Properties

Label 297.2.t.a.17.3
Level $297$
Weight $2$
Character 297.17
Analytic conductor $2.372$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [297,2,Mod(8,297)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("297.8"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(297, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([5, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.t (of order \(30\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{30})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 17.3
Character \(\chi\) \(=\) 297.17
Dual form 297.2.t.a.35.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.780898 + 0.867275i) q^{2} +(0.0666926 + 0.634537i) q^{4} +(1.15400 - 1.03907i) q^{5} +(1.76474 - 3.96367i) q^{7} +(-2.49070 - 1.80960i) q^{8} +1.81224i q^{10} +(3.19970 + 0.872887i) q^{11} +(1.05340 - 4.95585i) q^{13} +(2.05951 + 4.62574i) q^{14} +(2.26622 - 0.481700i) q^{16} +(-0.248154 + 0.763741i) q^{17} +(-2.19592 + 3.02243i) q^{19} +(0.736289 + 0.662958i) q^{20} +(-3.25567 + 2.09338i) q^{22} +(-2.42777 - 1.40167i) q^{23} +(-0.270585 + 2.57445i) q^{25} +(3.47549 + 4.78360i) q^{26} +(2.63279 + 0.855447i) q^{28} +(6.68223 + 2.97512i) q^{29} +(6.42298 + 1.36525i) q^{31} +(1.72675 - 2.99082i) q^{32} +(-0.468590 - 0.811622i) q^{34} +(-2.08201 - 6.40776i) q^{35} +(-3.70044 + 2.68853i) q^{37} +(-0.906484 - 4.26467i) q^{38} +(-4.75456 + 0.499724i) q^{40} +(0.302935 - 0.134876i) q^{41} +(-0.967761 + 0.558737i) q^{43} +(-0.340483 + 2.08854i) q^{44} +(3.11148 - 1.01098i) q^{46} +(-5.62759 - 0.591483i) q^{47} +(-7.91248 - 8.78770i) q^{49} +(-2.02145 - 2.24505i) q^{50} +(3.21493 + 0.337902i) q^{52} +(5.13255 - 1.66767i) q^{53} +(4.59944 - 2.31739i) q^{55} +(-11.5681 + 6.67884i) q^{56} +(-7.79839 + 3.47207i) q^{58} +(-6.97083 + 0.732664i) q^{59} +(-0.842120 - 3.96186i) q^{61} +(-6.19973 + 4.50437i) q^{62} +(2.67734 + 8.24001i) q^{64} +(-3.93383 - 6.81360i) q^{65} +(-5.22518 + 9.05028i) q^{67} +(-0.501172 - 0.106527i) q^{68} +(7.18312 + 3.19813i) q^{70} +(-4.20477 - 1.36621i) q^{71} +(-1.44520 - 1.98915i) q^{73} +(0.557974 - 5.30877i) q^{74} +(-2.06429 - 1.19182i) q^{76} +(9.10648 - 11.1421i) q^{77} +(0.476003 + 0.428595i) q^{79} +(2.11470 - 2.91063i) q^{80} +(-0.119587 + 0.368052i) q^{82} +(-1.82050 + 0.386959i) q^{83} +(0.507207 + 1.13920i) q^{85} +(0.271144 - 1.27563i) q^{86} +(-6.38991 - 7.96427i) q^{88} +5.49170i q^{89} +(-17.7844 - 12.9211i) q^{91} +(0.727500 - 1.63399i) q^{92} +(4.90755 - 4.41878i) q^{94} +(0.606408 + 5.76958i) q^{95} +(1.29476 - 1.43798i) q^{97} +13.8002 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 15 q^{2} + 5 q^{4} + 6 q^{5} - 5 q^{7} + 3 q^{11} - 5 q^{13} + 9 q^{14} + 5 q^{16} - 50 q^{19} + 3 q^{20} - 11 q^{22} + 42 q^{23} - 2 q^{25} - 20 q^{28} - 30 q^{29} - 6 q^{31} - 10 q^{34} - 6 q^{37}+ \cdots + 27 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{9}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.780898 + 0.867275i −0.552178 + 0.613256i −0.953026 0.302889i \(-0.902049\pi\)
0.400848 + 0.916145i \(0.368716\pi\)
\(3\) 0 0
\(4\) 0.0666926 + 0.634537i 0.0333463 + 0.317269i
\(5\) 1.15400 1.03907i 0.516084 0.464684i −0.369455 0.929249i \(-0.620456\pi\)
0.885539 + 0.464564i \(0.153789\pi\)
\(6\) 0 0
\(7\) 1.76474 3.96367i 0.667009 1.49813i −0.189438 0.981893i \(-0.560666\pi\)
0.856447 0.516235i \(-0.172667\pi\)
\(8\) −2.49070 1.80960i −0.880595 0.639790i
\(9\) 0 0
\(10\) 1.81224i 0.573080i
\(11\) 3.19970 + 0.872887i 0.964745 + 0.263185i
\(12\) 0 0
\(13\) 1.05340 4.95585i 0.292160 1.37451i −0.549949 0.835198i \(-0.685353\pi\)
0.842109 0.539307i \(-0.181314\pi\)
\(14\) 2.05951 + 4.62574i 0.550428 + 1.23628i
\(15\) 0 0
\(16\) 2.26622 0.481700i 0.566555 0.120425i
\(17\) −0.248154 + 0.763741i −0.0601863 + 0.185234i −0.976629 0.214931i \(-0.931047\pi\)
0.916443 + 0.400165i \(0.131047\pi\)
\(18\) 0 0
\(19\) −2.19592 + 3.02243i −0.503779 + 0.693392i −0.982855 0.184381i \(-0.940972\pi\)
0.479076 + 0.877773i \(0.340972\pi\)
\(20\) 0.736289 + 0.662958i 0.164639 + 0.148242i
\(21\) 0 0
\(22\) −3.25567 + 2.09338i −0.694111 + 0.446311i
\(23\) −2.42777 1.40167i −0.506225 0.292269i 0.225055 0.974346i \(-0.427744\pi\)
−0.731281 + 0.682077i \(0.761077\pi\)
\(24\) 0 0
\(25\) −0.270585 + 2.57445i −0.0541171 + 0.514889i
\(26\) 3.47549 + 4.78360i 0.681599 + 0.938141i
\(27\) 0 0
\(28\) 2.63279 + 0.855447i 0.497551 + 0.161664i
\(29\) 6.68223 + 2.97512i 1.24086 + 0.552466i 0.918976 0.394313i \(-0.129017\pi\)
0.321883 + 0.946779i \(0.395684\pi\)
\(30\) 0 0
\(31\) 6.42298 + 1.36525i 1.15360 + 0.245205i 0.744717 0.667381i \(-0.232585\pi\)
0.408884 + 0.912586i \(0.365918\pi\)
\(32\) 1.72675 2.99082i 0.305250 0.528708i
\(33\) 0 0
\(34\) −0.468590 0.811622i −0.0803625 0.139192i
\(35\) −2.08201 6.40776i −0.351923 1.08311i
\(36\) 0 0
\(37\) −3.70044 + 2.68853i −0.608349 + 0.441991i −0.848833 0.528662i \(-0.822694\pi\)
