Properties

Label 297.2.t.a.35.4
Level $297$
Weight $2$
Character 297.35
Analytic conductor $2.372$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [297,2,Mod(8,297)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("297.8"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(297, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([5, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.t (of order \(30\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{30})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 35.4
Character \(\chi\) \(=\) 297.35
Dual form 297.2.t.a.17.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.148911 - 0.165382i) q^{2} +(0.203880 - 1.93979i) q^{4} +(-0.397470 - 0.357884i) q^{5} +(-1.30165 - 2.92356i) q^{7} +(-0.711251 + 0.516754i) q^{8} +0.119027i q^{10} +(-3.12205 + 1.11928i) q^{11} +(0.183129 + 0.861553i) q^{13} +(-0.289675 + 0.650620i) q^{14} +(-3.62433 - 0.770375i) q^{16} +(-1.83995 - 5.66278i) q^{17} +(2.50028 + 3.44134i) q^{19} +(-0.775255 + 0.698043i) q^{20} +(0.650017 + 0.349660i) q^{22} +(3.19429 - 1.84423i) q^{23} +(-0.492741 - 4.68811i) q^{25} +(0.115216 - 0.158581i) q^{26} +(-5.93647 + 1.92887i) q^{28} +(2.17094 - 0.966564i) q^{29} +(7.08615 - 1.50621i) q^{31} +(1.29145 + 2.23686i) q^{32} +(-0.662535 + 1.14754i) q^{34} +(-0.528926 + 1.62787i) q^{35} +(-0.636941 - 0.462765i) q^{37} +(0.196818 - 0.925955i) q^{38} +(0.467639 + 0.0491508i) q^{40} +(-9.17098 - 4.08318i) q^{41} +(3.73912 + 2.15878i) q^{43} +(1.53464 + 6.28432i) q^{44} +(-0.780668 - 0.253654i) q^{46} +(1.89502 - 0.199174i) q^{47} +(-2.16898 + 2.40889i) q^{49} +(-0.701957 + 0.779602i) q^{50} +(1.70857 - 0.179578i) q^{52} +(9.64245 + 3.13302i) q^{53} +(1.64149 + 0.672452i) q^{55} +(2.43656 + 1.40675i) q^{56} +(-0.483129 - 0.215103i) q^{58} +(11.0642 + 1.16290i) q^{59} +(-0.383703 + 1.80518i) q^{61} +(-1.30431 - 0.947634i) q^{62} +(-2.11237 + 6.50122i) q^{64} +(0.235548 - 0.407980i) q^{65} +(-0.337099 - 0.583872i) q^{67} +(-11.3597 + 2.41458i) q^{68} +(0.347983 - 0.154932i) q^{70} +(-4.21053 + 1.36808i) q^{71} +(0.0544863 - 0.0749940i) q^{73} +(0.0183144 + 0.174250i) q^{74} +(7.18523 - 4.14840i) q^{76} +(7.33610 + 7.67059i) q^{77} +(-11.5129 + 10.3663i) q^{79} +(1.16486 + 1.60329i) q^{80} +(0.690373 + 2.12475i) q^{82} +(13.9274 + 2.96037i) q^{83} +(-1.29529 + 2.90927i) q^{85} +(-0.199771 - 0.939851i) q^{86} +(1.64217 - 2.40942i) q^{88} -4.58327i q^{89} +(2.28043 - 1.65683i) q^{91} +(-2.92616 - 6.57226i) q^{92} +(-0.315129 - 0.283743i) q^{94} +(0.237813 - 2.26264i) q^{95} +(6.55256 + 7.27736i) q^{97} +0.721373 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 15 q^{2} + 5 q^{4} + 6 q^{5} - 5 q^{7} + 3 q^{11} - 5 q^{13} + 9 q^{14} + 5 q^{16} - 50 q^{19} + 3 q^{20} - 11 q^{22} + 42 q^{23} - 2 q^{25} - 20 q^{28} - 30 q^{29} - 6 q^{31} - 10 q^{34} - 6 q^{37}+ \cdots + 27 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.148911 0.165382i −0.105296 0.116943i 0.688193 0.725528i \(-0.258404\pi\)
−0.793489 + 0.608585i \(0.791738\pi\)
\(3\) 0 0
\(4\) 0.203880 1.93979i 0.101940 0.969895i
\(5\) −0.397470 0.357884i −0.177754 0.160051i 0.575451 0.817836i \(-0.304827\pi\)
−0.753205 + 0.657786i \(0.771493\pi\)
\(6\) 0 0
\(7\) −1.30165 2.92356i −0.491978 1.10500i −0.973525 0.228581i \(-0.926592\pi\)
0.481547 0.876420i \(-0.340075\pi\)
\(8\) −0.711251 + 0.516754i −0.251465 + 0.182700i
\(9\) 0 0
\(10\) 0.119027i 0.0376398i
\(11\) −3.12205 + 1.11928i −0.941334 + 0.337475i
\(12\) 0 0
\(13\) 0.183129 + 0.861553i 0.0507908 + 0.238952i 0.996219 0.0868790i \(-0.0276894\pi\)
−0.945428 + 0.325831i \(0.894356\pi\)
\(14\) −0.289675 + 0.650620i −0.0774188 + 0.173885i
\(15\) 0 0
\(16\) −3.62433 0.770375i −0.906082 0.192594i
\(17\) −1.83995 5.66278i −0.446253 1.37342i −0.881104 0.472923i \(-0.843199\pi\)
0.434851 0.900502i \(-0.356801\pi\)
\(18\) 0 0
\(19\) 2.50028 + 3.44134i 0.573604 + 0.789497i 0.992976 0.118317i \(-0.0377498\pi\)
−0.419372 + 0.907814i \(0.637750\pi\)
\(20\) −0.775255 + 0.698043i −0.173352 + 0.156087i
\(21\) 0 0
\(22\) 0.650017 + 0.349660i 0.138584 + 0.0745477i
\(23\) 3.19429 1.84423i 0.666056 0.384548i −0.128524 0.991706i \(-0.541024\pi\)
0.794581 + 0.607159i \(0.207691\pi\)
\(24\) 0 0
\(25\) −0.492741 4.68811i −0.0985481 0.937623i
\(26\) 0.115216 0.158581i 0.0225957 0.0311003i
\(27\) 0 0
\(28\) −5.93647 + 1.92887i −1.12189 + 0.364523i
\(29\) 2.17094 0.966564i 0.403133 0.179486i −0.195146 0.980774i \(-0.562518\pi\)
0.598279 + 0.801288i \(0.295851\pi\)
\(30\) 0 0
\(31\) 7.08615 1.50621i 1.27271 0.270523i 0.478458 0.878111i \(-0.341196\pi\)
0.794253 + 0.607588i \(0.207863\pi\)
\(32\) 1.29145 + 2.23686i 0.228298 + 0.395424i
\(33\) 0 0
\(34\) −0.662535 + 1.14754i −0.113624 + 0.196802i
\(35\) −0.528926 + 1.62787i −0.0894048 + 0.275160i
\(36\) 0 0
\(37\) −0.636941 0.462765i −0.104713 0.0760781i 0.534197 0.845360i \(-0.320614\pi\)
−0.638909 + 0.769282i \(0.720614\pi\)
\(38\) 0.196818 0.925955i 0.0319281 0.150210i
\(39\) 0 0
\(40\) 0.467639 + 0.0491508i 0.0739402 + 0.00777143i
\(41\) −9.17098 4.08318i −1.43227 0.637686i −0.463599 0.886045i \(-0.653442\pi\)
−0.968668 + 0.248359i \(0.920109\pi\)
\(42\) 0 0
\(43\) 3.73912 + 2.15878i 0.570210 + 0.329211i 0.757233 0.653144i \(-0.226551\pi\)
−0.187023 + 0.982356i \(0.559884\pi\)
\(44\) 1.53464 + 6.28432i 0.231356 + 0.947397i
\(45\) 0 0
\(46\) −0.780668 0.253654i −0.115103 0.0373993i
\(47\) 1.89502 0.199174i 0.276417 0.0290526i 0.0346943 0.999398i \(-0.488954\pi\)
0.241723 + 0.970345i \(0.422288\pi\)
\(48\) 0 0
\(49\) −2.16898 + 2.40889i −0.309854 + 0.344127i
\(50\) −0.701957 + 0.779602i −0.0992717 + 0.110252i
\(51\) 0 0
\(52\) 1.70857 0.179578i 0.236936 0.0249029i
\(53\) 9.64245 + 3.13302i 1.32449 + 0.430353i 0.884035 0.467420i \(-0.154817\pi\)
0.440457 + 0.897774i \(0.354817\pi\)
\(54\) 0 0
\(55\) 1.64149 + 0.672452i 0.221339 + 0.0906734i
\(56\) 2.43656 + 1.40675i 0.325599 + 0.187985i
\(57\) 0 0
\(58\) −0.483129 0.215103i −0.0634380 0.0282444i
\(59\) 11.0642 + 1.16290i 1.44044 + 0.151396i 0.792302 0.610129i \(-0.208883\pi\)
0.648135 + 0.761525i \(0.275549\pi\)
\(60\) 0 0
\(61\) −0.383703 + 1.80518i −0.0491282 + 0.231130i −0.995861 0.0908905i \(-0.971029\pi\)
0.946733 + 0.322020i \(0.104362\pi\)
\(62\) −1.30431 0.947634i −0.165647 0.120350i
\(63\) 0 0
\(64\) −2.11237 + 6.50122i −0.264047 + 0.812653i
\(65\) 0.235548 0.407980i 0.0292161 0.0506037i
\(66\) 0 0
\(67\) −0.337099 0.583872i −0.0411832 0.0713314i 0.844699 0.535241i \(-0.179779\pi\)
