538480i \(0.181001\pi\)
\(614\) −7235.13 −0.475547
\(615\) −1180.93 + 181.078i −0.0774304 + 0.0118728i
\(616\) 2334.93 0.152722
\(617\) −14556.9 + 14556.9i −0.949818 + 0.949818i −0.998800 0.0489818i \(-0.984402\pi\)
0.0489818 + 0.998800i \(0.484402\pi\)
\(618\) −13738.0 + 5768.51i −0.894209 + 0.375475i
\(619\) 12601.3i 0.818236i 0.912482 + 0.409118i \(0.134163\pi\)
−0.912482 + 0.409118i \(0.865837\pi\)
\(620\) 69.6555 278.135i 0.00451199 0.0180164i
\(621\) −5680.93 13170.7i −0.367098 0.851081i
\(622\) 11458.5 + 11458.5i 0.738655 + 0.738655i
\(623\) 7973.31 + 7973.31i 0.512751 + 0.512751i
\(624\) 3723.02 + 1521.05i 0.238846 + 0.0975815i
\(625\) 8683.22 + 12990.1i 0.555726 + 0.831366i
\(626\) 300.509i 0.0191865i
\(627\) −3509.36 8357.69i −0.223525 0.532335i
\(628\) −4026.94 + 4026.94i −0.255879 + 0.255879i
\(629\) −7999.17 −0.507071
\(630\) 11778.8 7216.61i 0.744887 0.456376i
\(631\) 20754.9 1.30942 0.654708 0.755882i \(-0.272792\pi\)
0.654708 + 0.755882i \(0.272792\pi\)
\(632\) −554.045 + 554.045i −0.0348714 + 0.0348714i
\(633\) −7205.64 17160.5i −0.452446 1.07752i
\(634\) 3321.93i 0.208093i
\(635\) 2377.63 + 3966.41i 0.148588 + 0.247877i
\(636\) −327.174 133.668i −0.0203983 0.00833379i
\(637\) −6174.50 6174.50i −0.384054 0.384054i
\(638\) −3726.51 3726.51i −0.231245 0.231245i
\(639\) 2877.29 + 2822.11i 0.178128 + 0.174712i
\(640\) 735.781 + 1227.45i 0.0454442 + 0.0758111i
\(641\) 28695.5i 1.76818i −0.467313 0.884092i \(-0.654778\pi\)
0.467313 0.884092i \(-0.345222\pi\)
\(642\) −1412.97 + 593.301i −0.0868622 + 0.0364731i
\(643\) −7444.99 + 7444.99i −0.456612 + 0.456612i −0.897542 0.440930i \(-0.854649\pi\)
0.440930 + 0.897542i \(0.354649\pi\)
\(644\) −9357.00 −0.572543
\(645\) −10747.9 7890.02i −0.656118 0.481658i
\(646\) 10440.5 0.635874
\(647\) 15997.5 15997.5i 0.972065 0.972065i −0.0275552 0.999620i \(-0.508772\pi\)
0.999620 + 0.0275552i \(0.00877220\pi\)
\(648\) −4043.23 + 4202.92i −0.245113 + 0.254794i
\(649\) 8002.11i 0.483991i
\(650\) −5699.86 + 10666.1i −0.343949 + 0.643628i
\(651\) 288.287 705.627i 0.0173561 0.0424819i
\(652\) −2777.83 2777.83i −0.166853 0.166853i
\(653\) −4592.90 4592.90i −0.275243 0.275243i 0.555963 0.831207i \(-0.312349\pi\)
−0.831207 + 0.555963i \(0.812349\pi\)
\(654\) 2864.21 7010.62i 0.171253 0.419170i
\(655\) −1262.92 + 5042.85i −0.0753378 + 0.300825i
\(656\) 329.044i 0.0195838i
\(657\) 285.316 + 29469.2i 0.0169425 + 1.74993i
\(658\) 8766.63 8766.63i 0.519390 0.519390i
\(659\) −12460.6 −0.736565 −0.368282 0.929714i \(-0.620054\pi\)
−0.368282 + 0.929714i \(0.620054\pi\)
\(660\) −449.275 2930.03i −0.0264970 0.172805i
\(661\) −21945.5 −1.29135 −0.645675 0.763612i \(-0.723424\pi\)