0.240483 + 0.970653i \(0.422694\pi\)
\(38\) −0.906484 4.26467i −0.147051 0.691821i
\(39\) 0 0
\(40\) −4.75456 + 0.499724i −0.751761 + 0.0790133i
\(41\) 0.302935 0.134876i 0.0473106 0.0210640i −0.382945 0.923771i \(-0.625090\pi\)
0.430256 + 0.902707i \(0.358423\pi\)
\(42\) 0 0
\(43\) −0.967761 + 0.558737i −0.147582 + 0.0852066i −0.571973 0.820273i \(-0.693822\pi\)
0.424391 + 0.905479i \(0.360488\pi\)
\(44\) −0.340483 + 2.08854i −0.0513298 + 0.314860i
\(45\) 0 0
\(46\) 3.11148 1.01098i 0.458762 0.149061i
\(47\) −5.62759 0.591483i −0.820868 0.0862767i −0.315222 0.949018i \(-0.602079\pi\)
−0.505646 + 0.862741i \(0.668746\pi\)
\(48\) 0 0
\(49\) −7.91248 8.78770i −1.13035 1.25539i
\(50\) −2.02145 2.24505i −0.285877 0.317498i
\(51\) 0 0
\(52\) 3.21493 + 0.337902i 0.445830 + 0.0468586i
\(53\) 5.13255 1.66767i 0.705010 0.229072i 0.0654981 0.997853i \(-0.479136\pi\)
0.639512 + 0.768781i \(0.279136\pi\)
\(54\) 0 0
\(55\) 4.59944 2.31739i 0.620188 0.312476i
\(56\) −11.5681 + 6.67884i −1.54585 + 0.892498i
\(57\) 0 0
\(58\) −7.79839 + 3.47207i −1.02398 + 0.455905i
\(59\) −6.97083 + 0.732664i −0.907525 + 0.0953847i −0.546777 0.837279i \(-0.684145\pi\)
−0.360748 + 0.932663i \(0.617479\pi\)
\(60\) 0 0
\(61\) −0.842120 3.96186i −0.107822 0.507265i −0.998603 0.0528318i \(-0.983175\pi\)
0.890781 0.454433i \(-0.150158\pi\)
\(62\) −6.19973 + 4.50437i −0.787367 + 0.572056i
\(63\) 0 0
\(64\) 2.67734 + 8.24001i 0.334667 + 1.03000i
\(65\) −3.93383 6.81360i −0.487932 0.845123i
\(66\) 0 0
\(67\) −5.22518 + 9.05028i −0.638357 + 1.10567i 0.347436 + 0.937704i \(0.387052\pi\)
−0.985793 + 0.167964i \(0.946281\pi\)
\(68\) −0.501172 0.106527i −0.0607760 0.0129183i
\(69\) 0 0
\(70\) 7.18312 + 3.19813i 0.858548 + 0.382250i
\(71\) −4.20477 1.36621i −0.499014 0.162139i 0.0486863 0.998814i \(-0.484497\pi\)
−0.547700 + 0.836675i \(0.684497\pi\)
\(72\) 0 0
\(73\) −1.44520 1.98915i −0.169148 0.232812i 0.716025 0.698075i \(-0.245960\pi\)
−0.885173 + 0.465263i \(0.845960\pi\)
\(74\) 0.557974 5.30877i 0.0648632 0.617132i
\(75\) 0 0
\(76\) −2.06429 1.19182i −0.236791 0.136711i
\(77\) 9.10648 11.1421i 1.03778 1.26976i
\(78\) 0 0
\(79\) 0.476003 + 0.428595i 0.0535545 + 0.0482207i 0.695473 0.718552i \(-0.255195\pi\)
−0.641919 + 0.766773i \(0.721861\pi\)
\(80\) 2.11470 2.91063i 0.236431 0.325419i
\(81\) 0 0
\(82\) −0.119587 + 0.368052i −0.0132062 + 0.0406446i
\(83\) −1.82050 + 0.386959i −0.199826 + 0.0424742i −0.306737 0.951794i \(-0.599237\pi\)
0.106911 + 0.994269i \(0.465904\pi\)
\(84\) 0 0
\(85\) 0.507207 + 1.13920i 0.0550143 + 0.123564i
\(86\) 0.271144 1.27563i 0.0292382 0.137555i
\(87\) 0 0
\(88\) −6.38991 7.96427i −0.681167 0.848994i
\(89\) 5.49170i 0.582119i 0.956705 + 0.291060i \(0.0940078\pi\)
−0.956705 + 0.291060i \(0.905992\pi\)
\(90\) 0 0
\(91\) −17.7844 12.9211i −1.86431 1.35450i
\(92\) 0.727500 1.63399i 0.0758472 0.170356i
\(93\) 0 0
\(94\) 4.90755 4.41878i 0.506175 0.455762i
\(95\) 0.606408 + 5.76958i 0.0622161 + 0.591947i
\(96\) 0 0
\(97\) 1.29476 1.43798i 0.131463 0.146005i −0.673819 0.738897i \(-0.735347\pi\)
0.805282 + 0.592892i \(0.202014\pi\)
\(98\) 13.8002 1.39403
\(99\) 0 0
\(100\) −1.65163 −0.165163
\(101\) 8.89682 9.88092i 0.885267 0.983188i −0.114681 0.993402i \(-0.536585\pi\)
0.999948 + 0.0102141i \(0.00325131\pi\)
\(102\) 0 0
\(103\) 0.227332 + 2.16292i 0.0223997 + 0.213119i 0.999997 + 0.00263271i \(0.000838018\pi\)
−0.977597 + 0.210486i \(0.932495\pi\)
\(104\) −11.5918 + 10.4373i −1.13667 + 1.02346i
\(105\) 0 0
\(106\) −2.56167 + 5.75361i −0.248812 + 0.558840i
\(107\) −4.92945 3.58146i −0.476548 0.346232i 0.323440 0.946249i \(-0.395161\pi\)
−0.799988 + 0.600016i \(0.795161\pi\)
\(108\) 0 0
\(109\) 8.21860i 0.787199i 0.919282 + 0.393600i \(0.128770\pi\)
−0.919282 + 0.393600i \(0.871230\pi\)
\(110\) −1.58188 + 5.79862i −0.150826 + 0.552877i
\(111\) 0 0
\(112\) 2.08999 9.83263i 0.197486 0.929097i
\(113\) 2.23354 + 5.01661i 0.210114 + 0.471923i 0.987603 0.156973i \(-0.0501736\pi\)
−0.777489 + 0.628896i \(0.783507\pi\)
\(114\) 0 0
\(115\) −4.25808 + 0.905082i −0.397068 + 0.0843994i
\(116\) −1.44217 + 4.43855i −0.133902 + 0.412109i
\(117\) 0 0
\(118\) 4.80809 6.61776i 0.442620 0.609214i
\(119\) 2.58929 + 2.33141i 0.237360 + 0.213720i
\(120\) 0 0
\(121\) 9.47614 + 5.58595i 0.861467 + 0.507813i
\(122\) 4.09364 + 2.36346i 0.370620 + 0.213978i
\(123\) 0 0
\(124\) −0.437935 + 4.16667i −0.0393277 + 0.374178i
\(125\) 6.92650 + 9.53351i 0.619525 + 0.852703i
\(126\) 0 0
\(127\) 4.26924 + 1.38716i 0.378834 + 0.123091i 0.492243 0.870458i \(-0.336177\pi\)
−0.113409 + 0.993548i \(0.536177\pi\)
\(128\) −2.92721 1.30328i −0.258731 0.115195i
\(129\) 0 0
\(130\) 8.98119 + 1.90901i 0.787702 + 0.167431i
\(131\) −3.28173 + 5.68413i −0.286726 + 0.496625i −0.973026 0.230694i \(-0.925900\pi\)
0.686300 + 0.727319i \(0.259234\pi\)
\(132\) 0 0
\(133\) 8.10468 + 14.0377i 0.702765 + 1.21722i
\(134\) −3.76875 11.5990i −0.325570 1.00200i