−0.885882 + 0.463910i \(0.846446\pi\)
\(68\) −11.3597 + 2.41458i −1.37757 + 0.292811i
\(69\) 0 0
\(70\) 0.347983 0.154932i 0.0415920 0.0185179i
\(71\) −4.21053 + 1.36808i −0.499698 + 0.162362i −0.548012 0.836470i \(-0.684615\pi\)
0.0483139 + 0.998832i \(0.484615\pi\)
\(72\) 0 0
\(73\) 0.0544863 0.0749940i 0.00637714 0.00877738i −0.805817 0.592165i \(-0.798273\pi\)
0.812194 + 0.583388i \(0.198273\pi\)
\(74\) 0.0183144 + 0.174250i 0.00212900 + 0.0202561i
\(75\) 0 0
\(76\) 7.18523 4.14840i 0.824203 0.475854i
\(77\) 7.33610 + 7.67059i 0.836026 + 0.874145i
\(78\) 0 0
\(79\) −11.5129 + 10.3663i −1.29531 + 1.16630i −0.319519 + 0.947580i \(0.603521\pi\)
−0.975788 + 0.218719i \(0.929812\pi\)
\(80\) 1.16486 + 1.60329i 0.130235 + 0.179253i
\(81\) 0 0
\(82\) 0.690373 + 2.12475i 0.0762390 + 0.234639i
\(83\) 13.9274 + 2.96037i 1.52873 + 0.324943i 0.894099 0.447869i \(-0.147817\pi\)
0.634635 + 0.772812i \(0.281150\pi\)
\(84\) 0 0
\(85\) −1.29529 + 2.90927i −0.140494 + 0.315555i
\(86\) −0.199771 0.939851i −0.0215419 0.101347i
\(87\) 0 0
\(88\) 1.64217 2.40942i 0.175056 0.256845i
\(89\) 4.58327i 0.485826i −0.970048 0.242913i \(-0.921897\pi\)
0.970048 0.242913i \(-0.0781029\pi\)
\(90\) 0 0
\(91\) 2.28043 1.65683i 0.239054 0.173683i
\(92\) −2.92616 6.57226i −0.305073 0.685205i
\(93\) 0 0
\(94\) −0.315129 0.283743i −0.0325031 0.0292659i
\(95\) 0.237813 2.26264i 0.0243991 0.232142i
\(96\) 0 0
\(97\) 6.55256 + 7.27736i 0.665312 + 0.738904i 0.977458 0.211130i \(-0.0677144\pi\)
−0.312146 + 0.950034i \(0.601048\pi\)
\(98\) 0.721373 0.0728696
\(99\) 0 0
\(100\) −9.19441 −0.919441
\(101\) −7.15791 7.94967i −0.712239 0.791022i 0.273035 0.962004i \(-0.411973\pi\)
−0.985274 + 0.170983i \(0.945306\pi\)
\(102\) 0 0
\(103\) 0.392106 3.73064i 0.0386354 0.367591i −0.958073 0.286523i \(-0.907500\pi\)
0.996709 0.0810676i \(-0.0258330\pi\)
\(104\) −0.575461 0.518148i −0.0564286 0.0508085i
\(105\) 0 0
\(106\) −0.917719 2.06123i −0.0891368 0.200205i
\(107\) −0.664192 + 0.482564i −0.0642098 + 0.0466512i −0.619427 0.785054i \(-0.712635\pi\)
0.555217 + 0.831705i \(0.312635\pi\)
\(108\) 0 0
\(109\) 0.344350i 0.0329828i −0.999864 0.0164914i \(-0.994750\pi\)
0.999864 0.0164914i \(-0.00524961\pi\)
\(110\) −0.133225 0.371610i −0.0127025 0.0354316i
\(111\) 0 0
\(112\) 2.46538 + 11.5987i 0.232956 + 1.09597i
\(113\) 5.95347 13.3717i 0.560056 1.25791i −0.382531 0.923943i \(-0.624947\pi\)
0.942586 0.333963i \(-0.108386\pi\)
\(114\) 0 0
\(115\) −1.92966 0.410161i −0.179941 0.0382477i
\(116\) −1.43232 4.40823i −0.132988 0.409294i
\(117\) 0 0
\(118\) −1.45526 2.00299i −0.133967 0.184390i
\(119\) −14.1605 + 12.7502i −1.29809 + 1.16880i
\(120\) 0 0
\(121\) 8.49443 6.98889i 0.772221 0.635354i
\(122\) 0.355683 0.205354i 0.0322020 0.0185918i
\(123\) 0 0
\(124\) −1.47700 14.0527i −0.132639 1.26197i
\(125\) −3.05383 + 4.20324i −0.273143 + 0.375949i
\(126\) 0 0
\(127\) 13.3595 4.34077i 1.18546 0.385181i 0.351070 0.936349i \(-0.385818\pi\)
0.834394 + 0.551168i \(0.185818\pi\)
\(128\) 6.10894 2.71987i 0.539959 0.240405i
\(129\) 0 0
\(130\) −0.102548 + 0.0217973i −0.00899409 + 0.00191175i
\(131\) −1.07963 1.86997i −0.0943274 0.163380i 0.815000 0.579461i \(-0.196737\pi\)
−0.909328 + 0.416081i \(0.863403\pi\)
\(132\) 0 0
\(133\) 6.80646 11.7891i 0.590195 1.02225i
\(134\) −0.0463645 + 0.142695i −0.00400528 + 0.0123270i
\(135\) 0 0
\(136\) 4.23492 + 3.07685i 0.363142 + 0.263838i
\(137\) 0.150225 0.706754i 0.0128346 0.0603821i −0.971264 0.238004i \(-0.923507\pi\)
0.984099 + 0.177622i \(0.0568403\pi\)
\(138\) 0 0
\(139\) −18.0949 1.90185i −1.53479 0.161313i −0.700907 0.713252i \(-0.747221\pi\)
−0.833884 + 0.551939i \(0.813888\pi\)
\(140\) 3.04988 + 1.35789i 0.257762 + 0.114763i
\(141\) 0 0
\(142\) 0.853251 + 0.492625i 0.0716033 + 0.0413402i
\(143\) −1.53606 2.48484i −0.128451 0.207793i
\(144\) 0 0
\(145\) −1.20880 0.392763i −0.100385 0.0326172i
\(146\) −0.0205163 + 0.00215635i −0.00169794 + 0.000178461i
\(147\) 0 0
\(148\) −1.02753 + 1.14118i −0.0844621 + 0.0938047i
\(149\) −15.2390 + 16.9247i −1.24843 + 1.38652i −0.356533 + 0.934283i \(0.616041\pi\)
−0.891897 + 0.452239i \(0.850625\pi\)
\(150\) 0 0
\(151\) −11.3594 + 1.19392i −0.924412 + 0.0971596i −0.554760 0.832011i \(-0.687190\pi\)
−0.369652 + 0.929170i \(0.620523\pi\)
\(152\) −3.55665 1.15563i −0.288482 0.0937336i
\(153\) 0 0
\(154\) 0.176155 2.35550i 0.0141949 0.189811i
\(155\) −3.35558 1.93735i −0.269527 0.155611i
\(156\) 0 0
\(157\) −18.1548 8.08304i −1.44891 0.645097i −0.476671 0.879082i \(-0.658157\pi\)
−0.972240 + 0.233985i \(0.924823\pi\)
\(158\) 3.42880 + 0.360382i 0.272781 + 0.0286704i
\(159\) 0 0
\(160\) 0.287222 1.35127i 0.0227069 0.106828i
\(161\) −9.54956 6.93816i −0.752611 0.546804i
\(162\) 0 0
\(163\) 3.18523 9.80313i 0.249486 0.767840i −0.745380 0.666640i \(-0.767732\pi\)
0.994866 0.101200i \(-0.0322683\pi\)
\(164\) −9.79030 + 16.9573i −0.764494 + 1.32414i
\(165\) 0 0
\(166\) −1.58435 2.74418i −0.122970 0.212990i
\(167\) −11.5938 + 2.46433i −0.897153 + 0.190696i −0.633336 0.773877i \(-0.718315\pi\)
−0.263817 + 0.964573i \(0.584982\pi\)
\(168\) 0 0
\(169\) 11.1674 4.97203i 0.859027 0.382464i
\(170\) 0.674025 0.219004i 0.0516954 0.0167969i
\(171\) 0 0
\(172\) 4.94991 6.81297i 0.377427 0.519484i
\(173\) −1.65458 15.7423i −0.125796 1.19687i −0.857223 0.514946i \(-0.827812\pi\)
0.731427 0.681920i \(-0.238855\pi\)
\(174\) 0 0
\(175\) −13.0646 + 7.54285i −0.987590 + 0.570186i
\(176\) 12.1776 1.65148i 0.917922 0.124485i
\(177\) 0 0
\(178\) −0.757992 + 0.682499i −0.0568139 + 0.0511555i
\(179\) −4.11815 5.66815i −0.307805 0.423658i 0.626890 0.779108i \(-0.284328\pi\)
−0.934695 + 0.355450i \(0.884328\pi\)
\(180\) 0 0
\(181\) −3.74044 11.5119i −0.278025 0.855673i −0.988403 0.151853i \(-0.951476\pi\)
0.710378 0.703820i \(-0.248524\pi\)
\(182\) −0.613591 0.130423i −0.0454824 0.00966758i
\(183\) 0 0
\(184\) −1.31893 + 2.96237i −0.0972330 + 0.218389i
\(185\) 0.0875491 + 0.411886i 0.00643674 + 0.0302825i
\(186\) 0 0
\(187\) 12.0826 + 15.6201i 0.883570 + 1.14225i
\(188\) 3.71654i 0.271057i
\(189\) 0 0
\(190\) −0.409614 + 0.297602i −0.0297165 + 0.0215903i
\(191\) 8.25925 + 18.5506i 0.597618 + 1.34227i 0.918600 + 0.395187i \(0.129320\pi\)
−0.320982 + 0.947085i \(0.604013\pi\)
\(192\) 0 0
\(193\) 4.22233 + 3.80181i 0.303930 + 0.273660i 0.806956 0.590611i \(-0.201113\pi\)
−0.503026 + 0.864271i \(0.667780\pi\)
\(194\) 0.227798 2.16736i 0.0163550 0.155607i
\(195\) 0 0
\(196\) 4.23053 + 4.69848i 0.302181 + 0.335606i