−0.645675 + 0.763612i \(0.723424\pi\)
\(662\) 4005.71 4005.71i 0.235176 0.235176i
\(663\) 8846.65 3714.68i 0.518213 0.217596i
\(664\) 8317.36i 0.486109i
\(665\) −30005.4 + 17986.5i −1.74972 + 1.04885i
\(666\) −7923.79 + 8078.72i −0.461022 + 0.470036i
\(667\) 14933.6 + 14933.6i 0.866915 + 0.866915i
\(668\) −7501.99 7501.99i −0.434522 0.434522i
\(669\) −1943.45 794.005i −0.112314 0.0458864i
\(670\) −3697.87 926.084i −0.213225 0.0533996i
\(671\) 6936.51i 0.399078i
\(672\) 1472.91 + 3507.79i 0.0845515 + 0.201363i
\(673\) 5271.96 5271.96i 0.301960 0.301960i −0.539820 0.841780i \(-0.681508\pi\)
0.841780 + 0.539820i \(0.181508\pi\)
\(674\) −13547.8 −0.774244
\(675\) −11322.3 13392.2i −0.645623 0.763656i
\(676\) −572.230 −0.0325575
\(677\) 6270.55 6270.55i 0.355977 0.355977i −0.506350 0.862328i \(-0.669006\pi\)
0.862328 + 0.506350i \(0.169006\pi\)
\(678\) 709.293 + 1689.21i 0.0401773 + 0.0956839i
\(679\) 26273.8i 1.48497i
\(680\) 3311.93 + 829.430i 0.186775 + 0.0467753i
\(681\) −32513.2 13283.4i −1.82953 0.747461i
\(682\) −115.661 115.661i −0.00649397 0.00649397i
\(683\) 16616.6 + 16616.6i 0.930917 + 0.930917i 0.997763 0.0668461i \(-0.0212936\pi\)
−0.0668461 + 0.997763i \(0.521294\pi\)
\(684\) 10342.1 10544.3i 0.578127 0.589431i
\(685\) 1384.85 830.133i 0.0772442 0.0463033i
\(686\) 7435.62i 0.413839i
\(687\) −24251.9 + 10183.3i −1.34682 + 0.565526i
\(688\) 2596.55 2596.55i 0.143884 0.143884i
\(689\) 822.565 0.0454822
\(690\) 1800.42 + 11741.8i 0.0993347 + 0.647829i
\(691\) −35477.3 −1.95314 −0.976571 0.215197i \(-0.930961\pi\)
−0.976571 + 0.215197i \(0.930961\pi\)
\(692\) 8402.89 8402.89i 0.461604 0.461604i
\(693\) −76.2931 7880.02i −0.00418201 0.431944i
\(694\) 6008.07i 0.328621i
\(695\) 913.516 3647.68i 0.0498585 0.199086i
\(696\) 3247.64 7949.11i 0.176870 0.432917i
\(697\) −555.091 555.091i −0.0301658 0.0301658i
\(698\) −13060.4 13060.4i −0.708229 0.708229i
\(699\) −2814.79 + 6889.65i −0.152311 + 0.372805i
\(700\) −10947.3 + 3321.93i −0.591096 + 0.179368i
\(701\) 6316.02i 0.340304i 0.985418 + 0.170152i \(0.0544258\pi\)
−0.985418 + 0.170152i \(0.945574\pi\)
\(702\) 5011.66 12614.3i 0.269449 0.678200i
\(703\) 20264.2 20264.2i 1.08717 1.08717i
\(704\) 816.397 0.0437061
\(705\) −12687.8 9314.12i −0.677800 0.497575i
\(706\) 2791.01 0.148784
\(707\) 19759.0 19759.0i 1.05108 1.05108i
\(708\) 12021.6 5047.84i 0.638137 0.267951i
\(709\) 4327.74i 0.229241i 0.993409 + 0.114620i \(0.0365652\pi\)
−0.993409 + 0.114620i \(0.963435\pi\)
\(710\) −1716.09 2862.81i −0.0907092 0.151323i
\(711\) 1887.92 + 1851.71i 0.0995814 + 0.0976716i
\(712\) 2787.83 + 2787.83i 0.146739 + 0.146739i
\(713\) 463.500 + 463.500i 0.0243453 + 0.0243453i