\(135\) 0 0
\(136\) 2.00014 1.45319i 0.171511 0.124610i
\(137\) 1.74887 + 8.22778i 0.149416 + 0.702947i 0.987527 + 0.157448i \(0.0503265\pi\)
−0.838111 + 0.545499i \(0.816340\pi\)
\(138\) 0 0
\(139\) 2.03763 0.214164i 0.172830 0.0181651i −0.0177183 0.999843i \(-0.505640\pi\)
0.190548 + 0.981678i \(0.438974\pi\)
\(140\) 3.92711 1.74846i 0.331901 0.147772i
\(141\) 0 0
\(142\) 4.46837 2.57982i 0.374978 0.216493i
\(143\) 7.69645 14.9377i 0.643610 1.24916i
\(144\) 0 0
\(145\) 10.8026 3.50999i 0.897111 0.291489i
\(146\) 2.85369 + 0.299935i 0.236173 + 0.0248228i
\(147\) 0 0
\(148\) −1.95276 2.16876i −0.160516 0.178271i
\(149\) 1.05580 + 1.17258i 0.0864944 + 0.0960618i 0.784838 0.619701i \(-0.212746\pi\)
−0.698344 + 0.715762i \(0.746079\pi\)
\(150\) 0 0
\(151\) −10.0273 1.05391i −0.816011 0.0857663i −0.312679 0.949859i \(-0.601226\pi\)
−0.503333 + 0.864093i \(0.667893\pi\)
\(152\) 10.9388 3.55422i 0.887250 0.288285i
\(153\) 0 0
\(154\) 2.55207 + 16.5987i 0.205652 + 1.33756i
\(155\) 8.83069 5.09840i 0.709298 0.409514i
\(156\) 0 0
\(157\) 20.3184 9.04635i 1.62159 0.721977i 0.623386 0.781915i \(-0.285757\pi\)
0.998202 + 0.0599372i \(0.0190901\pi\)
\(158\) −0.743420 + 0.0781366i −0.0591433 + 0.00621621i
\(159\) 0 0
\(160\) −1.11499 5.24562i −0.0881477 0.414702i
\(161\) −9.84017 + 7.14930i −0.775514 + 0.563444i
\(162\) 0 0
\(163\) 0.588498 + 1.81121i 0.0460947 + 0.141865i 0.971455 0.237224i \(-0.0762375\pi\)
−0.925360 + 0.379089i \(0.876237\pi\)
\(164\) 0.105787 + 0.183229i 0.00826059 + 0.0143078i
\(165\) 0 0
\(166\) 1.08602 1.88105i 0.0842917 0.145998i
\(167\) −14.7609 3.13752i −1.14223 0.242789i −0.402323 0.915498i \(-0.631797\pi\)
−0.739907 + 0.672709i \(0.765131\pi\)
\(168\) 0 0
\(169\) −11.5747 5.15340i −0.890363 0.396415i
\(170\) −1.38408 0.449715i −0.106154 0.0344916i
\(171\) 0 0
\(172\) −0.419082 0.576817i −0.0319547 0.0439819i
\(173\) −2.29437 + 21.8295i −0.174438 + 1.65967i 0.460915 + 0.887444i \(0.347521\pi\)
−0.635353 + 0.772222i \(0.719145\pi\)
\(174\) 0 0
\(175\) 9.72675 + 5.61574i 0.735273 + 0.424510i
\(176\) 7.67169 + 0.436859i 0.578275 + 0.0329295i
\(177\) 0 0
\(178\) −4.76282 4.28846i −0.356988 0.321434i
\(179\) −15.1400 + 20.8384i −1.13162 + 1.55754i −0.346654 + 0.937993i \(0.612682\pi\)
−0.784962 + 0.619544i \(0.787318\pi\)
\(180\) 0 0
\(181\) 3.96028 12.1885i 0.294365 0.905964i −0.689068 0.724696i \(-0.741980\pi\)
0.983434 0.181267i \(-0.0580199\pi\)
\(182\) 25.0940 5.33389i 1.86009 0.395374i
\(183\) 0 0
\(184\) 3.51038 + 7.88444i 0.258789 + 0.581249i
\(185\) −1.47675 + 6.94757i −0.108573 + 0.510795i
\(186\) 0 0
\(187\) −1.46068 + 2.22713i −0.106815 + 0.162864i
\(188\) 3.61036i 0.263313i
\(189\) 0 0
\(190\) −5.47736 3.97953i −0.397369 0.288706i
\(191\) 0.394348 0.885721i 0.0285340 0.0640885i −0.898716 0.438531i \(-0.855499\pi\)
0.927250 + 0.374442i \(0.122166\pi\)
\(192\) 0 0
\(193\) −16.2667 + 14.6466i −1.17090 + 1.05428i −0.173313 + 0.984867i \(0.555447\pi\)
−0.997588 + 0.0694165i \(0.977886\pi\)
\(194\) 0.236046 + 2.24583i 0.0169472 + 0.161241i
\(195\) 0 0
\(196\) 5.04842 5.60684i 0.360602 0.400489i
\(197\) 0.389682 0.0277637 0.0138818 0.999904i \(-0.495581\pi\)
0.0138818 + 0.999904i \(0.495581\pi\)
\(198\) 0 0
\(199\) −18.7233 −1.32726 −0.663630 0.748061i \(-0.730985\pi\)
−0.663630 + 0.748061i \(0.730985\pi\)
\(200\) 5.33266 5.92252i 0.377076 0.418785i
\(201\) 0 0
\(202\) 1.62197 + 15.4320i 0.114121 + 1.08579i
\(203\) 23.5848 21.2359i 1.65533 1.49047i
\(204\) 0 0
\(205\) 0.209443 0.470416i 0.0146281 0.0328553i
\(206\) −2.05337 1.49186i −0.143065 0.103943i
\(207\) 0 0
\(208\) 11.7385i 0.813917i
\(209\) −9.66452 + 7.75406i −0.668509 + 0.536360i
\(210\) 0 0
\(211\) 5.03305 23.6787i 0.346490 1.63011i −0.367552 0.930003i \(-0.619804\pi\)
0.714042 0.700103i \(-0.246863\pi\)
\(212\) 1.40050 + 3.14558i 0.0961868 + 0.216039i
\(213\) 0 0
\(214\) 6.95550 1.47844i 0.475468 0.101064i
\(215\) −0.536231 + 1.65035i −0.0365706 + 0.112553i
\(216\) 0 0
\(217\) 16.7463 23.0493i 1.13681 1.56469i
\(218\) −7.12779 6.41789i −0.482755 0.434674i
\(219\) 0 0
\(220\) 1.77722 + 2.76396i 0.119820 + 0.186346i
\(221\) 3.52358 + 2.03434i 0.237022 + 0.136844i
\(222\) 0 0
\(223\) −2.64226 + 25.1394i −0.176939 + 1.68346i 0.441215 + 0.897402i \(0.354548\pi\)
−0.618153 + 0.786058i \(0.712119\pi\)
\(224\) −8.80737 12.1223i −0.588467 0.809956i
\(225\) 0 0
\(226\) −6.09495 1.98037i −0.405430 0.131732i
\(227\) −13.9031 6.19004i −0.922778 0.410847i −0.110339 0.993894i \(-0.535194\pi\)
−0.812439 + 0.583047i \(0.801860\pi\)
\(228\) 0 0
\(229\) −7.66099 1.62839i −0.506252 0.107607i −0.0522967 0.998632i \(-0.516654\pi\)
−0.453956 + 0.891024i \(0.649988\pi\)
\(230\) 2.54017 4.39970i 0.167494 0.290108i
\(231\) 0 0
\(232\) −11.2597 19.5023i −0.739232 1.28039i
\(233\) 2.52277 + 7.76427i 0.165272 + 0.508655i 0.999056 0.0434357i \(-0.0138304\pi\)
−0.833784 + 0.552090i \(0.813830\pi\)