\(197\) 16.4596 1.17270 0.586350 0.810058i \(-0.300564\pi\)
0.586350 + 0.810058i \(0.300564\pi\)
\(198\) 0 0
\(199\) 13.9772 0.990818 0.495409 0.868660i \(-0.335018\pi\)
0.495409 + 0.868660i \(0.335018\pi\)
\(200\) 2.77306 + 3.07980i 0.196085 + 0.217775i
\(201\) 0 0
\(202\) −0.248843 + 2.36759i −0.0175086 + 0.166583i
\(203\) −5.65161 5.08873i −0.396665 0.357159i
\(204\) 0 0
\(205\) 2.18389 + 4.90509i 0.152529 + 0.342586i
\(206\) −0.675371 + 0.490686i −0.0470554 + 0.0341877i
\(207\) 0 0
\(208\) 3.26363i 0.226292i
\(209\) −11.6578 7.94554i −0.806389 0.549604i
\(210\) 0 0
\(211\) 2.23574 + 10.5183i 0.153915 + 0.724112i 0.985631 + 0.168911i \(0.0540252\pi\)
−0.831716 + 0.555201i \(0.812641\pi\)
\(212\) 8.04330 18.0656i 0.552416 1.24075i
\(213\) 0 0
\(214\) 0.178713 + 0.0379866i 0.0122166 + 0.00259671i
\(215\) −0.713596 2.19622i −0.0486668 0.149781i
\(216\) 0 0
\(217\) −13.6272 18.7562i −0.925074 1.27325i
\(218\) −0.0569495 + 0.0512775i −0.00385711 + 0.00347295i
\(219\) 0 0
\(220\) 1.63908 3.04705i 0.110507 0.205432i
\(221\) 4.54183 2.62223i 0.305517 0.176390i
\(222\) 0 0
\(223\) 1.71464 + 16.3137i 0.114821 + 1.09245i 0.888503 + 0.458871i \(0.151746\pi\)
−0.773682 + 0.633574i \(0.781587\pi\)
\(224\) 4.85856 6.68724i 0.324626 0.446810i
\(225\) 0 0
\(226\) −3.09798 + 1.00660i −0.206075 + 0.0669578i
\(227\) 13.8406 6.16224i 0.918634 0.409002i 0.107729 0.994180i \(-0.465642\pi\)
0.810905 + 0.585178i \(0.198975\pi\)
\(228\) 0 0
\(229\) −6.93316 + 1.47369i −0.458156 + 0.0973841i −0.431208 0.902253i \(-0.641912\pi\)
−0.0269485 + 0.999637i \(0.508579\pi\)
\(230\) 0.219513 + 0.380208i 0.0144743 + 0.0250702i
\(231\) 0 0
\(232\) −1.04461 + 1.80931i −0.0685817 + 0.118787i
\(233\) −6.69692 + 20.6110i −0.438730 + 1.35027i 0.450486 + 0.892784i \(0.351251\pi\)
−0.889216 + 0.457488i \(0.848749\pi\)
\(234\) 0 0
\(235\) −0.824495 0.599031i −0.0537841 0.0390764i
\(236\) 4.51154 21.2251i 0.293676 1.38164i
\(237\) 0 0
\(238\) 4.21730 + 0.443256i 0.273367 + 0.0287320i
\(239\) 16.9181 + 7.53244i 1.09434 + 0.487233i 0.872880 0.487936i \(-0.162250\pi\)
0.221463 + 0.975169i \(0.428917\pi\)
\(240\) 0 0
\(241\) 9.56117 + 5.52014i 0.615889 + 0.355584i 0.775267 0.631634i \(-0.217615\pi\)
−0.159378 + 0.987218i \(0.550949\pi\)
\(242\) −2.42075 0.364106i −0.155612 0.0234056i
\(243\) 0 0
\(244\) 3.42344 + 1.11234i 0.219164 + 0.0712106i
\(245\) 1.72421 0.181221i 0.110156 0.0115778i
\(246\) 0 0
\(247\) −2.50702 + 2.78433i −0.159518 + 0.177163i
\(248\) −4.26169 + 4.73309i −0.270618 + 0.300551i
\(249\) 0 0
\(250\) 1.14989 0.120858i 0.0727255 0.00764375i
\(251\) 18.6948 + 6.07431i 1.18001 + 0.383407i 0.832369 0.554223i \(-0.186984\pi\)
0.347636 + 0.937629i \(0.386984\pi\)
\(252\) 0 0
\(253\) −7.90855 + 9.33308i −0.497206 + 0.586766i
\(254\) −2.70726 1.56304i −0.169869 0.0980738i
\(255\) 0 0
\(256\) 11.1301 + 4.95544i 0.695631 + 0.309715i
\(257\) −26.1815 2.75179i −1.63316 0.171652i −0.756913 0.653516i \(-0.773293\pi\)
−0.876246 + 0.481864i \(0.839960\pi\)
\(258\) 0 0
\(259\) −0.523844 + 2.46449i −0.0325501 + 0.153136i
\(260\) −0.743373 0.540092i −0.0461020 0.0334951i
\(261\) 0 0
\(262\) −0.148491 + 0.457010i −0.00917384 + 0.0282342i
\(263\) −1.31836 + 2.28347i −0.0812936 + 0.140805i −0.903806 0.427943i \(-0.859238\pi\)
0.822512 + 0.568747i \(0.192572\pi\)
\(264\) 0 0
\(265\) −2.71133 4.69616i −0.166556 0.288483i
\(266\) −2.96327 + 0.629863i −0.181690 + 0.0386194i
\(267\) 0 0
\(268\) −1.20132 + 0.534861i −0.0733821 + 0.0326718i
\(269\) −3.48174 + 1.13129i −0.212285 + 0.0689757i −0.413229 0.910627i \(-0.635599\pi\)
0.200944 + 0.979603i \(0.435599\pi\)
\(270\) 0 0
\(271\) −6.37358 + 8.77249i −0.387168 + 0.532891i −0.957466 0.288547i \(-0.906828\pi\)
0.570298 + 0.821438i \(0.306828\pi\)
\(272\) 2.30611 + 21.9412i 0.139829 + 1.33038i
\(273\) 0 0
\(274\) −0.139255 + 0.0803988i −0.00841269 + 0.00485707i
\(275\) 6.78567 + 14.0850i 0.409191 + 0.849359i
\(276\) 0 0
\(277\) −0.148105 + 0.133354i −0.00889876 + 0.00801248i −0.673568 0.739125i \(-0.735239\pi\)
0.664669 + 0.747138i \(0.268572\pi\)
\(278\) 2.38000 + 3.27579i 0.142743 + 0.196469i
\(279\) 0 0
\(280\) −0.465007 1.43115i −0.0277895 0.0855273i
\(281\) 7.46681 + 1.58712i 0.445433 + 0.0946797i 0.425167 0.905115i \(-0.360215\pi\)
0.0202659 + 0.999795i \(0.493549\pi\)
\(282\) 0 0
\(283\) 0.229559 0.515598i 0.0136459 0.0306491i −0.906594 0.422004i \(-0.861327\pi\)
0.920240 + 0.391355i \(0.127993\pi\)
\(284\) 1.79535 + 8.44647i 0.106535 + 0.501206i
\(285\) 0 0
\(286\) −0.182214 + 0.624057i −0.0107745 + 0.0369012i
\(287\) 32.1268i 1.89638i
\(288\) 0 0
\(289\) −14.9283 + 10.8461i −0.878137 + 0.638004i
\(290\) 0.115048 + 0.258401i 0.00675583 + 0.0151738i
\(291\) 0 0
\(292\) −0.134364 0.120982i −0.00786305 0.00707992i
\(293\) 0.534278 5.08332i 0.0312129 0.296971i −0.967768 0.251842i \(-0.918964\pi\)
0.998981 0.0451285i \(-0.0143697\pi\)
\(294\) 0 0
\(295\) −3.98151 4.42192i −0.231813 0.257454i
\(296\) 0.692160 0.0402310
\(297\) 0 0
\(298\) 5.06830 0.293599
\(299\) 2.17387 + 2.41432i 0.125718 + 0.139624i
\(300\) 0 0
\(301\) 1.44429 13.7415i 0.0832475 0.792048i
\(302\) 1.88899 + 1.70085i 0.108699 + 0.0978730i
\(303\) 0 0
\(304\) −6.41071 14.3987i −0.367680 0.825822i
\(305\) 0.798556 0.580185i 0.0457252 0.0332213i
\(306\) 0 0
\(307\) 2.87711i 0.164205i −0.996624 0.0821026i \(-0.973836\pi\)
0.996624 0.0821026i \(-0.0261635\pi\)
\(308\) 16.3750 12.6666i 0.933053 0.721747i
\(309\) 0 0
\(310\) 0.179280 + 0.843446i 0.0101824 + 0.0479045i
\(311\) −1.10271 + 2.47674i −0.0625292 + 0.140443i −0.942107 0.335312i \(-0.891158\pi\)
0.879578 + 0.475755i \(0.157825\pi\)
\(312\) 0 0
\(313\) 10.9007 + 2.31701i 0.616144 + 0.130965i 0.505402 0.862884i \(-0.331344\pi\)
0.110742 + 0.993849i \(0.464677\pi\)
\(314\) 1.36666 + 4.20614i 0.0771249 + 0.237366i
\(315\) 0 0
\(316\) 17.7612 + 24.4462i 0.999144 + 1.37520i
\(317\) −4.64579 + 4.18309i −0.260933 + 0.234946i −0.789205 0.614130i \(-0.789507\pi\)
0.528271 + 0.849076i \(0.322840\pi\)
\(318\) 0 0
\(319\) −5.69593 + 5.44755i −0.318911 + 0.305004i
\(320\) 3.16629 1.82806i 0.177001 0.102191i
\(321\) 0 0
\(322\) 0.274585 + 2.61250i 0.0153020 + 0.145589i
\(323\) 14.8872 20.4904i 0.828343 1.14012i
\(324\) 0 0
\(325\) 3.94882 1.28305i 0.219041 0.0711708i
\(326\) −2.09558 + 0.933013i −0.116063 + 0.0516748i
\(327\) 0 0
\(328\) 8.63287 1.83497i 0.476670 0.101319i
\(329\) −3.04895 5.28094i −0.168094 0.291148i
\(330\) 0 0
\(331\) −1.55234 + 2.68873i −0.0853242 + 0.147786i −0.905529 0.424284i \(-0.860526\pi\)