\(714\) 8402.34 + 3432.80i 0.440406 + 0.179929i
\(715\) 3547.10 + 5917.35i 0.185530 + 0.309505i
\(716\) 5088.50i 0.265595i
\(717\) 2294.55 + 5464.55i 0.119514 + 0.284627i
\(718\) 15134.2 15134.2i 0.786635 0.786635i
\(719\) 26854.1 1.39289 0.696447 0.717609i \(-0.254763\pi\)
0.696447 + 0.717609i \(0.254763\pi\)
\(720\) 4118.40 2523.25i 0.213172 0.130606i
\(721\) 32804.6 1.69446
\(722\) −16748.6 + 16748.6i −0.863321 + 0.863321i
\(723\) 1799.48 + 4285.53i 0.0925635 + 0.220444i
\(724\) 250.912i 0.0128799i
\(725\) 22773.4 + 12169.9i 1.16660 + 0.623419i
\(726\) 11239.3 + 4591.85i 0.574558 + 0.234738i
\(727\) 15761.3 + 15761.3i 0.804065 + 0.804065i 0.983728 0.179663i \(-0.0575007\pi\)
−0.179663 + 0.983728i \(0.557501\pi\)
\(728\) −6261.11 6261.11i −0.318753 0.318753i
\(729\) 14316.3 + 13507.9i 0.727343 + 0.686274i
\(730\) 5929.25 23675.6i 0.300618 1.20037i
\(731\) 8760.65i 0.443262i
\(732\) −10420.8 + 4375.65i −0.526179 + 0.220941i
\(733\) −16481.2 + 16481.2i −0.830487 + 0.830487i −0.987583 0.157096i \(-0.949787\pi\)
0.157096 + 0.987583i \(0.449787\pi\)
\(734\) 2842.14 0.142923
\(735\) −10365.6 + 1589.40i −0.520191 + 0.0797633i
\(736\) −3271.63 −0.163850
\(737\) −1537.74 + 1537.74i −0.0768565 + 0.0768565i
\(738\) −1110.47 + 10.7514i −0.0553889 + 0.000536266i
\(739\) 18693.3i 0.930505i −0.885178 0.465253i \(-0.845963\pi\)
0.885178 0.465253i \(-0.154037\pi\)
\(740\) 8038.08 4818.35i 0.399305 0.239360i
\(741\) −13000.8 + 31821.4i −0.644528 + 1.57758i
\(742\) 550.218 + 550.218i 0.0272226 + 0.0272226i
\(743\) −2518.82 2518.82i −0.124369 0.124369i 0.642182 0.766552i \(-0.278029\pi\)
−0.766552 + 0.642182i \(0.778029\pi\)
\(744\) 100.798 246.719i 0.00496698 0.0121575i
\(745\) −35153.4 8803.72i −1.72875 0.432944i
\(746\) 24544.2i 1.20460i
\(747\) 28069.8 271.767i 1.37486 0.0133112i
\(748\) 1377.25 1377.25i 0.0673223 0.0673223i
\(749\) 3374.01 0.164597
\(750\) 6275.00 + 13098.2i 0.305507 + 0.637703i
\(751\) −2523.97 −0.122638 −0.0613190 0.998118i \(-0.519531\pi\)
−0.0613190 + 0.998118i \(0.519531\pi\)
\(752\) 3065.21 3065.21i 0.148639 0.148639i
\(753\) 20114.8 8446.15i 0.973474 0.408758i
\(754\) 19985.3i 0.965279i
\(755\) −2431.04 608.822i −0.117185 0.0293474i
\(756\) 11790.1 5085.44i 0.567198 0.244651i
\(757\) −23079.0 23079.0i −1.10809 1.10809i −0.993402 0.114684i \(-0.963415\pi\)
−0.114684 0.993402i \(-0.536585\pi\)
\(758\) 20779.1 + 20779.1i 0.995687 + 0.995687i
\(759\) 6273.31 + 2562.99i 0.300009 + 0.122570i
\(760\) −10491.3 + 6288.88i −0.500734 + 0.300160i
\(761\) 30848.4i 1.46945i 0.678364 + 0.734726i \(0.262689\pi\)
−0.678364 + 0.734726i \(0.737311\pi\)
\(762\) 1664.17 + 3963.28i 0.0791161 + 0.188418i