\(234\) 0 0
\(235\) −7.10882 + 5.16486i −0.463728 + 0.336918i
\(236\) −0.929805 4.37439i −0.0605252 0.284749i
\(237\) 0 0
\(238\) −4.04394 + 0.425035i −0.262130 + 0.0275510i
\(239\) −17.0647 + 7.59768i −1.10382 + 0.491453i −0.876030 0.482257i \(-0.839817\pi\)
−0.227792 + 0.973710i \(0.573151\pi\)
\(240\) 0 0
\(241\) 1.06399 0.614295i 0.0685377 0.0395702i −0.465340 0.885132i \(-0.654068\pi\)
0.533877 + 0.845562i \(0.320734\pi\)
\(242\) −12.2444 + 3.85636i −0.787103 + 0.247896i
\(243\) 0 0
\(244\) 2.45779 0.798584i 0.157344 0.0511241i
\(245\) −18.2620 1.91941i −1.16672 0.122627i
\(246\) 0 0
\(247\) 12.6655 + 14.0665i 0.805887 + 0.895029i
\(248\) −13.5272 15.0234i −0.858975 0.953989i
\(249\) 0 0
\(250\) −13.6771 1.43752i −0.865014 0.0909166i
\(251\) 24.9635 8.11113i 1.57568 0.511970i 0.614742 0.788728i \(-0.289260\pi\)
0.960940 + 0.276759i \(0.0892602\pi\)
\(252\) 0 0
\(253\) −6.54463 6.60410i −0.411457 0.415196i
\(254\) −4.53689 + 2.61937i −0.284670 + 0.164354i
\(255\) 0 0
\(256\) −12.4139 + 5.52701i −0.775866 + 0.345438i
\(257\) 29.8019 3.13231i 1.85899 0.195388i 0.892320 0.451403i \(-0.149076\pi\)
0.966673 + 0.256015i \(0.0824097\pi\)
\(258\) 0 0
\(259\) 4.12613 + 19.4119i 0.256385 + 1.20620i
\(260\) 4.06113 2.95058i 0.251860 0.182987i
\(261\) 0 0
\(262\) −2.36700 7.28489i −0.146234 0.450062i
\(263\) 1.05394 + 1.82548i 0.0649888 + 0.112564i 0.896689 0.442661i \(-0.145966\pi\)
−0.831700 + 0.555225i \(0.812632\pi\)
\(264\) 0 0
\(265\) 4.19015 7.25755i 0.257399 0.445828i
\(266\) −18.5035 3.93304i −1.13452 0.241150i
\(267\) 0 0
\(268\) −6.09122 2.71199i −0.372081 0.165661i
\(269\) −26.8186 8.71391i −1.63516 0.531296i −0.659712 0.751519i \(-0.729322\pi\)
−0.975450 + 0.220222i \(0.929322\pi\)
\(270\) 0 0
\(271\) −6.37949 8.78061i −0.387526 0.533384i 0.570032 0.821622i \(-0.306931\pi\)
−0.957559 + 0.288238i \(0.906931\pi\)
\(272\) −0.194479 + 1.85034i −0.0117920 + 0.112193i
\(273\) 0 0
\(274\) −8.50144 4.90831i −0.513590 0.296522i
\(275\) −3.11299 + 8.00126i −0.187720 + 0.482494i
\(276\) 0 0
\(277\) 9.54318 + 8.59272i 0.573394 + 0.516287i 0.904028 0.427472i \(-0.140596\pi\)
−0.330634 + 0.943759i \(0.607263\pi\)
\(278\) −1.40544 + 1.93443i −0.0842929 + 0.116019i
\(279\) 0 0
\(280\) −6.40982 + 19.7274i −0.383060 + 1.17894i
\(281\) 10.3811 2.20656i 0.619283 0.131633i 0.112422 0.993661i \(-0.464139\pi\)
0.506861 + 0.862028i \(0.330806\pi\)
\(282\) 0 0
\(283\) −9.05356 20.3346i −0.538179 1.20877i −0.954133 0.299383i \(-0.903219\pi\)
0.415954 0.909385i \(-0.363448\pi\)
\(284\) 0.586486 2.75920i 0.0348015 0.163728i
\(285\) 0 0
\(286\) 6.94497 + 18.3398i 0.410665 + 1.08445i
\(287\) 1.43876i 0.0849272i
\(288\) 0 0
\(289\) 13.2316 + 9.61330i 0.778328 + 0.565488i
\(290\) −5.39163 + 12.1098i −0.316608 + 0.711112i
\(291\) 0 0
\(292\) 1.16580 1.04969i 0.0682235 0.0614287i
\(293\) −2.30766 21.9559i −0.134815 1.28268i −0.827512 0.561448i \(-0.810244\pi\)
0.692697 0.721229i \(-0.256422\pi\)
\(294\) 0 0
\(295\) −7.28305 + 8.08865i −0.424036 + 0.470939i
\(296\) 14.0818 0.818491
\(297\) 0 0
\(298\) −1.84142 −0.106671
\(299\) −9.50390 + 10.5551i −0.549625 + 0.610420i
\(300\) 0 0
\(301\) 0.506803 + 4.82191i 0.0292117 + 0.277930i
\(302\) 8.74434 7.87344i 0.503180 0.453066i
\(303\) 0 0
\(304\) −3.52054 + 7.90726i −0.201917 + 0.453512i
\(305\) −5.08844 3.69697i −0.291363 0.211688i
\(306\) 0 0
\(307\) 12.8256i 0.731997i 0.930616 + 0.365998i \(0.119272\pi\)
−0.930616 + 0.365998i \(0.880728\pi\)
\(308\) 7.67744 + 5.03530i 0.437463 + 0.286913i
\(309\) 0 0
\(310\) −2.47415 + 11.6400i −0.140522 + 0.661106i
\(311\) −2.73879 6.15143i −0.155303 0.348816i 0.819091 0.573663i \(-0.194478\pi\)
−0.974394 + 0.224848i \(0.927812\pi\)
\(312\) 0 0
\(313\) 8.66114 1.84098i 0.489557 0.104059i 0.0434821 0.999054i \(-0.486155\pi\)
0.446075 + 0.894996i \(0.352822\pi\)
\(314\) −8.02095 + 24.6859i −0.452648 + 1.39311i
\(315\) 0 0
\(316\) −0.240214 + 0.330626i −0.0135131 + 0.0185992i
\(317\) −12.7373 11.4687i −0.715399 0.644148i 0.228819 0.973469i \(-0.426514\pi\)
−0.944218 + 0.329321i \(0.893180\pi\)
\(318\) 0 0
\(319\) 18.7842 + 15.3523i 1.05171 + 0.859565i
\(320\) 11.6516 + 6.72703i 0.651342 + 0.376052i
\(321\) 0 0
\(322\) 1.48376 14.1170i 0.0826865 0.786710i
\(323\) −1.76342 2.42714i −0.0981194 0.135050i
\(324\) 0 0
\(325\) 12.4735 + 4.05290i 0.691908 + 0.224814i
\(326\) −2.03037 0.903981i −0.112452 0.0500669i
\(327\) 0 0
\(328\) −0.998592 0.212257i −0.0551380 0.0117199i
\(329\) −12.2757 + 21.2621i −0.676780 + 1.17222i
\(330\) 0 0
\(331\) 8.18032 + 14.1687i 0.449631 + 0.778783i 0.998362 0.0572156i \(-0.0182222\pi\)
−0.548731 + 0.835999i \(0.684889\pi\)
\(332\) −0.366953 1.12937i −0.0201392 0.0619820i
\(333\) 0 0
\(334\) 14.2478 10.3516i 0.779606 0.566417i
\(335\) 3.37398 + 15.8733i 0.184340 + 0.867252i
\(336\) 0 0
\(337\) −13.4563 + 1.41431i −0.733012 + 0.0770426i −0.463677 0.886004i \(-0.653470\pi\)