0.820205 + 0.572070i \(0.193859\pi\)
\(332\) 8.58202 26.4127i 0.470999 1.44959i
\(333\) 0 0
\(334\) 2.13400 + 1.55044i 0.116767 + 0.0848363i
\(335\) −0.0749717 + 0.352714i −0.00409614 + 0.0192708i
\(336\) 0 0
\(337\) 13.3023 + 1.39813i 0.724622 + 0.0761608i 0.459656 0.888097i \(-0.347973\pi\)
0.264966 + 0.964258i \(0.414639\pi\)
\(338\) −2.48523 1.10649i −0.135179 0.0601854i
\(339\) 0 0
\(340\) 5.37929 + 3.10574i 0.291733 + 0.168432i
\(341\) −20.4375 + 12.6338i −1.10675 + 0.684161i
\(342\) 0 0
\(343\) −11.4394 3.71689i −0.617671 0.200693i
\(344\) −3.77501 + 0.396769i −0.203535 + 0.0213924i
\(345\) 0 0
\(346\) −2.35712 + 2.61784i −0.126719 + 0.140736i
\(347\) 1.88487 2.09336i 0.101185 0.112377i −0.690425 0.723404i \(-0.742576\pi\)
0.791610 + 0.611027i \(0.209243\pi\)
\(348\) 0 0
\(349\) −26.7592 + 2.81251i −1.43239 + 0.150550i −0.788719 0.614754i \(-0.789255\pi\)
−0.643669 + 0.765304i \(0.722589\pi\)
\(350\) 3.19291 + 1.03744i 0.170668 + 0.0554535i
\(351\) 0 0
\(352\) −6.53564 5.53809i −0.348351 0.295181i
\(353\) 1.73418 + 1.00123i 0.0923011 + 0.0532901i 0.545440 0.838150i \(-0.316363\pi\)
−0.453139 + 0.891440i \(0.649696\pi\)
\(354\) 0 0
\(355\) 2.16318 + 0.963108i 0.114809 + 0.0511165i
\(356\) −8.89058 0.934437i −0.471200 0.0495251i
\(357\) 0 0
\(358\) −0.324174 + 1.52512i −0.0171331 + 0.0806051i
\(359\) −2.02249 1.46942i −0.106743 0.0775532i 0.533133 0.846031i \(-0.321014\pi\)
−0.639876 + 0.768478i \(0.721014\pi\)
\(360\) 0 0
\(361\) 0.279902 0.861450i 0.0147317 0.0453395i
\(362\) −1.34687 + 2.33285i −0.0707901 + 0.122612i
\(363\) 0 0
\(364\) −2.74897 4.76135i −0.144085 0.249562i
\(365\) −0.0484958 + 0.0103081i −0.00253839 + 0.000539551i
\(366\) 0 0
\(367\) −12.1115 + 5.39240i −0.632217 + 0.281481i −0.697719 0.716371i \(-0.745802\pi\)
0.0655024 + 0.997852i \(0.479135\pi\)
\(368\) −12.9979 + 4.22328i −0.677563 + 0.220154i
\(369\) 0 0
\(370\) 0.0550817 0.0758135i 0.00286356 0.00394135i
\(371\) −3.39154 32.2683i −0.176080 1.67529i
\(372\) 0 0
\(373\) 27.5050 15.8800i 1.42416 0.822238i 0.427507 0.904012i \(-0.359392\pi\)
0.996651 + 0.0817746i \(0.0260588\pi\)
\(374\) 0.784048 4.32426i 0.0405421 0.223602i
\(375\) 0 0
\(376\) −1.24491 + 1.12092i −0.0642013 + 0.0578071i
\(377\) 1.23031 + 1.69337i 0.0633641 + 0.0872131i
\(378\) 0 0
\(379\) 7.34658 + 22.6104i 0.377368 + 1.16142i 0.941867 + 0.335986i \(0.109070\pi\)
−0.564498 + 0.825434i \(0.690930\pi\)
\(380\) −4.34056 0.922614i −0.222666 0.0473291i
\(381\) 0 0
\(382\) 1.83805 4.12832i 0.0940426 0.211223i
\(383\) −3.70805 17.4450i −0.189472 0.891397i −0.965440 0.260625i \(-0.916071\pi\)
0.775968 0.630772i \(-0.217262\pi\)
\(384\) 0 0
\(385\) −0.170702 5.67430i −0.00869976 0.289189i
\(386\) 1.26443i 0.0643578i
\(387\) 0 0
\(388\) 15.4525 11.2269i 0.784481 0.569959i
\(389\) 10.0542 + 22.5821i 0.509769 + 1.14496i 0.966806 + 0.255512i \(0.0822440\pi\)
−0.457037 + 0.889448i \(0.651089\pi\)
\(390\) 0 0
\(391\) −16.3208 14.6953i −0.825377 0.743173i
\(392\) 0.297881 2.83415i 0.0150453 0.143146i
\(393\) 0 0
\(394\) −2.45102 2.72213i −0.123480 0.137139i
\(395\) 8.28598 0.416913
\(396\) 0 0
\(397\) −4.07143 −0.204339 −0.102170 0.994767i \(-0.532578\pi\)
−0.102170 + 0.994767i \(0.532578\pi\)
\(398\) −2.08136 2.31158i −0.104329 0.115869i
\(399\) 0 0
\(400\) −1.82575 + 17.3709i −0.0912875 + 0.868543i
\(401\) 18.8206 + 16.9462i 0.939857 + 0.846251i 0.988292 0.152575i \(-0.0487565\pi\)
−0.0484344 + 0.998826i \(0.515423\pi\)
\(402\) 0 0
\(403\) 2.59536 + 5.82926i 0.129284 + 0.290376i
\(404\) −16.8800 + 12.2641i −0.839813 + 0.610160i
\(405\) 0 0
\(406\) 1.69245i 0.0839946i
\(407\) 2.50653 + 0.731862i 0.124244 + 0.0362771i
\(408\) 0 0
\(409\) −1.86286 8.76406i −0.0921124 0.433355i −0.999903 0.0139310i \(-0.995565\pi\)
0.907791 0.419424i \(-0.137768\pi\)
\(410\) 0.486011 1.09160i 0.0240024 0.0539102i
\(411\) 0 0
\(412\) −7.15672 1.52121i −0.352586 0.0749445i
\(413\) −11.0020 33.8605i −0.541371 1.66617i
\(414\) 0 0
\(415\) −4.47627 6.16106i −0.219732 0.302435i
\(416\) −1.69067 + 1.52229i −0.0828919 + 0.0746362i
\(417\) 0 0
\(418\) 0.421926 + 3.11118i 0.0206371 + 0.152173i
\(419\) 2.71746 1.56893i 0.132757 0.0766471i −0.432151 0.901801i \(-0.642245\pi\)
0.564908 + 0.825154i \(0.308912\pi\)
\(420\) 0 0
\(421\) −3.00840 28.6230i −0.146620 1.39500i −0.782230 0.622990i \(-0.785918\pi\)
0.635609 0.772011i \(-0.280749\pi\)
\(422\) 1.40662 1.93605i 0.0684732 0.0942453i
\(423\) 0 0
\(424\) −8.47720 + 2.75441i −0.411689 + 0.133766i
\(425\) −25.6411 + 11.4162i −1.24378 + 0.553765i
\(426\) 0 0
\(427\) 5.77700 1.22794i 0.279569 0.0594242i
\(428\) 0.800656 + 1.38678i 0.0387012 + 0.0670324i
\(429\) 0 0
\(430\) −0.256954 + 0.445058i −0.0123914 + 0.0214626i
\(431\) 8.71998 26.8373i 0.420027 1.29271i −0.487650 0.873039i \(-0.662146\pi\)
0.907677 0.419670i \(-0.137854\pi\)
\(432\) 0 0
\(433\) 0.815921 + 0.592801i 0.0392107 + 0.0284882i 0.607218 0.794535i \(-0.292285\pi\)
−0.568007 + 0.823024i \(0.692285\pi\)
\(434\) −1.07271 + 5.04670i −0.0514917 + 0.242249i
\(435\) 0 0
\(436\) −0.667967 0.0702062i −0.0319898 0.00336227i
\(437\) 14.3332 + 6.38157i 0.685652 + 0.305272i
\(438\) 0 0
\(439\) −30.7703 17.7652i −1.46859 0.847888i −0.469205 0.883089i \(-0.655459\pi\)
−0.999380 + 0.0352012i \(0.988793\pi\)
\(440\) −1.51501 + 0.369967i −0.0722251 + 0.0176375i
\(441\) 0 0
\(442\) −1.11000 0.360661i −0.0527973 0.0171549i
\(443\) −18.7712 + 1.97294i −0.891849 + 0.0937371i −0.539356 0.842078i \(-0.681332\pi\)
−0.352492 + 0.935815i \(0.614666\pi\)
\(444\) 0 0
\(445\) −1.64028 + 1.82171i −0.0777566 + 0.0863575i
\(446\) 2.44267 2.71286i 0.115664 0.128458i
\(447\) 0 0
\(448\) 21.7563 2.28668i 1.02789 0.108035i
\(449\) −3.71574 1.20732i −0.175356 0.0569768i 0.220023 0.975495i \(-0.429387\pi\)
−0.395379 + 0.918518i \(0.629387\pi\)
\(450\) 0 0
\(451\) 33.2025 + 2.48303i 1.56345 + 0.116922i
\(452\) −24.7245 14.2747i −1.16294 0.671426i
\(453\) 0 0
\(454\) −3.08015 1.37137i −0.144558 0.0643615i
\(455\) −1.49936 0.157589i −0.0702909 0.00738787i
\(456\) 0 0
\(457\) 5.69308 26.7839i 0.266311 1.25290i −0.618067 0.786125i \(-0.712084\pi\)
0.884378 0.466771i \(-0.154583\pi\)
\(458\) 1.27615 + 0.927174i 0.0596304 + 0.0433240i
\(459\) 0 0
\(460\) −1.18904 + 3.65950i −0.0554395 + 0.170625i
\(461\) 2.42545 4.20100i 0.112964 0.195660i −0.804000 0.594629i \(-0.797299\pi\)
0.916964 + 0.398970i \(0.130632\pi\)
\(462\) 0 0
\(463\) 16.3454 + 28.3111i 0.759637 + 1.31573i 0.943036 + 0.332691i \(0.107956\pi\)