\(763\) −11790.0 + 11790.0i −0.559404 + 0.559404i
\(764\) 8159.59 0.386392
\(765\) 2690.98 11204.3i 0.127180 0.529534i
\(766\) −5235.16 −0.246937
\(767\) −21457.6 + 21457.6i −1.01016 + 1.01016i
\(768\) 514.994 + 1226.48i 0.0241970 + 0.0576260i
\(769\) 24831.0i 1.16441i −0.813043 0.582204i \(-0.802191\pi\)
0.813043 0.582204i \(-0.197809\pi\)
\(770\) −1585.47 + 6330.82i −0.0742032 + 0.296295i
\(771\) 20439.8 + 8350.77i 0.954764 + 0.390072i
\(772\) −5097.95 5097.95i −0.237667 0.237667i
\(773\) −17900.7 17900.7i −0.832913 0.832913i 0.155001 0.987914i \(-0.450462\pi\)
−0.987914 + 0.155001i \(0.950462\pi\)
\(774\) −8847.77 8678.09i −0.410887 0.403007i
\(775\) 706.825 + 377.721i 0.0327612 + 0.0175073i
\(776\) 9186.49i 0.424969i
\(777\) 22971.2 9645.51i 1.06060 0.445342i
\(778\) 13147.4 13147.4i 0.605856 0.605856i
\(779\) 2812.41 0.129352
\(780\) −6652.13 + 9061.58i −0.305365 + 0.415970i
\(781\) −1904.11 −0.0872398
\(782\) −5519.17 + 5519.17i −0.252385 + 0.252385i
\(783\) −26933.1 10700.5i −1.22926 0.488385i
\(784\) 2888.17i 0.131568i
\(785\) −8184.06 13652.8i −0.372104 0.620752i
\(786\) −1827.56 + 4473.24i −0.0829349 + 0.202996i
\(787\) −3928.66 3928.66i −0.177944 0.177944i 0.612515 0.790459i \(-0.290158\pi\)
−0.790459 + 0.612515i \(0.790158\pi\)
\(788\) −7934.59 7934.59i −0.358703 0.358703i
\(789\) −9990.11 + 24452.4i −0.450770 + 1.10333i
\(790\) −1126.00 1878.42i −0.0507105 0.0845964i
\(791\) 4033.63i 0.181314i
\(792\) −26.6755 2755.21i −0.00119681 0.123614i
\(793\) 18600.2 18600.2i 0.832930 0.832930i
\(794\) 2398.92 0.107222
\(795\) 584.581 796.321i 0.0260792 0.0355253i
\(796\) −7261.38 −0.323333
\(797\) 10942.0 10942.0i 0.486307 0.486307i −0.420832 0.907139i \(-0.638262\pi\)
0.907139 + 0.420832i \(0.138262\pi\)
\(798\) −29981.8 + 12589.3i −1.33001 + 0.558464i
\(799\) 10341.9i 0.457909i
\(800\) −3827.65 + 1161.50i −0.169160 + 0.0513314i
\(801\) 9317.38 9499.56i 0.411003 0.419039i
\(802\) 12059.2 + 12059.2i 0.530954 + 0.530954i
\(803\) −9845.35 9845.35i −0.432671 0.432671i
\(804\) −3280.18 1340.13i −0.143884 0.0587845i
\(805\) 6353.62 25370.1i 0.278181 1.11078i
\(806\) 620.289i 0.0271076i
\(807\) −4217.02 10043.0i −0.183948 0.438080i
\(808\) 6908.63 6908.63i 0.300798 0.300798i
\(809\) −15310.9 −0.665395 −0.332697 0.943034i \(-0.607959\pi\)
−0.332697 + 0.943034i \(0.607959\pi\)
\(810\) −8650.14 13816.5i −0.375228 0.599336i
\(811\) −3667.20 −0.158783 −0.0793915 0.996844i \(-0.525298\pi\)
−0.0793915 + 0.996844i \(0.525298\pi\)
\(812\) −13368.2 + 13368.2i −0.577751 + 0.577751i
\(813\) −1184.67 2821.35i −0.0511049 0.121708i
\(814\) 5346.27i 0.230205i
\(815\) 9417.88 5645.46i 0.404778 0.242640i