−0.269334 + 0.963047i \(0.586804\pi\)
\(338\) 13.5081 6.01419i 0.734743 0.327129i
\(339\) 0 0
\(340\) −0.689041 + 0.397818i −0.0373685 + 0.0215747i
\(341\) 19.3599 + 9.97491i 1.04840 + 0.540172i
\(342\) 0 0
\(343\) −19.9101 + 6.46918i −1.07504 + 0.349303i
\(344\) 3.42149 + 0.359613i 0.184474 + 0.0193890i
\(345\) 0 0
\(346\) −17.1405 19.0365i −0.921480 1.02341i
\(347\) −12.8446 14.2653i −0.689533 0.765804i 0.292140 0.956375i \(-0.405633\pi\)
−0.981673 + 0.190571i \(0.938966\pi\)
\(348\) 0 0
\(349\) −9.72281 1.02191i −0.520450 0.0547015i −0.159338 0.987224i \(-0.550936\pi\)
−0.361112 + 0.932522i \(0.617603\pi\)
\(350\) −12.4660 + 4.05045i −0.666335 + 0.216506i
\(351\) 0 0
\(352\) 8.13574 8.06247i 0.433636 0.429731i
\(353\) 14.0240 8.09678i 0.746424 0.430948i −0.0779763 0.996955i \(-0.524846\pi\)
0.824400 + 0.566007i \(0.191513\pi\)
\(354\) 0 0
\(355\) −6.27188 + 2.79242i −0.332877 + 0.148206i
\(356\) −3.48469 + 0.366256i −0.184688 + 0.0194115i
\(357\) 0 0
\(358\) −6.24985 29.4032i −0.330315 1.55401i
\(359\) 9.80679 7.12505i 0.517583 0.376046i −0.298110 0.954532i \(-0.596356\pi\)
0.815692 + 0.578486i \(0.196356\pi\)
\(360\) 0 0
\(361\) 1.55833 + 4.79605i 0.0820175 + 0.252424i
\(362\) 7.47820 + 12.9526i 0.393045 + 0.680775i
\(363\) 0 0
\(364\) 7.01285 12.1466i 0.367573 0.636655i
\(365\) −3.73461 0.793817i −0.195479 0.0415503i
\(366\) 0 0
\(367\) −0.799295 0.355869i −0.0417228 0.0185762i 0.385769 0.922595i \(-0.373936\pi\)
−0.427492 + 0.904019i \(0.640603\pi\)
\(368\) −6.17705 2.00705i −0.322001 0.104624i
\(369\) 0 0
\(370\) −4.87226 6.70609i −0.253297 0.348633i
\(371\) 2.44754 23.2868i 0.127070 1.20899i
\(372\) 0 0
\(373\) −8.39907 4.84920i −0.434887 0.251082i 0.266539 0.963824i \(-0.414120\pi\)
−0.701427 + 0.712742i \(0.747453\pi\)
\(374\) −0.790893 3.00597i −0.0408961 0.155435i
\(375\) 0 0
\(376\) 12.9463 + 11.6569i 0.667653 + 0.601158i
\(377\) 21.7833 29.9822i 1.12190 1.54416i
\(378\) 0 0
\(379\) −6.50606 + 20.0236i −0.334194 + 1.02854i 0.632924 + 0.774214i \(0.281855\pi\)
−0.967118 + 0.254329i \(0.918145\pi\)
\(380\) −3.62057 + 0.769577i −0.185732 + 0.0394785i
\(381\) 0 0
\(382\) 0.460218 + 1.03367i 0.0235468 + 0.0528869i
\(383\) −5.23594 + 24.6332i −0.267544 + 1.25870i 0.615023 + 0.788509i \(0.289147\pi\)
−0.882567 + 0.470187i \(0.844187\pi\)
\(384\) 0 0
\(385\) −1.06855 22.3203i −0.0544582 1.13755i
\(386\) 25.5452i 1.30021i
\(387\) 0 0
\(388\) 0.998804 + 0.725673i 0.0507066 + 0.0368405i
\(389\) 13.7990 30.9930i 0.699636 1.57141i −0.116267 0.993218i \(-0.537093\pi\)
0.815903 0.578189i \(-0.196241\pi\)
\(390\) 0 0
\(391\) 1.67298 1.50636i 0.0846061 0.0761797i
\(392\) 3.80540 + 36.2059i 0.192202 + 1.82868i
\(393\) 0 0
\(394\) −0.304302 + 0.337961i −0.0153305 + 0.0170262i
\(395\) 0.994646 0.0500461
\(396\) 0 0
\(397\) 9.40670 0.472109 0.236054 0.971740i \(-0.424146\pi\)
0.236054 + 0.971740i \(0.424146\pi\)
\(398\) 14.6210 16.2383i 0.732885 0.813951i
\(399\) 0 0
\(400\) 0.626905 + 5.96460i 0.0313453 + 0.298230i
\(401\) −15.3093 + 13.7845i −0.764508 + 0.688366i −0.956078 0.293113i \(-0.905309\pi\)
0.191570 + 0.981479i \(0.438642\pi\)
\(402\) 0 0
\(403\) 13.5319 30.3932i 0.674073 1.51399i
\(404\) 6.86317 + 4.98638i 0.341455 + 0.248082i
\(405\) 0 0
\(406\) 37.0376i 1.83814i
\(407\) −14.1871 + 5.37241i −0.703228 + 0.266301i
\(408\) 0 0
\(409\) −3.90107 + 18.3531i −0.192896 + 0.907503i 0.770087 + 0.637939i \(0.220213\pi\)
−0.962983 + 0.269564i \(0.913120\pi\)
\(410\) 0.244427 + 0.548992i 0.0120714 + 0.0271128i
\(411\) 0 0
\(412\) −1.35729 + 0.288501i −0.0668690 + 0.0142134i
\(413\) −9.39767 + 28.9231i −0.462429 + 1.42321i
\(414\) 0 0
\(415\) −1.69878 + 2.33817i −0.0833897 + 0.114776i
\(416\) −13.0031 11.7081i −0.637530 0.574035i
\(417\) 0 0
\(418\) 0.822101 14.4369i 0.0402103 0.706133i
\(419\) 32.3807 + 18.6950i 1.58190 + 0.913310i 0.994582 + 0.103954i \(0.0331495\pi\)
0.587318 + 0.809356i \(0.300184\pi\)
\(420\) 0 0
\(421\) 2.82398 26.8684i 0.137633 1.30949i −0.679773 0.733423i \(-0.737922\pi\)
0.817405 0.576063i \(-0.195412\pi\)
\(422\) 16.6056 + 22.8557i 0.808348 + 1.11260i
\(423\) 0 0
\(424\) −15.8014 5.13420i −0.767386 0.249339i
\(425\) −1.89906 0.845517i −0.0921181 0.0410136i
\(426\) 0 0
\(427\) −17.1897 3.65377i −0.831866 0.176819i
\(428\) 1.94381 3.36678i 0.0939576 0.162739i
\(429\) 0 0
\(430\) −1.01256 1.75381i −0.0488302 0.0845764i
\(431\) 8.97519 + 27.6228i 0.432320 + 1.33054i 0.895808 + 0.444441i \(0.146597\pi\)
−0.463489 + 0.886103i \(0.653403\pi\)
\(432\) 0 0
\(433\) 16.3991 11.9146i 0.788089 0.572580i −0.119307 0.992857i \(-0.538067\pi\)
0.907396 + 0.420277i \(0.138067\pi\)
\(434\) 6.91293 + 32.5228i 0.331831 + 1.56114i
\(435\) 0 0
\(436\) −5.21501 + 0.548120i −0.249754 + 0.0262502i
\(437\) 9.56765 4.25979i 0.457683 0.203774i
\(438\) 0 0
\(439\) 24.6512 14.2324i 1.17654 0.679273i 0.221325 0.975200i \(-0.428962\pi\)
0.955211 + 0.295927i \(0.0956285\pi\)