−0.183400 + 0.983038i \(0.558710\pi\)
\(464\) −8.61281 + 1.83071i −0.399840 + 0.0849886i
\(465\) 0 0
\(466\) 4.40594 1.96165i 0.204101 0.0908718i
\(467\) −23.1944 + 7.53631i −1.07331 + 0.348739i −0.791775 0.610813i \(-0.790843\pi\)
−0.281533 + 0.959552i \(0.590843\pi\)
\(468\) 0 0
\(469\) −1.26820 + 1.74553i −0.0585600 + 0.0806009i
\(470\) 0.0237072 + 0.225559i 0.00109353 + 0.0104043i
\(471\) 0 0
\(472\) −8.47035 + 4.89036i −0.389880 + 0.225097i
\(473\) −14.0900 2.55471i −0.647859 0.117466i
\(474\) 0 0
\(475\) 14.9014 13.4173i 0.683723 0.615627i
\(476\) 21.8456 + 30.0678i 1.00129 + 1.37816i
\(477\) 0 0
\(478\) −1.27356 3.91962i −0.0582514 0.179279i
\(479\) 22.8097 + 4.84835i 1.04220 + 0.221527i 0.697052 0.717021i \(-0.254495\pi\)
0.345150 + 0.938548i \(0.387828\pi\)
\(480\) 0 0
\(481\) 0.282054 0.633504i 0.0128606 0.0288853i
\(482\) −0.510828 2.40326i −0.0232676 0.109465i
\(483\) 0 0
\(484\) −11.8251 17.9023i −0.537506 0.813741i
\(485\) 5.23759i 0.237827i
\(486\) 0 0
\(487\) −4.01884 + 2.91986i −0.182111 + 0.132311i −0.675106 0.737721i \(-0.735902\pi\)
0.492995 + 0.870032i \(0.335902\pi\)
\(488\) −0.659926 1.48222i −0.0298734 0.0670968i
\(489\) 0 0
\(490\) −0.286724 0.258168i −0.0129529 0.0116628i
\(491\) −1.81851 + 17.3020i −0.0820682 + 0.780827i 0.873652 + 0.486551i \(0.161745\pi\)
−0.955720 + 0.294276i \(0.904921\pi\)
\(492\) 0 0
\(493\) −9.46785 10.5151i −0.426410 0.473577i
\(494\) 0.833803 0.0375146
\(495\) 0 0
\(496\) −26.8429 −1.20528
\(497\) 9.48032 + 10.5290i 0.425250 + 0.472288i
\(498\) 0 0
\(499\) 1.12880 10.7398i 0.0505321 0.480781i −0.939766 0.341819i \(-0.888957\pi\)
0.990298 0.138961i \(-0.0443764\pi\)
\(500\) 7.53078 + 6.78075i 0.336787 + 0.303244i
\(501\) 0 0
\(502\) −1.77928 3.99632i −0.0794130 0.178365i
\(503\) −22.5838 + 16.4081i −1.00696 + 0.731599i −0.963569 0.267459i \(-0.913816\pi\)
−0.0433908 + 0.999058i \(0.513816\pi\)
\(504\) 0 0
\(505\) 5.72146i 0.254602i
\(506\) 2.72120 0.0818625i 0.120972 0.00363923i
\(507\) 0 0
\(508\) −5.69644 26.7996i −0.252738 1.18904i
\(509\) −12.2879 + 27.5991i −0.544652 + 1.22331i 0.406234 + 0.913769i \(0.366842\pi\)
−0.950886 + 0.309540i \(0.899825\pi\)
\(510\) 0 0
\(511\) −0.290171 0.0616778i −0.0128364 0.00272847i
\(512\) −4.97068 15.2982i −0.219675 0.676091i
\(513\) 0 0
\(514\) 3.44362 + 4.73974i 0.151892 + 0.209061i
\(515\) −1.49099 + 1.34249i −0.0657007 + 0.0591572i
\(516\) 0 0
\(517\) −5.69342 + 2.74289i −0.250396 + 0.120632i
\(518\) 0.485590 0.280355i 0.0213356 0.0123181i
\(519\) 0 0
\(520\) 0.0432921 + 0.411896i 0.00189848 + 0.0180629i
\(521\) 1.84317 2.53691i 0.0807507 0.111144i −0.766731 0.641969i \(-0.778118\pi\)
0.847481 + 0.530825i \(0.178118\pi\)
\(522\) 0 0
\(523\) −9.10633 + 2.95883i −0.398192 + 0.129380i −0.501266 0.865293i \(-0.667132\pi\)
0.103074 + 0.994674i \(0.467132\pi\)
\(524\) −3.84746 + 1.71300i −0.168077 + 0.0748327i
\(525\) 0 0
\(526\) 0.573963 0.122000i 0.0250260 0.00531944i
\(527\) −21.5675 37.3559i −0.939493 1.62725i
\(528\) 0 0
\(529\) −4.69766 + 8.13658i −0.204246 + 0.353764i
\(530\) −0.372915 + 1.14772i −0.0161984 + 0.0498536i
\(531\) 0 0
\(532\) −21.4807 15.6067i −0.931308 0.676635i
\(533\) 1.83841 8.64904i 0.0796303 0.374631i
\(534\) 0 0
\(535\) 0.436698 + 0.0458988i 0.0188801 + 0.00198438i
\(536\) 0.541480 + 0.241082i 0.0233884 + 0.0104132i
\(537\) 0 0
\(538\) 0.705564 + 0.407357i 0.0304190 + 0.0175624i
\(539\) 4.07544 9.94838i 0.175542 0.428507i
\(540\) 0 0
\(541\) 12.3285 + 4.00578i 0.530045 + 0.172222i 0.561799 0.827274i \(-0.310109\pi\)
−0.0317543 + 0.999496i \(0.510109\pi\)
\(542\) 2.39991 0.252241i 0.103085 0.0108347i
\(543\) 0 0
\(544\) 10.2906 11.4289i 0.441207 0.490010i
\(545\) −0.123237 + 0.136869i −0.00527891 + 0.00586282i
\(546\) 0 0
\(547\) 38.1211 4.00669i 1.62994 0.171314i 0.755062 0.655653i \(-0.227607\pi\)
0.874880 + 0.484340i \(0.160940\pi\)
\(548\) −1.34033 0.435498i −0.0572559 0.0186036i
\(549\) 0 0
\(550\) 1.31895 3.21964i 0.0562404 0.137286i
\(551\) 8.75423 + 5.05426i 0.372943 + 0.215319i
\(552\) 0 0
\(553\) 45.2923 + 20.1654i 1.92602 + 0.857521i
\(554\) 0.0441089 + 0.00463603i 0.00187401 + 0.000196966i
\(555\) 0 0
\(556\) −7.37839 + 34.7126i −0.312913 + 1.47214i
\(557\) 20.0026 + 14.5328i 0.847538 + 0.615773i 0.924466 0.381264i \(-0.124511\pi\)
−0.0769278 + 0.997037i \(0.524511\pi\)
\(558\) 0 0
\(559\) −1.17516 + 3.61678i −0.0497042 + 0.152974i
\(560\) 3.17107 5.49245i 0.134002 0.232099i
\(561\) 0 0
\(562\) −0.849409 1.47122i −0.0358301 0.0620596i
\(563\) 30.7670 6.53972i 1.29667 0.275616i 0.492657 0.870223i \(-0.336026\pi\)
0.804017 + 0.594607i \(0.202692\pi\)
\(564\) 0 0
\(565\) −7.15185 + 3.18421i −0.300881 + 0.133961i
\(566\) −0.119455 + 0.0388131i −0.00502105 + 0.00163144i
\(567\) 0 0
\(568\) 2.28778 3.14886i 0.0959931 0.132123i
\(569\) −2.39430 22.7803i −0.100374 0.954998i −0.922580 0.385807i \(-0.873923\pi\)
0.822205 0.569191i \(-0.192744\pi\)
\(570\) 0 0
\(571\) −14.2974 + 8.25459i −0.598326 + 0.345444i −0.768383 0.639990i \(-0.778938\pi\)
0.170057 + 0.985434i \(0.445605\pi\)
\(572\) −5.13324 + 2.47301i −0.214632 + 0.103402i
\(573\) 0 0
\(574\) 5.31320 4.78403i 0.221769 0.199682i
\(575\) −10.2199 14.0665i −0.426199 0.586613i
\(576\) 0 0
\(577\) 3.22929 + 9.93872i 0.134437 + 0.413754i 0.995502 0.0947405i \(-0.0302021\pi\)
−0.861065 + 0.508495i \(0.830202\pi\)
\(578\) 4.01674 + 0.853785i 0.167074 + 0.0355128i
\(579\) 0 0
\(580\) −1.00833 + 2.26474i −0.0418686 + 0.0940383i
\(581\) −9.47386 44.5710i −0.393042 1.84912i
\(582\) 0 0
\(583\) −33.6110 + 1.01113i −1.39202 + 0.0418766i
\(584\) 0.0814955i 0.00337231i
\(585\) 0 0
\(586\) −0.920251 + 0.668602i −0.0380152 + 0.0276197i
\(587\) −9.74504 21.8877i −0.402221 0.903403i −0.995170 0.0981633i \(-0.968703\pi\)
0.592949 0.805240i \(-0.297963\pi\)
\(588\) 0 0
\(589\) 22.9007 + 20.6199i 0.943608 + 0.849629i
\(590\) −0.138416 + 1.31694i −0.00569851 + 0.0542177i
\(591\) 0 0
\(592\) 1.95198 + 2.16790i 0.0802260 + 0.0891000i
\(593\) 34.0556 1.39850 0.699248 0.714880i \(-0.253519\pi\)
0.699248 + 0.714880i \(0.253519\pi\)
\(594\) 0 0
\(595\) 10.1914 0.417808
\(596\) 29.7233 + 33.0111i 1.21751 + 1.35219i
\(597\) 0 0
\(598\) 0.0755740 0.719038i 0.00309045 0.0294037i
\(599\) 28.6823 + 25.8256i 1.17193 + 1.05521i 0.997509 + 0.0705342i \(0.0224704\pi\)
0.174416 + 0.984672i \(0.444196\pi\)
\(600\) 0 0
\(601\) 5.99885 + 13.4736i 0.244698 + 0.549601i 0.993584 0.113098i \(-0.0360774\pi\)
−0.748886 + 0.662699i \(0.769411\pi\)