\(816\) 2937.83 + 1200.26i 0.126035 + 0.0514921i
\(817\) 22193.2 + 22193.2i 0.950358 + 0.950358i
\(818\) 10754.9 + 10754.9i 0.459702 + 0.459702i
\(819\) −20925.7 + 21334.8i −0.892798 + 0.910255i
\(820\) 892.153 + 223.428i 0.0379943 + 0.00951519i
\(821\) 7128.41i 0.303025i 0.988455 + 0.151512i \(0.0484143\pi\)
−0.988455 + 0.151512i \(0.951586\pi\)
\(822\) 1383.76 581.034i 0.0587153 0.0246544i
\(823\) −17408.3 + 17408.3i −0.737321 + 0.737321i −0.972059 0.234738i \(-0.924577\pi\)
0.234738 + 0.972059i \(0.424577\pi\)
\(824\) 11469.9 0.484921
\(825\) 8249.40 + 771.415i 0.348130 + 0.0325542i
\(826\) −28706.2 −1.20922
\(827\) −25331.1 + 25331.1i −1.06511 + 1.06511i −0.0673858 + 0.997727i \(0.521466\pi\)
−0.997727 + 0.0673858i \(0.978534\pi\)
\(828\) 106.899 + 11041.2i 0.00448672 + 0.463417i
\(829\) 37685.9i 1.57887i 0.613832 + 0.789437i \(0.289627\pi\)
−0.613832 + 0.789437i \(0.710373\pi\)
\(830\) −22551.3 5647.68i −0.943093 0.236186i
\(831\) 4146.74 10149.8i 0.173103 0.423698i
\(832\) −2189.16 2189.16i −0.0912207 0.0912207i
\(833\) −4872.29 4872.29i −0.202659 0.202659i
\(834\) 1321.94 3235.67i 0.0548862 0.134343i
\(835\) 25434.6 15246.5i 1.05413 0.631889i
\(836\) 6977.92i 0.288680i
\(837\) −835.931 332.116i −0.0345209 0.0137152i
\(838\) −19664.2 + 19664.2i −0.810609 + 0.810609i
\(839\) −10906.1 −0.448774 −0.224387 0.974500i \(-0.572038\pi\)
−0.224387 + 0.974500i \(0.572038\pi\)
\(840\) −10511.0 + 1611.70i −0.431742 + 0.0662011i
\(841\) 18282.0 0.749601
\(842\) 22080.8 22080.8i 0.903745 0.903745i
\(843\) 24764.7 10398.6i 1.01180 0.424849i
\(844\) 14327.5i 0.584327i
\(845\) 388.557 1551.52i 0.0158187 0.0631642i
\(846\) −10444.7 10244.4i −0.424465 0.416325i
\(847\) −18901.4 18901.4i −0.766778 0.766778i
\(848\) 192.381 + 192.381i 0.00779055 + 0.00779055i
\(849\) −6071.49 2480.53i −0.245434 0.100273i
\(850\) −4497.75 + 8416.60i −0.181496 + 0.339632i
\(851\) 21424.6i 0.863017i
\(852\) −1201.14 2860.56i −0.0482984 0.115025i
\(853\) −14701.8 + 14701.8i −0.590131 + 0.590131i −0.937667 0.347536i \(-0.887018\pi\)
0.347536 + 0.937667i \(0.387018\pi\)
\(854\) 24883.6 0.997071
\(855\) 21566.8 + 35200.8i 0.862653 + 1.40800i
\(856\) 1179.70 0.0471045
\(857\) 14745.6 14745.6i 0.587749 0.587749i −0.349272 0.937021i \(-0.613571\pi\)
0.937021 + 0.349272i \(0.113571\pi\)
\(858\) 2482.72 + 5912.69i 0.0987862 + 0.235263i
\(859\) 45884.6i 1.82254i −0.411808 0.911271i \(-0.635103\pi\)
0.411808 0.911271i \(-0.364897\pi\)
\(860\) 5277.03 + 8803.26i 0.209239 + 0.349057i
\(861\) 2263.39 + 924.714i 0.0895888 + 0.0366018i
\(862\) 2386.65 + 2386.65i 0.0943034 + 0.0943034i
\(863\) −10936.4 10936.4i −0.431376 0.431376i 0.457720 0.889096i \(-0.348666\pi\)