\(440\) −15.6493 2.55122i −0.746053 0.121625i
\(441\) 0 0
\(442\) −4.51589 + 1.46730i −0.214799 + 0.0697924i
\(443\) 0.349328 + 0.0367158i 0.0165971 + 0.00174442i 0.112823 0.993615i \(-0.464011\pi\)
−0.0962263 + 0.995359i \(0.530677\pi\)
\(444\) 0 0
\(445\) 5.70624 + 6.33742i 0.270502 + 0.300423i
\(446\) −19.7394 21.9229i −0.934690 1.03808i
\(447\) 0 0
\(448\) 37.3855 + 3.92937i 1.76630 + 0.185645i
\(449\) 10.7675 3.49858i 0.508151 0.165108i −0.0437100 0.999044i \(-0.513918\pi\)
0.551861 + 0.833936i \(0.313918\pi\)
\(450\) 0 0
\(451\) 1.08703 0.167133i 0.0511864 0.00786997i
\(452\) −3.03427 + 1.75184i −0.142720 + 0.0823994i
\(453\) 0 0
\(454\) 16.2253 7.22398i 0.761493 0.339038i
\(455\) −33.9491 + 3.56819i −1.59156 + 0.167279i
\(456\) 0 0
\(457\) 1.73926 + 8.18257i 0.0813591 + 0.382764i 0.999922 0.0125110i \(-0.00398248\pi\)
−0.918563 + 0.395275i \(0.870649\pi\)
\(458\) 7.39471 5.37257i 0.345532 0.251044i
\(459\) 0 0
\(460\) −0.858291 2.64155i −0.0400180 0.123163i
\(461\) −6.38016 11.0508i −0.297153 0.514685i 0.678330 0.734757i \(-0.262704\pi\)
−0.975484 + 0.220072i \(0.929371\pi\)
\(462\) 0 0
\(463\) 11.0509 19.1407i 0.513579 0.889544i −0.486297 0.873793i \(-0.661653\pi\)
0.999876 0.0157509i \(-0.00501388\pi\)
\(464\) 16.5765 + 3.52345i 0.769546 + 0.163572i
\(465\) 0 0
\(466\) −8.70378 3.87517i −0.403195 0.179514i
\(467\) −7.72240 2.50916i −0.357350 0.116110i 0.124840 0.992177i \(-0.460158\pi\)
−0.482190 + 0.876067i \(0.660158\pi\)
\(468\) 0 0
\(469\) 26.6513 + 36.6823i 1.23064 + 1.69383i
\(470\) 1.07191 10.1985i 0.0494435 0.470423i
\(471\) 0 0
\(472\) 18.6881 + 10.7896i 0.860188 + 0.496630i
\(473\) −3.58426 + 0.943044i −0.164804 + 0.0433612i
\(474\) 0 0
\(475\) −7.18689 6.47111i −0.329757 0.296915i
\(476\) −1.30668 + 1.79849i −0.0598915 + 0.0824336i
\(477\) 0 0
\(478\) 6.73649 20.7328i 0.308120 0.948295i
\(479\) 33.6876 7.16053i 1.53923 0.327173i 0.641290 0.767298i \(-0.278399\pi\)
0.897936 + 0.440125i \(0.145066\pi\)
\(480\) 0 0
\(481\) 9.42591 + 21.1709i 0.429784 + 0.965312i
\(482\) −0.298105 + 1.40247i −0.0135783 + 0.0638809i
\(483\) 0 0
\(484\) −2.91251 + 6.38551i −0.132387 + 0.290250i
\(485\) 3.00477i 0.136440i
\(486\) 0 0
\(487\) −13.5062 9.81282i −0.612024 0.444661i 0.238103 0.971240i \(-0.423475\pi\)
−0.850126 + 0.526579i \(0.823475\pi\)
\(488\) −5.07191 + 11.3917i −0.229595 + 0.515678i
\(489\) 0 0
\(490\) 15.9254 14.3393i 0.719437 0.647784i
\(491\) −1.79489 17.0772i −0.0810023 0.770685i −0.957335 0.288979i \(-0.906684\pi\)
0.876333 0.481706i \(-0.159983\pi\)
\(492\) 0 0
\(493\) −3.93045 + 4.36520i −0.177018 + 0.196599i
\(494\) −22.0900 −0.993875
\(495\) 0 0
\(496\) 15.2135 0.683107
\(497\) −12.8355 + 14.2553i −0.575753 + 0.639438i
\(498\) 0 0
\(499\) −3.56755 33.9430i −0.159706 1.51950i −0.721612 0.692297i \(-0.756599\pi\)
0.561907 0.827201i \(-0.310068\pi\)
\(500\) −5.58743 + 5.03094i −0.249877 + 0.224990i
\(501\) 0 0
\(502\) −12.4594 + 27.9842i −0.556088 + 1.24899i
\(503\) −1.17651 0.854786i −0.0524581 0.0381130i 0.561247 0.827648i \(-0.310322\pi\)
−0.613705 + 0.789535i \(0.710322\pi\)
\(504\) 0 0
\(505\) 20.6470i 0.918778i
\(506\) 10.8383 0.518865i 0.481820 0.0230663i
\(507\) 0 0
\(508\) −0.595478 + 2.80150i −0.0264201 + 0.124297i
\(509\) 4.77795 + 10.7314i 0.211779 + 0.475663i 0.987933 0.154880i \(-0.0494990\pi\)
−0.776154 + 0.630543i \(0.782832\pi\)
\(510\) 0 0
\(511\) −10.4347 + 2.21797i −0.461605 + 0.0981172i
\(512\) 6.88085 21.1771i 0.304093 0.935903i
\(513\) 0 0
\(514\) −20.5557 + 28.2925i −0.906672 + 1.24793i
\(515\) 2.50976 + 2.25980i 0.110593 + 0.0995785i
\(516\) 0 0
\(517\) −17.4903 6.80481i −0.769222 0.299275i
\(518\) −20.0575 11.5802i −0.881278 0.508806i
\(519\) 0 0
\(520\) −2.53189 + 24.0893i −0.111031 + 1.05638i
\(521\) −6.70232 9.22495i −0.293634 0.404152i 0.636556 0.771230i \(-0.280358\pi\)
−0.930190 + 0.367078i \(0.880358\pi\)
\(522\) 0 0
\(523\) −1.48831 0.483583i −0.0650794 0.0211456i 0.276296 0.961072i \(-0.410893\pi\)
−0.341376 + 0.939927i \(0.610893\pi\)
\(524\) −3.82566 1.70329i −0.167125 0.0744087i
\(525\) 0 0
\(526\) −2.40621 0.511456i −0.104916 0.0223006i
\(527\) −2.63658 + 4.56670i −0.114851 + 0.198928i
\(528\) 0 0
\(529\) −7.57062 13.1127i −0.329157 0.570117i
\(530\) 3.02221 + 9.30141i 0.131276 + 0.404027i
\(531\) 0 0
\(532\) −8.36693 + 6.07893i −0.362753 + 0.263555i
\(533\) −0.349311 1.64338i −0.0151304 0.0711827i
\(534\) 0 0
\(535\) −9.40995 + 0.989026i −0.406828 + 0.0427593i
\(536\) 29.3917 13.0860i 1.26953 0.565231i
\(537\) 0 0
\(538\) 28.5000 16.4545i 1.22872 0.709402i
\(539\) −17.6469 35.0247i −0.760105 1.50862i
\(540\) 0 0
\(541\) −4.01286 + 1.30386i −0.172527 + 0.0560573i −0.394007 0.919108i \(-0.628911\pi\)
0.221480 + 0.975165i \(0.428911\pi\)
\(542\) 12.5969 + 1.32399i 0.541085 + 0.0568703i
\(543\) 0 0
\(544\) 1.85571 + 2.06098i 0.0795630 + 0.0883636i
\(545\) 8.53967 + 9.48426i 0.365799 + 0.406261i