\(602\) −2.48767 + 1.80740i −0.101390 + 0.0736642i
\(603\) 0 0
\(604\) 22.2782i 0.906486i
\(605\) −5.87750 0.262142i −0.238954 0.0106576i
\(606\) 0 0
\(607\) −3.39430 15.9689i −0.137770 0.648159i −0.991786 0.127911i \(-0.959173\pi\)
0.854015 0.520248i \(-0.174160\pi\)
\(608\) −4.46880 + 10.0371i −0.181234 + 0.407058i
\(609\) 0 0
\(610\) −0.214866 0.0456712i −0.00869968 0.00184917i
\(611\) 0.518632 + 1.59618i 0.0209816 + 0.0645747i
\(612\) 0 0
\(613\) 9.77045 + 13.4479i 0.394625 + 0.543155i 0.959385 0.282101i \(-0.0910312\pi\)
−0.564760 + 0.825255i \(0.691031\pi\)
\(614\) −0.475823 + 0.428433i −0.0192026 + 0.0172901i
\(615\) 0 0
\(616\) −9.18161 1.66475i −0.369938 0.0670748i
\(617\) 25.5162 14.7318i 1.02724 0.593080i 0.111051 0.993815i \(-0.464578\pi\)
0.916194 + 0.400735i \(0.131245\pi\)
\(618\) 0 0
\(619\) 4.61802 + 43.9375i 0.185614 + 1.76600i 0.550394 + 0.834905i \(0.314477\pi\)
−0.364780 + 0.931094i \(0.618856\pi\)
\(620\) −4.44218 + 6.11413i −0.178402 + 0.245550i
\(621\) 0 0
\(622\) 0.573815 0.186444i 0.0230079 0.00747571i
\(623\) −13.3994 + 5.96582i −0.536838 + 0.239015i
\(624\) 0 0
\(625\) −20.3366 + 4.32267i −0.813462 + 0.172907i
\(626\) −1.24004 2.14781i −0.0495620 0.0858438i
\(627\) 0 0
\(628\) −19.3808 + 33.5685i −0.773378 + 1.33953i
\(629\) −1.44860 + 4.45832i −0.0577593 + 0.177765i
\(630\) 0 0
\(631\) 9.62953 + 6.99627i 0.383346 + 0.278517i 0.762723 0.646725i \(-0.223862\pi\)
−0.379378 + 0.925242i \(0.623862\pi\)
\(632\) 2.83176 13.3224i 0.112641 0.529936i
\(633\) 0 0
\(634\) 1.38362 + 0.145424i 0.0549505 + 0.00577553i
\(635\) −6.86350 3.05583i −0.272370 0.121267i
\(636\) 0 0
\(637\) −2.47259 1.42755i −0.0979676 0.0565616i
\(638\) 1.74912 + 0.130807i 0.0692481 + 0.00517869i
\(639\) 0 0
\(640\) −3.40152 1.10522i −0.134457 0.0436877i
\(641\) 0.424548 0.0446218i 0.0167686 0.00176245i −0.0961404 0.995368i \(-0.530650\pi\)
0.112909 + 0.993605i \(0.463983\pi\)
\(642\) 0 0
\(643\) 19.7755 21.9629i 0.779870 0.866133i −0.213983 0.976837i \(-0.568644\pi\)
0.993853 + 0.110704i \(0.0353105\pi\)
\(644\) −15.4055 + 17.1096i −0.607063 + 0.674212i
\(645\) 0 0
\(646\) −5.60561 + 0.589174i −0.220550 + 0.0231807i
\(647\) 12.2213 + 3.97095i 0.480470 + 0.156114i 0.539231 0.842158i \(-0.318715\pi\)
−0.0587611 + 0.998272i \(0.518715\pi\)
\(648\) 0 0
\(649\) −35.8446 + 8.75331i −1.40703 + 0.343597i
\(650\) −0.800217 0.462005i −0.0313871 0.0181213i
\(651\) 0 0
\(652\) −18.3666 8.17734i −0.719292 0.320249i
\(653\) −10.4284 1.09606i −0.408093 0.0428923i −0.101742 0.994811i \(-0.532442\pi\)
−0.306351 + 0.951919i \(0.599108\pi\)
\(654\) 0 0
\(655\) −0.240112 + 1.12964i −0.00938194 + 0.0441386i
\(656\) 30.0931 + 21.8639i 1.17494 + 0.853642i
\(657\) 0 0
\(658\) −0.419352 + 1.29063i −0.0163480 + 0.0503141i
\(659\) −10.1911 + 17.6516i −0.396990 + 0.687607i −0.993353 0.115108i \(-0.963279\pi\)
0.596363 + 0.802715i \(0.296612\pi\)
\(660\) 0 0
\(661\) −2.66875 4.62241i −0.103802 0.179791i 0.809446 0.587194i \(-0.199768\pi\)
−0.913248 + 0.407403i \(0.866434\pi\)
\(662\) 0.675828 0.143652i 0.0262668 0.00558318i
\(663\) 0 0
\(664\) −11.4357 + 5.09149i −0.443790 + 0.197588i
\(665\) −6.92451 + 2.24991i −0.268521 + 0.0872477i
\(666\) 0 0
\(667\) 5.15205 7.09119i 0.199488 0.274572i
\(668\) 2.41655 + 22.9919i 0.0934990 + 0.889584i
\(669\) 0 0
\(670\) 0.0694968 0.0401240i 0.00268490 0.00155013i
\(671\) −0.822560 6.06535i −0.0317546 0.234150i
\(672\) 0 0
\(673\) 22.3581 20.1313i 0.861840 0.776005i −0.114231 0.993454i \(-0.536440\pi\)
0.976072 + 0.217450i \(0.0697738\pi\)
\(674\) −1.74963 2.40816i −0.0673933 0.0927589i
\(675\) 0 0
\(676\) −7.36788 22.6760i −0.283380 0.872154i
\(677\) 26.3994 + 5.61137i 1.01461 + 0.215662i 0.685069 0.728478i \(-0.259772\pi\)
0.329543 + 0.944141i \(0.393105\pi\)
\(678\) 0 0
\(679\) 12.7466 28.6294i 0.489170 1.09869i
\(680\) −0.582101 2.73857i −0.0223225 0.105019i
\(681\) 0 0
\(682\) 5.13278 + 1.49868i 0.196544 + 0.0573874i
\(683\) 19.1623i 0.733224i 0.930374 + 0.366612i \(0.119482\pi\)
−0.930374 + 0.366612i \(0.880518\pi\)
\(684\) 0 0
\(685\) −0.312646 + 0.227151i −0.0119456 + 0.00867898i
\(686\) 1.08875 + 2.44537i 0.0415685 + 0.0933645i
\(687\) 0 0
\(688\) −11.8887 10.7047i −0.453253 0.408111i
\(689\) −0.933454 + 8.88122i −0.0355618 + 0.338348i
\(690\) 0 0
\(691\) −4.07683 4.52777i −0.155090 0.172245i 0.660593 0.750744i \(-0.270305\pi\)
−0.815683 + 0.578500i \(0.803638\pi\)
\(692\) −30.8741 −1.17366
\(693\) 0 0
\(694\) −0.626882 −0.0237961
\(695\) 6.51155 + 7.23181i 0.246997 + 0.274318i
\(696\) 0 0
\(697\) −6.24803 + 59.4461i −0.236661 + 2.25168i
\(698\) 4.44988 + 4.00669i 0.168430 + 0.151655i
\(699\) 0 0
\(700\) 11.9679 + 26.8804i 0.452345 + 1.01598i
\(701\) 20.3206 14.7638i 0.767499 0.557621i −0.133702 0.991022i \(-0.542687\pi\)
0.901201 + 0.433401i \(0.142687\pi\)
\(702\) 0 0
\(703\) 3.34897i 0.126309i
\(704\) −0.681732 22.6615i −0.0256937 0.854087i
\(705\) 0 0
\(706\) −0.0926527 0.435897i −0.00348703 0.0164052i
\(707\) −13.9242 + 31.2743i −0.523674 + 1.17619i
\(708\) 0 0
\(709\) −5.60465 1.19131i −0.210487 0.0447404i 0.101461 0.994840i \(-0.467648\pi\)
−0.311948 + 0.950099i \(0.600982\pi\)
\(710\) −0.162840 0.501168i −0.00611126 0.0188085i
\(711\) 0 0
\(712\) 2.36842 + 3.25985i 0.0887603 + 0.122168i
\(713\) 19.8575 17.8797i 0.743668 0.669601i
\(714\) 0 0
\(715\) −0.278748 + 1.53738i −0.0104246 + 0.0574948i
\(716\) −11.8346 + 6.83273i −0.442281 + 0.255351i
\(717\) 0 0
\(718\) 0.0581538 + 0.553297i 0.00217028 + 0.0206489i
\(719\) −6.16104 + 8.47994i −0.229768 + 0.316248i −0.908298 0.418325i \(-0.862617\pi\)
0.678530 + 0.734573i \(0.262617\pi\)
\(720\) 0 0
\(721\) −11.4171 + 3.70965i −0.425196 + 0.138155i
\(722\) −0.184149 + 0.0819884i −0.00685332 + 0.00305129i
\(723\) 0 0
\(724\) −23.0933 + 4.90863i −0.858255 + 0.182428i
\(725\) −5.60107 9.70134i −0.208019 0.360299i
\(726\) 0 0
\(727\) 17.0164 29.4732i 0.631102 1.09310i −0.356225 0.934400i \(-0.615936\pi\)
0.987327 0.158700i \(-0.0507304\pi\)
\(728\) −0.765784 + 2.35684i −0.0283818 + 0.0873503i
\(729\) 0 0
\(730\) 0.00892634 + 0.00648536i 0.000330379 + 0.000240034i
\(731\) 5.34491 25.1458i 0.197689 0.930052i
\(732\) 0 0
\(733\) 29.4641 + 3.09680i 1.08828 + 0.114383i 0.631636 0.775265i \(-0.282384\pi\)
0.456646 + 0.889648i \(0.349051\pi\)
\(734\) 2.69535 + 1.20005i 0.0994871 + 0.0442945i
\(735\) 0 0
\(736\) 8.25054 + 4.76345i 0.304119 + 0.175583i
\(737\) 1.70596 + 1.44557i 0.0628397 + 0.0532484i
\(738\) 0 0
\(739\) 25.4725 + 8.27651i 0.937020 + 0.304456i 0.737430 0.675423i \(-0.236039\pi\)