−0.889096 + 0.457720i \(0.848666\pi\)
\(864\) 4122.35 1778.10i 0.162321 0.0700141i
\(865\) 17077.4 + 28489.0i 0.671272 + 1.11983i
\(866\) 10198.0i 0.400164i
\(867\) −16557.0 + 6952.22i −0.648564 + 0.272329i
\(868\) −414.914 + 414.914i −0.0162248 + 0.0162248i
\(869\) −1249.37 −0.0487710
\(870\) 19347.6 + 14203.1i 0.753960 + 0.553484i
\(871\) 8246.86 0.320820
\(872\) −4122.30 + 4122.30i −0.160090 + 0.160090i
\(873\) 31002.9 300.165i 1.20194 0.0116370i
\(874\) 27963.3i 1.08223i
\(875\) −1573.48 31937.5i −0.0607925 1.23393i
\(876\) 8580.17 21001.3i 0.330933 0.810011i
\(877\) −4986.22 4986.22i −0.191987 0.191987i 0.604567 0.796554i \(-0.293346\pi\)
−0.796554 + 0.604567i \(0.793346\pi\)
\(878\) 11334.8 + 11334.8i 0.435685 + 0.435685i
\(879\) 9236.74 22608.4i 0.354434 0.867534i
\(880\) −554.352 + 2213.54i −0.0212355 + 0.0847936i
\(881\) 40395.0i 1.54477i −0.635155 0.772385i \(-0.719064\pi\)
0.635155 0.772385i \(-0.280936\pi\)
\(882\) −9747.13 + 94.3701i −0.372112 + 0.00360273i
\(883\) −16473.1 + 16473.1i −0.627819 + 0.627819i −0.947519 0.319700i \(-0.896418\pi\)
0.319700 + 0.947519i \(0.396418\pi\)
\(884\) −7386.16 −0.281022
\(885\) 5523.50 + 36022.5i 0.209797 + 1.36823i
\(886\) −13544.5 −0.513584
\(887\) −8236.06 + 8236.06i −0.311770 + 0.311770i −0.845595 0.533825i \(-0.820754\pi\)
0.533825 + 0.845595i \(0.320754\pi\)
\(888\) 8031.75 3372.50i 0.303522 0.127448i
\(889\) 9463.85i 0.357038i
\(890\) −9451.78 + 5665.78i −0.355982 + 0.213390i
\(891\) −9297.52 + 180.051i −0.349583 + 0.00676985i
\(892\) 1142.77 + 1142.77i 0.0428953 + 0.0428953i
\(893\) 26199.0 + 26199.0i 0.981764 + 0.981764i
\(894\) −31182.7 12739.8i −1.16656 0.476603i
\(895\) 13796.7 + 3455.21i 0.515277 + 0.129045i
\(896\) 2928.69i 0.109197i
\(897\) −9949.23 23694.5i −0.370340 0.881980i
\(898\) 9103.51 9103.51i 0.338294 0.338294i
\(899\) 1324.39 0.0491335
\(900\) 4044.94 + 12879.8i 0.149812 + 0.477029i
\(901\) 649.086 0.0240002
\(902\) 370.997 370.997i 0.0136949 0.0136949i
\(903\) 10563.7 + 25157.9i 0.389300 + 0.927134i
\(904\) 1410.34i 0.0518884i
\(905\) 680.311 + 170.375i 0.0249882 + 0.00625797i
\(906\) −2156.44 881.022i −0.0790761 0.0323068i
\(907\) −5461.54 5461.54i −0.199942 0.199942i 0.600033 0.799975i \(-0.295154\pi\)
−0.799975 + 0.600033i \(0.795154\pi\)
\(908\) 19118.0 + 19118.0i 0.698738 + 0.698738i
\(909\) −23541.3 23089.8i −0.858982 0.842508i
\(910\) 21227.5 12724.6i 0.773280 0.463535i
\(911\) 1893.10i 0.0688486i 0.999407 + 0.0344243i \(0.0109598\pi\)
−0.999407 + 0.0344243i \(0.989040\pi\)
\(912\) −10483.0 + 4401.77i −0.380621 + 0.159821i
\(913\) −9377.82 + 9377.82i −0.339935 + 0.339935i
\(914\) 21024.1 0.760850
\(915\) −4787.97 31225.6i −0.172989 1.12818i