\(546\) 0 0
\(547\) −13.6940 1.43930i −0.585515 0.0615401i −0.192860 0.981226i \(-0.561776\pi\)
−0.392654 + 0.919686i \(0.628443\pi\)
\(548\) −5.10420 + 1.65845i −0.218041 + 0.0708457i
\(549\) 0 0
\(550\) −4.50837 8.94799i −0.192237 0.381544i
\(551\) −23.6657 + 13.6634i −1.00819 + 0.582081i
\(552\) 0 0
\(553\) 2.53883 1.13036i 0.107962 0.0480679i
\(554\) −14.9045 + 1.56653i −0.633232 + 0.0665553i
\(555\) 0 0
\(556\) 0.271790 + 1.27867i 0.0115265 + 0.0542277i
\(557\) 5.50700 4.00107i 0.233339 0.169531i −0.464971 0.885326i \(-0.653935\pi\)
0.698311 + 0.715795i \(0.253935\pi\)
\(558\) 0 0
\(559\) 1.74958 + 5.38465i 0.0739993 + 0.227746i
\(560\) −7.80490 13.5185i −0.329817 0.571261i
\(561\) 0 0
\(562\) −6.19286 + 10.7263i −0.261230 + 0.452463i
\(563\) 29.9874 + 6.37403i 1.26382 + 0.268633i 0.790612 0.612317i \(-0.209763\pi\)
0.473208 + 0.880951i \(0.343096\pi\)
\(564\) 0 0
\(565\) 7.79009 + 3.46837i 0.327732 + 0.145916i
\(566\) 24.7056 + 8.02735i 1.03846 + 0.337415i
\(567\) 0 0
\(568\) 8.00051 + 11.0118i 0.335694 + 0.462043i
\(569\) −3.94586 + 37.5423i −0.165419 + 1.57386i 0.525417 + 0.850845i \(0.323909\pi\)
−0.690836 + 0.723012i \(0.742757\pi\)
\(570\) 0 0
\(571\) −26.9194 15.5419i −1.12654 0.650409i −0.183479 0.983024i \(-0.558736\pi\)
−0.943063 + 0.332615i \(0.892069\pi\)
\(572\) 9.99185 + 3.88745i 0.417780 + 0.162543i
\(573\) 0 0
\(574\) 1.24780 + 1.12352i 0.0520821 + 0.0468949i
\(575\) 4.26545 5.87089i 0.177882 0.244833i
\(576\) 0 0
\(577\) 3.06623 9.43689i 0.127649 0.392863i −0.866726 0.498785i \(-0.833780\pi\)
0.994374 + 0.105923i \(0.0337796\pi\)
\(578\) −18.6699 + 3.96840i −0.776565 + 0.165064i
\(579\) 0 0
\(580\) 2.94768 + 6.62059i 0.122396 + 0.274905i
\(581\) −1.67893 + 7.89874i −0.0696537 + 0.327695i
\(582\) 0 0
\(583\) 17.8783 0.855895i 0.740444 0.0354476i
\(584\) 7.56960i 0.313232i
\(585\) 0 0
\(586\) 20.8438 + 15.1439i 0.861051 + 0.625590i
\(587\) 0.676425 1.51928i 0.0279191 0.0627072i −0.899048 0.437851i \(-0.855740\pi\)
0.926967 + 0.375143i \(0.122407\pi\)
\(588\) 0 0
\(589\) −18.2307 + 16.4150i −0.751183 + 0.676368i
\(590\) −1.32776 12.6328i −0.0546631 0.520085i
\(591\) 0 0
\(592\) −7.09095 + 7.87530i −0.291436 + 0.323673i
\(593\) 16.8012 0.689945 0.344972 0.938613i \(-0.387888\pi\)
0.344972 + 0.938613i \(0.387888\pi\)
\(594\) 0 0
\(595\) 5.41053 0.221810
\(596\) −0.673634 + 0.748146i −0.0275931 + 0.0306453i
\(597\) 0 0
\(598\) −1.73264 16.4850i −0.0708530 0.674121i
\(599\) 31.7328 28.5723i 1.29657 1.16743i 0.321159 0.947025i \(-0.395928\pi\)
0.975408 0.220408i \(-0.0707389\pi\)
\(600\) 0 0
\(601\) 8.37933 18.8203i 0.341800 0.767696i −0.658091 0.752938i \(-0.728636\pi\)
0.999891 0.0147573i \(-0.00469755\pi\)
\(602\) −4.57769 3.32588i −0.186573 0.135553i
\(603\) 0 0
\(604\) 6.43300i 0.261755i
\(605\) 16.7396 3.40015i 0.680563 0.138236i
\(606\) 0 0
\(607\) −7.64988 + 35.9899i −0.310499 + 1.46078i 0.495366 + 0.868684i \(0.335034\pi\)
−0.805865 + 0.592099i \(0.798299\pi\)
\(608\) 5.24773 + 11.7866i 0.212824 + 0.478009i
\(609\) 0 0
\(610\) 7.17984 1.52612i 0.290703 0.0617909i
\(611\) −8.85939 + 27.2664i −0.358413 + 1.10308i
\(612\) 0 0
\(613\) −23.1926 + 31.9219i −0.936741 + 1.28931i 0.0204297 + 0.999791i \(0.493497\pi\)
−0.957171 + 0.289523i \(0.906503\pi\)
\(614\) −11.1233 10.0155i −0.448901 0.404193i
\(615\) 0 0
\(616\) −42.8443 + 11.2726i −1.72625 + 0.454188i
\(617\) −14.2499 8.22721i −0.573681 0.331215i 0.184937 0.982750i \(-0.440792\pi\)
−0.758618 + 0.651535i \(0.774125\pi\)
\(618\) 0 0
\(619\) 1.57033 14.9407i 0.0631171 0.600519i −0.916554 0.399910i \(-0.869041\pi\)
0.979671 0.200609i \(-0.0642920\pi\)
\(620\) 3.82407 + 5.26338i 0.153578 + 0.211382i
\(621\) 0 0
\(622\) 7.47370 + 2.42835i 0.299668 + 0.0973681i
\(623\) 21.7673 + 9.69143i 0.872089 + 0.388279i
\(624\) 0 0
\(625\) 5.23883 + 1.11355i 0.209553 + 0.0445419i
\(626\) −5.16683 + 8.94921i −0.206508 + 0.357683i
\(627\) 0 0
\(628\) 7.09534 + 12.2895i 0.283135 + 0.490404i
\(629\) −1.13506 3.49335i −0.0452577 0.139289i
\(630\) 0 0
\(631\) −4.93444 + 3.58508i −0.196437 + 0.142720i −0.681656 0.731673i \(-0.738740\pi\)
0.485219 + 0.874393i \(0.338740\pi\)
\(632\) −0.409995 1.92888i −0.0163087 0.0767266i
\(633\) 0 0
\(634\) 19.8931 2.09085i 0.790056 0.0830382i
\(635\) 6.36805 2.83524i 0.252708 0.112513i
\(636\) 0 0
\(637\) −51.8855 + 29.9561i −2.05578 + 1.18690i
\(638\) −27.9832 + 4.30246i −1.10787 + 0.170336i
\(639\) 0 0
\(640\) −4.73219 + 1.53758i −0.187056 + 0.0607783i
\(641\) 27.9131 + 2.93378i 1.10250 + 0.115877i 0.638252 0.769828i \(-0.279658\pi\)
0.464248 + 0.885705i \(0.346325\pi\)
\(642\) 0 0
\(643\) 3.29636 + 3.66098i 0.129996 + 0.144375i 0.804628 0.593779i \(-0.202365\pi\)
−0.674633 + 0.738154i \(0.735698\pi\)
\(644\) −5.19276 5.76715i −0.204624 0.227257i
\(645\) 0 0
\(646\) 3.48205 + 0.365978i 0.137000 + 0.0143992i
\(647\) −27.9178 + 9.07106i −1.09756 + 0.356620i −0.801165 0.598444i \(-0.795786\pi\)