0.199590 + 0.979880i \(0.436039\pi\)
\(740\) 0.816822 0.0858515i 0.0300270 0.00315596i
\(741\) 0 0
\(742\) −4.83158 + 5.36601i −0.177373 + 0.196992i
\(743\) −16.5430 + 18.3729i −0.606904 + 0.674035i −0.965784 0.259348i \(-0.916492\pi\)
0.358880 + 0.933384i \(0.383159\pi\)
\(744\) 0 0
\(745\) 12.1141 1.27325i 0.443827 0.0466481i
\(746\) −6.72208 2.18414i −0.246113 0.0799669i
\(747\) 0 0
\(748\) 32.7631 20.2531i 1.19794 0.740528i
\(749\) 2.27535 + 1.31367i 0.0831394 + 0.0480006i
\(750\) 0 0
\(751\) −6.74831 3.00454i −0.246249 0.109637i 0.279901 0.960029i \(-0.409698\pi\)
−0.526150 + 0.850392i \(0.676365\pi\)
\(752\) −7.02161 0.738001i −0.256052 0.0269121i
\(753\) 0 0
\(754\) 0.0968478 0.455633i 0.00352699 0.0165932i
\(755\) 4.94229 + 3.59079i 0.179868 + 0.130682i
\(756\) 0 0
\(757\) 0.0920305 0.283241i 0.00334491 0.0102946i −0.949370 0.314160i \(-0.898277\pi\)
0.952715 + 0.303865i \(0.0982772\pi\)
\(758\) 2.64538 4.58194i 0.0960846 0.166423i
\(759\) 0 0
\(760\) 1.00008 + 1.73219i 0.0362768 + 0.0628333i
\(761\) 24.8141 5.27440i 0.899511 0.191197i 0.265126 0.964214i \(-0.414587\pi\)
0.634386 + 0.773017i \(0.281253\pi\)
\(762\) 0 0
\(763\) −1.00673 + 0.448224i −0.0364460 + 0.0162268i
\(764\) 37.6681 12.2391i 1.36278 0.442795i
\(765\) 0 0
\(766\) −2.33292 + 3.21099i −0.0842920 + 0.116018i
\(767\) 1.02428 + 9.74536i 0.0369846 + 0.351885i
\(768\) 0 0
\(769\) −9.05193 + 5.22613i −0.326421 + 0.188459i −0.654251 0.756278i \(-0.727016\pi\)
0.327830 + 0.944737i \(0.393683\pi\)
\(770\) −0.913010 + 0.873197i −0.0329026 + 0.0314678i
\(771\) 0 0
\(772\) 8.23555 7.41532i 0.296404 0.266883i
\(773\) −5.51171 7.58622i −0.198243 0.272857i 0.698309 0.715796i \(-0.253936\pi\)
−0.896552 + 0.442939i \(0.853936\pi\)
\(774\) 0 0
\(775\) −10.5529 32.4785i −0.379072 1.16666i
\(776\) −8.42112 1.78996i −0.302301 0.0642560i
\(777\) 0 0
\(778\) 2.23750 5.02552i 0.0802184 0.180174i
\(779\) −8.87840 41.7696i −0.318102 1.49655i
\(780\) 0 0
\(781\) 11.6142 8.98399i 0.415590 0.321472i
\(782\) 4.88746i 0.174775i
\(783\) 0 0
\(784\) 9.71683 7.05969i 0.347030 0.252132i
\(785\) 4.32321 + 9.71008i 0.154302 + 0.346568i
\(786\) 0 0
\(787\) 6.51938 + 5.87007i 0.232391 + 0.209246i 0.777096 0.629382i \(-0.216692\pi\)
−0.544705 + 0.838627i \(0.683359\pi\)
\(788\) 3.35579 31.9282i 0.119545 1.13739i
\(789\) 0 0
\(790\) −1.23387 1.37035i −0.0438992 0.0487550i
\(791\) −46.8423 −1.66552
\(792\) 0 0
\(793\) −1.62553 −0.0577242
\(794\) 0.606280 + 0.673343i 0.0215161 + 0.0238960i
\(795\) 0 0
\(796\) 2.84967 27.1128i 0.101004 0.960989i
\(797\) 16.2068 + 14.5926i 0.574073 + 0.516897i 0.904240 0.427025i \(-0.140438\pi\)
−0.330167 + 0.943923i \(0.607105\pi\)
\(798\) 0 0
\(799\) −4.61462 10.3646i −0.163253 0.366673i
\(800\) 9.85029 7.15665i 0.348260 0.253026i
\(801\) 0 0
\(802\) 5.63607i 0.199017i
\(803\) −0.0861700 + 0.295120i −0.00304087 + 0.0104146i
\(804\) 0 0
\(805\) 1.31261 + 6.17535i 0.0462634 + 0.217652i
\(806\) 0.577581 1.29727i 0.0203444 0.0456943i
\(807\) 0 0
\(808\) 9.19909 + 1.95533i 0.323623 + 0.0687882i
\(809\) 2.71969 + 8.37033i 0.0956190 + 0.294285i 0.987415 0.158154i \(-0.0505541\pi\)
−0.891795 + 0.452439i \(0.850554\pi\)
\(810\) 0 0
\(811\) −24.6647 33.9480i −0.866094 1.19208i −0.980082 0.198594i \(-0.936363\pi\)
0.113988 0.993482i \(-0.463637\pi\)
\(812\) −11.0233 + 9.92544i −0.386843 + 0.348315i
\(813\) 0 0
\(814\) −0.252212 0.523518i −0.00884004 0.0183493i
\(815\) −4.77442 + 2.75651i −0.167240 + 0.0965563i
\(816\) 0 0
\(817\) 1.91974 + 18.2651i 0.0671633 + 0.639016i
\(818\) −1.17202 + 1.61315i −0.0409787 + 0.0564024i
\(819\) 0 0
\(820\) 9.96009 3.23623i 0.347822 0.113014i
\(821\) −31.8328 + 14.1729i −1.11097 + 0.494637i −0.878392 0.477940i \(-0.841384\pi\)
−0.232580 + 0.972577i \(0.574717\pi\)
\(822\) 0 0
\(823\) −14.2424 + 3.02732i −0.496459 + 0.105526i −0.449335 0.893363i \(-0.648339\pi\)
−0.0471242 + 0.998889i \(0.515006\pi\)
\(824\) 1.64894 + 2.85604i 0.0574435 + 0.0994950i
\(825\) 0 0
\(826\) −3.96162 + 6.86173i −0.137842 + 0.238750i
\(827\) 14.8117 45.5858i 0.515054 1.58517i −0.268131 0.963383i \(-0.586406\pi\)
0.783184 0.621790i \(-0.213594\pi\)
\(828\) 0 0
\(829\) 10.6108 + 7.70918i 0.368527 + 0.267751i 0.756600 0.653878i \(-0.226859\pi\)
−0.388073 + 0.921629i \(0.626859\pi\)
\(830\) −0.352365 + 1.65775i −0.0122308 + 0.0575412i
\(831\) 0 0
\(832\) −5.98798 0.629362i −0.207596 0.0218192i
\(833\) 17.6318 + 7.85019i 0.610906 + 0.271993i
\(834\) 0 0
\(835\) 5.49012 + 3.16972i 0.189994 + 0.109693i
\(836\) −17.7895 + 20.9938i −0.615261 + 0.726085i
\(837\) 0 0
\(838\) −0.664133 0.215790i −0.0229421 0.00745434i
\(839\) −27.7651 + 2.91823i −0.958559 + 0.100749i −0.570869 0.821041i \(-0.693394\pi\)
−0.387690 + 0.921790i \(0.626727\pi\)
\(840\) 0 0
\(841\) −15.6261 + 17.3545i −0.538830 + 0.598431i
\(842\) −4.28576 + 4.75982i −0.147697 + 0.164034i
\(843\) 0 0
\(844\) 20.8592 2.19239i 0.718003 0.0754651i
\(845\) −6.21810 2.02038i −0.213909 0.0695033i
\(846\) 0 0
\(847\) −31.4892 15.7368i −1.08198 0.540725i
\(848\) −32.5338 18.7834i −1.11721 0.645024i
\(849\) 0 0
\(850\) 5.70628 + 2.54060i 0.195724 + 0.0871418i
\(851\) −2.88802 0.303543i −0.0990001 0.0104053i
\(852\) 0 0
\(853\) 0.697099 3.27959i 0.0238682 0.112291i −0.964601 0.263714i \(-0.915052\pi\)
0.988469 + 0.151423i \(0.0483857\pi\)
\(854\) −1.06334 0.772561i −0.0363867 0.0264365i
\(855\) 0 0
\(856\) 0.223040 0.686447i 0.00762336 0.0234623i
\(857\) −5.78843 + 10.0259i −0.197729 + 0.342477i −0.947792 0.318890i \(-0.896690\pi\)
0.750063 + 0.661367i \(0.230023\pi\)
\(858\) 0 0
\(859\) −17.2606 29.8962i −0.588923 1.02005i −0.994374 0.105928i \(-0.966219\pi\)
0.405450 0.914117i \(-0.367115\pi\)
\(860\) −4.40570 + 0.936459i −0.150233 + 0.0319330i
\(861\) 0 0
\(862\) −5.73692 + 2.55424i −0.195400 + 0.0869979i
\(863\) −23.6801 + 7.69412i −0.806079 + 0.261911i −0.682936 0.730478i \(-0.739297\pi\)
−0.123143 + 0.992389i \(0.539297\pi\)
\(864\) 0 0
\(865\) −4.97627 + 6.84925i −0.169198 + 0.232882i
\(866\) −0.0234607 0.223214i −0.000797227 0.00758511i
\(867\) 0 0
\(868\) −39.1614 + 22.6098i −1.32922 + 0.767428i
\(869\) 24.3412 45.2503i 0.825720 1.53501i
\(870\) 0 0
\(871\) 0.441304 0.397352i 0.0149530 0.0134638i
\(872\) 0.177944 + 0.244919i 0.00602596 + 0.00829402i
\(873\) 0 0
\(874\) −1.07898 3.32075i −0.0364970 0.112326i
\(875\) 16.2634 + 3.45690i 0.549804 + 0.116865i
\(876\) 0 0
\(877\) −16.5596 + 37.1936i −0.559179 + 1.25594i 0.383902 + 0.923374i \(0.374580\pi\)