\(916\) 20248.1 0.730368
\(917\) 7522.77 7522.77i 0.270909 0.270909i
\(918\) 3954.70 9953.94i 0.142184 0.357875i
\(919\) 6455.86i 0.231729i −0.993265 0.115865i \(-0.963036\pi\)
0.993265 0.115865i \(-0.0369638\pi\)
\(920\) 2221.51 8870.53i 0.0796098 0.317883i
\(921\) 7109.31 17401.2i 0.254354 0.622571i
\(922\) 22263.6 + 22263.6i 0.795243 + 0.795243i
\(923\) 5105.85 + 5105.85i 0.182081 + 0.182081i
\(924\) −2294.33 + 5615.73i −0.0816859 + 0.199939i
\(925\) 7606.20 + 25065.8i 0.270368 + 0.890984i
\(926\) 12403.0i 0.440160i
\(927\) −374.777 38709.3i −0.0132786 1.37150i
\(928\) −4674.14 + 4674.14i −0.165341 + 0.165341i
\(929\) 14798.5 0.522628 0.261314 0.965254i \(-0.415844\pi\)
0.261314 + 0.965254i \(0.415844\pi\)
\(930\) 600.498 + 440.827i 0.0211732 + 0.0155433i
\(931\) 24685.8 0.869007
\(932\) 4051.17 4051.17i 0.142382 0.142382i
\(933\) −38818.0 + 16299.5i −1.36210 + 0.571943i
\(934\) 1146.51i 0.0401659i
\(935\) 2799.02 + 4669.38i 0.0979012 + 0.163321i
\(936\) −7316.55 + 7459.61i −0.255501 + 0.260497i
\(937\) 5568.25 + 5568.25i 0.194137 + 0.194137i 0.797481 0.603344i \(-0.206165\pi\)
−0.603344 + 0.797481i \(0.706165\pi\)
\(938\) 5516.37 + 5516.37i 0.192021 + 0.192021i
\(939\) 722.754 + 295.284i 0.0251184 + 0.0102622i
\(940\) 6229.50 + 10392.2i 0.216153 + 0.360592i
\(941\) 26799.4i 0.928413i 0.885727 + 0.464207i \(0.153660\pi\)
−0.885727 + 0.464207i \(0.846340\pi\)
\(942\) −5728.25 13642.1i −0.198128 0.471850i
\(943\) −1486.73 + 1486.73i −0.0513411 + 0.0513411i
\(944\) −10037.0 −0.346055
\(945\) 5782.67 + 35420.2i 0.199059 + 1.21928i
\(946\) 5855.21 0.201236
\(947\) −20065.7 + 20065.7i −0.688540 + 0.688540i −0.961909 0.273369i \(-0.911862\pi\)
0.273369 + 0.961909i \(0.411862\pi\)
\(948\) −788.120 1876.94i −0.0270010 0.0643039i
\(949\) 52800.5i 1.80609i
\(950\) −9927.56 32715.8i −0.339045 1.11730i
\(951\) −7989.56 3264.16i −0.272428 0.111302i
\(952\) −4940.64 4940.64i −0.168201 0.168201i
\(953\) −22947.3 22947.3i −0.779996 0.779996i 0.199834 0.979830i \(-0.435960\pi\)
−0.979830 + 0.199834i \(0.935960\pi\)
\(954\) 642.969 655.541i 0.0218207 0.0222473i
\(955\) −5540.56 + 22123.5i −0.187736 + 0.749634i
\(956\) 4562.41i 0.154350i
\(957\) 12624.3 5300.91i 0.426423 0.179053i
\(958\) −1180.61 + 1180.61i −0.0398162 + 0.0398162i
\(959\) −3304.24 −0.111261
\(960\) −3675.11 + 563.522i −0.123556 + 0.0189454i
\(961\) −29749.9 −0.998620
\(962\) −14336.0 + 14336.0i −0.480469 + 0.480469i
\(963\) −38.5464 3981.31i −0.00128987 0.133225i
\(964\) 3578.03i 0.119544i
\(965\) 17284.0 10360.7i 0.576571 0.345620i
\(966\) 9194.28 22504.5i 0.306233 0.749554i
\(967\) −15372.5 15372.5i −0.511218 0.511218i 0.403682 0.914899i \(-0.367730\pi\)
−0.914899 + 0.403682i \(0.867730\pi\)
\(968\) −6608.79 6608.79i −0.219436 0.219436i
\(969\) −10258.9 + 25110.3i −0.340107 + 0.832465i
\(970\) −24907.8 6237.84i −0.824475 0.206479i
\(971\) 50515.3i 1.66953i 0.550607 + 0.834765i \(0.314396\pi\)
−0.550607 + 0.834765i \(0.685604\pi\)
\(972\) −6135.50 13854.2i −0.202465 0.457174i
\(973\) −5441.51 + 5441.51i −0.179288 + 0.179288i
\(974\) 3178.29 0.104557
\(975\) −20052.2 24189.3i −0.658650 0.794541i
\(976\) 8700.42 0.285342
\(977\) −9640.67 + 9640.67i −0.315693 + 0.315693i −0.847110 0.531417i \(-0.821660\pi\)
0.531417 + 0.847110i \(0.321660\pi\)
\(978\) 9410.46 3951.42i 0.307682 0.129195i
\(979\) 6286.54i 0.205229i
\(980\) 7830.85 + 1961.14i 0.255252 + 0.0639247i
\(981\) 14046.8 + 13777.4i 0.457166 + 0.448398i
\(982\) 4148.90 + 4148.90i 0.134824 + 0.134824i
\(983\) −30440.0 30440.0i −0.987677 0.987677i 0.0122482 0.999925i \(-0.496101\pi\)
−0.999925 + 0.0122482i \(0.996101\pi\)
\(984\) 791.381 + 323.322i 0.0256385 + 0.0104747i
\(985\) 26901.2 16125.7i 0.870198 0.521632i
\(986\) 15770.4i 0.509362i
\(987\) 12470.4 + 29698.7i 0.402165 + 0.957772i
\(988\) 18711.2 18711.2i 0.602514 0.602514i
\(989\) −23464.1 −0.754415
\(990\) 7488.45 + 1798.53i 0.240403 + 0.0577383i
\(991\) −6167.34 −0.197691 −0.0988455 0.995103i \(-0.531515\pi\)
−0.0988455 + 0.995103i \(0.531515\pi\)
\(992\) −145.073 + 145.073i −0.00464321 + 0.00464321i
\(993\) 5698.07 + 13570.2i 0.182097 + 0.433672i
\(994\) 6830.66i 0.217963i
\(995\) 4930.65 19688.2i 0.157098 0.627293i
\(996\) −20004.0 8172.72i −0.636398 0.260003i
\(997\) 6952.37 + 6952.37i 0.220846 + 0.220846i 0.808855 0.588008i \(-0.200088\pi\)
−0.588008 + 0.808855i \(0.700088\pi\)
\(998\) −27594.9 27594.9i −0.875252 0.875252i
\(999\) −11644.1 26995.7i −0.368772 0.854961i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 30.4.e.a.17.5 yes 12
3.2 odd 2 inner 30.4.e.a.17.1 12
4.3 odd 2 240.4.v.d.17.4 12
5.2 odd 4 150.4.e.c.143.6 12
5.3 odd 4 inner 30.4.e.a.23.1 yes 12
5.4 even 2 150.4.e.c.107.2 12
12.11 even 2 240.4.v.d.17.6 12
15.2 even 4 150.4.e.c.143.2 12
15.8 even 4 inner 30.4.e.a.23.5 yes 12
15.14 odd 2 150.4.e.c.107.6 12
20.3 even 4 240.4.v.d.113.6 12
60.23 odd 4 240.4.v.d.113.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.4.e.a.17.1 12 3.2 odd 2 inner
30.4.e.a.17.5 yes 12 1.1 even 1 trivial
30.4.e.a.23.1 yes 12 5.3 odd 4 inner
30.4.e.a.23.5 yes 12 15.8 even 4 inner
150.4.e.c.107.2 12 5.4 even 2
150.4.e.c.107.6 12 15.14 odd 2
150.4.e.c.143.2 12 15.2 even 4
150.4.e.c.143.6 12 5.2 odd 4
240.4.v.d.17.4 12 4.3 odd 2
240.4.v.d.17.6 12 12.11 even 2
240.4.v.d.113.4 12 60.23 odd 4
240.4.v.d.113.6 12 20.3 even 4