−0.943081 + 0.332563i \(0.892086\pi\)
\(878\) 1.64398 + 7.73430i 0.0554815 + 0.261020i
\(879\) 0 0
\(880\) −5.43128 3.70175i −0.183088 0.124786i
\(881\) 15.5331i 0.523323i −0.965160 0.261661i \(-0.915730\pi\)
0.965160 0.261661i \(-0.0842703\pi\)
\(882\) 0 0
\(883\) −11.1691 + 8.11482i −0.375870 + 0.273086i −0.759641 0.650343i \(-0.774625\pi\)
0.383771 + 0.923428i \(0.374625\pi\)
\(884\) −4.16058 9.34482i −0.139936 0.314300i
\(885\) 0 0
\(886\) 3.12153 + 2.81064i 0.104870 + 0.0944253i
\(887\) −3.28428 + 31.2478i −0.110275 + 1.04920i 0.789770 + 0.613403i \(0.210200\pi\)
−0.900046 + 0.435796i \(0.856467\pi\)
\(888\) 0 0
\(889\) −30.0799 33.4071i −1.00885 1.12044i
\(890\) 0.545534 0.0182864
\(891\) 0 0
\(892\) 31.9947 1.07126
\(893\) 5.42350 + 6.02341i 0.181491 + 0.201566i
\(894\) 0 0
\(895\) −0.391696 + 3.72674i −0.0130930 + 0.124571i
\(896\) −15.9034 14.3195i −0.531296 0.478381i
\(897\) 0 0
\(898\) 0.353645 + 0.794300i 0.0118013 + 0.0265061i
\(899\) 13.9278 10.1191i 0.464516 0.337491i
\(900\) 0 0
\(901\) 60.3676i 2.01114i
\(902\) −4.53357 5.86086i −0.150951 0.195145i
\(903\) 0 0
\(904\) 2.67548 + 12.5871i 0.0889850 + 0.418641i
\(905\) −2.63321 + 5.91428i −0.0875308 + 0.196597i
\(906\) 0 0
\(907\) 45.3069 + 9.63029i 1.50439 + 0.319768i 0.885103 0.465395i \(-0.154088\pi\)
0.619289 + 0.785163i \(0.287421\pi\)
\(908\) −9.13162 28.1042i −0.303044 0.932672i
\(909\) 0 0
\(910\) 0.197208 + 0.271434i 0.00653738 + 0.00899794i
\(911\) −14.4923 + 13.0489i −0.480151 + 0.432330i −0.873328 0.487133i \(-0.838043\pi\)
0.393176 + 0.919463i \(0.371376\pi\)
\(912\) 0 0
\(913\) −46.7957 + 6.34625i −1.54871 + 0.210030i
\(914\) −5.27734 + 3.04687i −0.174559 + 0.100782i
\(915\) 0 0
\(916\) 1.44511 + 13.7493i 0.0477479 + 0.454290i
\(917\) −4.06166 + 5.59040i −0.134128 + 0.184611i
\(918\) 0 0
\(919\) 51.8032 16.8319i 1.70883 0.555232i 0.718691 0.695329i \(-0.244742\pi\)
0.990138 + 0.140097i \(0.0447415\pi\)
\(920\) 1.58442 0.705430i 0.0522368 0.0232573i
\(921\) 0 0
\(922\) −1.05595 + 0.224448i −0.0347757 + 0.00739181i
\(923\) −1.94975 3.37706i −0.0641767 0.111157i
\(924\) 0 0
\(925\) −1.85565 + 3.21408i −0.0610133 + 0.105678i
\(926\) 2.24815 6.91908i 0.0738787 0.227375i
\(927\) 0 0
\(928\) 4.96572 + 3.60781i 0.163008 + 0.118432i
\(929\) −3.27981 + 15.4303i −0.107607 + 0.506251i 0.891025 + 0.453955i \(0.149987\pi\)
−0.998632 + 0.0522962i \(0.983346\pi\)
\(930\) 0 0
\(931\) −13.7129 1.44128i −0.449421 0.0472361i
\(932\) 38.6156 + 17.1928i 1.26490 + 0.563169i
\(933\) 0 0
\(934\) 4.70027 + 2.71370i 0.153798 + 0.0887950i
\(935\) 0.787682 10.5327i 0.0257600 0.344456i
\(936\) 0 0
\(937\) −26.3765 8.57025i −0.861683 0.279978i −0.155352 0.987859i \(-0.549651\pi\)
−0.706331 + 0.707882i \(0.749651\pi\)
\(938\) 0.477528 0.0501902i 0.0155918 0.00163877i
\(939\) 0 0
\(940\) −1.33009 + 1.47722i −0.0433828 + 0.0481815i
\(941\) 6.20656 6.89308i 0.202328 0.224708i −0.633438 0.773793i \(-0.718357\pi\)
0.835766 + 0.549085i \(0.185024\pi\)
\(942\) 0 0
\(943\) −36.8251 + 3.87048i −1.19919 + 0.126040i
\(944\) −39.2045 12.7383i −1.27600 0.414596i
\(945\) 0 0
\(946\) 1.67565 + 2.71066i 0.0544801 + 0.0881313i
\(947\) −4.44675 2.56733i −0.144500 0.0834270i 0.426007 0.904720i \(-0.359920\pi\)
−0.570507 + 0.821293i \(0.693253\pi\)
\(948\) 0 0
\(949\) 0.0745893 + 0.0332093i 0.00242127 + 0.00107802i
\(950\) −4.43796 0.466449i −0.143987 0.0151336i
\(951\) 0 0
\(952\) 3.48296 16.3860i 0.112883 0.531074i
\(953\) −33.1526 24.0868i −1.07392 0.780248i −0.0973068 0.995254i \(-0.531023\pi\)
−0.976613 + 0.215006i \(0.931023\pi\)
\(954\) 0 0
\(955\) 3.35615 10.3292i 0.108602 0.334244i
\(956\) 18.0606 31.2819i 0.584122 1.01173i
\(957\) 0 0
\(958\) −2.59478 4.49429i −0.0838336 0.145204i
\(959\) −2.26178 + 0.480756i −0.0730366 + 0.0155244i
\(960\) 0 0
\(961\) 19.6250 8.73759i 0.633063 0.281858i
\(962\) −0.146771 + 0.0476889i −0.00473210 + 0.00153755i
\(963\) 0 0
\(964\) 12.6572 17.4212i 0.407663 0.561099i
\(965\) −0.317647 3.02221i −0.0102254 0.0972883i
\(966\) 0 0
\(967\) 13.7225 7.92268i 0.441285 0.254776i −0.262857 0.964835i \(-0.584665\pi\)
0.704143 + 0.710059i \(0.251332\pi\)
\(968\) −2.43013 + 9.36038i −0.0781074 + 0.300854i
\(969\) 0 0
\(970\) −0.866205 + 0.779935i −0.0278122 + 0.0250422i
\(971\) 1.51662 + 2.08745i 0.0486708 + 0.0669896i 0.832659 0.553786i \(-0.186818\pi\)
−0.783988 + 0.620776i \(0.786818\pi\)
\(972\) 0 0
\(973\) 17.9931 + 55.3771i 0.576833 + 1.77531i
\(974\) 1.08134 + 0.229846i 0.0346484 + 0.00736475i
\(975\) 0 0
\(976\) 2.78133 6.24698i 0.0890283 0.199961i
\(977\) 6.37823 + 30.0072i 0.204058 + 0.960015i 0.954300 + 0.298852i \(0.0966037\pi\)
−0.750242 + 0.661163i \(0.770063\pi\)
\(978\) 0 0
\(979\) 5.12995 + 14.3092i 0.163954 + 0.457324i
\(980\) 3.38155i 0.108020i
\(981\) 0 0
\(982\) 3.13224 2.27570i 0.0999537 0.0726206i
\(983\) −14.3155 32.1531i −0.456593 1.02553i −0.984365 0.176139i \(-0.943639\pi\)
0.527772 0.849386i \(-0.323028\pi\)
\(984\) 0 0
\(985\) −6.54221 5.89063i −0.208452 0.187691i
\(986\) −0.329148 + 3.13163i −0.0104822 + 0.0997314i
\(987\) 0 0
\(988\) 4.88988 + 5.43077i 0.155568 + 0.172776i
\(989\) 15.9251 0.506390
\(990\) 0 0
\(991\) −2.21717 −0.0704307 −0.0352154 0.999380i \(-0.511212\pi\)
−0.0352154 + 0.999380i \(0.511212\pi\)
\(992\) 12.5206 + 13.9055i 0.397529 + 0.441500i
\(993\) 0 0
\(994\) 0.329581 3.13575i 0.0104537 0.0994601i
\(995\) −5.55552 5.00222i −0.176122 0.158581i
\(996\) 0 0
\(997\) 13.9619 + 31.3590i 0.442178 + 0.993149i 0.987887 + 0.155174i \(0.0495939\pi\)
−0.545709 + 0.837975i \(0.683739\pi\)
\(998\) −1.94427 + 1.41259i −0.0615447 + 0.0447149i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.t.a.35.4 80
3.2 odd 2 99.2.p.a.2.7 80
9.2 odd 6 891.2.k.a.728.12 80
9.4 even 3 99.2.p.a.68.7 yes 80
9.5 odd 6 inner 297.2.t.a.233.4 80
9.7 even 3 891.2.k.a.728.9 80
11.6 odd 10 inner 297.2.t.a.116.4 80
33.17 even 10 99.2.p.a.83.7 yes 80
99.50 even 30 inner 297.2.t.a.17.4 80
99.61 odd 30 891.2.k.a.809.12 80
99.83 even 30 891.2.k.a.809.9 80
99.94 odd 30 99.2.p.a.50.7 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.p.a.2.7 80 3.2 odd 2
99.2.p.a.50.7 yes 80 99.94 odd 30
99.2.p.a.68.7 yes 80 9.4 even 3
99.2.p.a.83.7 yes 80 33.17 even 10
297.2.t.a.17.4 80 99.50 even 30 inner
297.2.t.a.35.4 80 1.1 even 1 trivial
297.2.t.a.116.4 80 11.6 odd 10 inner
297.2.t.a.233.4 80 9.5 odd 6 inner
891.2.k.a.728.9 80 9.7 even 3
891.2.k.a.728.12 80 9.2 odd 6
891.2.k.a.809.9 80 99.83 even 30
891.2.k.a.809.12 80 99.61 odd 30