−0.296399 + 0.955064i \(0.595786\pi\)
\(648\) 0 0
\(649\) −22.9441 3.74044i −0.900634 0.146825i
\(650\) −13.2555 + 7.65309i −0.519925 + 0.300179i
\(651\) 0 0
\(652\) −1.11003 + 0.494218i −0.0434722 + 0.0193551i
\(653\) −21.2908 + 2.23775i −0.833172 + 0.0875700i −0.511502 0.859282i \(-0.670911\pi\)
−0.321670 + 0.946852i \(0.604244\pi\)
\(654\) 0 0
\(655\) 2.11907 + 9.96942i 0.0827987 + 0.389537i
\(656\) 0.621549 0.451582i 0.0242674 0.0176313i
\(657\) 0 0
\(658\) −8.85404 27.2499i −0.345166 1.06231i
\(659\) −17.1996 29.7905i −0.670000 1.16047i −0.977904 0.209056i \(-0.932961\pi\)
0.307904 0.951418i \(-0.400373\pi\)
\(660\) 0 0
\(661\) −3.94192 + 6.82760i −0.153323 + 0.265563i −0.932447 0.361307i \(-0.882331\pi\)
0.779124 + 0.626870i \(0.215664\pi\)
\(662\) −18.6762 3.96974i −0.725870 0.154288i
\(663\) 0 0
\(664\) 5.23455 + 2.33057i 0.203140 + 0.0904437i
\(665\) 23.9389 + 7.77822i 0.928311 + 0.301626i
\(666\) 0 0
\(667\) −12.0528 16.5892i −0.466686 0.642338i
\(668\) 1.00643 9.57557i 0.0389401 0.370490i
\(669\) 0 0
\(670\) −16.4013 9.46928i −0.633636 0.365830i
\(671\) 0.763728 13.4118i 0.0294834 0.517759i
\(672\) 0 0
\(673\) −37.7770 34.0146i −1.45620 1.31117i −0.862065 0.506799i \(-0.830829\pi\)
−0.594132 0.804367i \(-0.702505\pi\)
\(674\) 9.28140 12.7748i 0.357506 0.492065i
\(675\) 0 0
\(676\) 2.49808 7.68829i 0.0960798 0.295703i
\(677\) −23.0560 + 4.90071i −0.886116 + 0.188350i −0.628418 0.777876i \(-0.716297\pi\)
−0.257698 + 0.966226i \(0.582964\pi\)
\(678\) 0 0
\(679\) −3.41476 7.66968i −0.131047 0.294335i
\(680\) 0.798204 3.75526i 0.0306097 0.144008i
\(681\) 0 0
\(682\) −23.7691 + 9.00096i −0.910165 + 0.344665i
\(683\) 14.3587i 0.549419i −0.961527 0.274709i \(-0.911418\pi\)
0.961527 0.274709i \(-0.0885816\pi\)
\(684\) 0 0
\(685\) 10.5674 + 7.67766i 0.403760 + 0.293348i
\(686\) 9.93718 22.3193i 0.379403 0.852154i
\(687\) 0 0
\(688\) −1.92402 + 1.73239i −0.0733524 + 0.0660468i
\(689\) −2.85809 27.1929i −0.108884 1.03597i
\(690\) 0 0
\(691\) 7.90539 8.77983i 0.300735 0.334000i −0.573770 0.819017i \(-0.694520\pi\)
0.874505 + 0.485016i \(0.161186\pi\)
\(692\) −14.0047 −0.532377
\(693\) 0 0
\(694\) 22.4023 0.850379
\(695\) 2.12890 2.36438i 0.0807536 0.0896860i
\(696\) 0 0
\(697\) 0.0278352 + 0.264834i 0.00105433 + 0.0100313i
\(698\) 8.47880 7.63435i 0.320927 0.288964i
\(699\) 0 0
\(700\) −2.91470 + 6.54652i −0.110165 + 0.247435i
\(701\) −35.2967 25.6445i −1.33314 0.968581i −0.999667 0.0258206i \(-0.991780\pi\)
−0.333471 0.942760i \(-0.608220\pi\)
\(702\) 0 0
\(703\) 17.0881i 0.644490i
\(704\) 1.37409 + 28.7025i 0.0517879 + 1.08177i
\(705\) 0 0
\(706\) −3.92920 + 18.4855i −0.147878 + 0.695709i
\(707\) −23.4642 52.7014i −0.882460 1.98204i
\(708\) 0 0
\(709\) 36.0769 7.66839i 1.35490 0.287992i 0.527475 0.849571i \(-0.323139\pi\)
0.827424 + 0.561578i \(0.189806\pi\)
\(710\) 2.47590 7.62004i 0.0929189 0.285975i
\(711\) 0 0
\(712\) 9.93777 13.6782i 0.372434 0.512611i
\(713\) −13.6799 12.3174i −0.512316 0.461291i
\(714\) 0 0
\(715\) −6.63958 25.2353i −0.248306 0.943745i
\(716\) −14.2325 8.21713i −0.531893 0.307088i
\(717\) 0 0
\(718\) −1.47872 + 14.0691i −0.0551855 + 0.525055i
\(719\) −0.103196 0.142037i −0.00384856 0.00529709i 0.807088 0.590431i \(-0.201042\pi\)
−0.810937 + 0.585134i \(0.801042\pi\)
\(720\) 0 0
\(721\) 8.97429 + 2.91592i 0.334220 + 0.108595i
\(722\) −5.37640 2.39373i −0.200089 0.0890853i
\(723\) 0 0
\(724\) 7.99818 + 1.70006i 0.297250 + 0.0631824i
\(725\) −9.46741 + 16.3980i −0.351611 + 0.609008i
\(726\) 0 0
\(727\) 10.8837 + 18.8510i 0.403652 + 0.699147i 0.994164 0.107883i \(-0.0344072\pi\)
−0.590511 + 0.807029i \(0.701074\pi\)
\(728\) 20.9135 + 64.3652i 0.775107 + 2.38553i
\(729\) 0 0
\(730\) 3.60481 2.61905i 0.133420 0.0969353i
\(731\) −0.186576 0.877771i −0.00690076 0.0324655i
\(732\) 0 0
\(733\) 21.9705 2.30919i 0.811498 0.0852919i 0.310316 0.950634i \(-0.399565\pi\)
0.501183 + 0.865342i \(0.332899\pi\)
\(734\) 0.932804 0.415311i 0.0344304 0.0153294i
\(735\) 0 0
\(736\) −8.38432 + 4.84069i −0.309050 + 0.178430i
\(737\) −24.6189 + 24.3972i −0.906848 + 0.898681i
\(738\) 0 0
\(739\) 20.5897 6.69000i 0.757404 0.246096i 0.0952401 0.995454i \(-0.469638\pi\)
0.662164 + 0.749359i \(0.269638\pi\)
\(740\) −4.50698 0.473703i −0.165680 0.0174137i
\(741\) 0 0
\(742\) 18.2847 + 20.3073i 0.671254 + 0.745503i
\(743\) 18.3621 + 20.3932i 0.673640 + 0.748153i 0.978950 0.204100i \(-0.0654268\pi\)
−0.305310 + 0.952253i \(0.598760\pi\)
\(744\) 0 0
\(745\) 2.43678 + 0.256116i 0.0892768 + 0.00938337i
\(746\) 10.7644 3.49757i 0.394113 0.128055i
\(747\) 0 0
\(748\) −1.51061 0.778322i −0.0552335 0.0284583i
\(749\) −22.8949 + 13.2184i −0.836562 + 0.482989i
\(750\) 0 0
\(751\) 21.2166 9.44624i 0.774205 0.344698i 0.0186861 0.999825i \(-0.494052\pi\)
0.755519 + 0.655127i \(0.227385\pi\)
\(752\) −13.0383 + 1.37038i −0.475457 + 0.0499725i
\(753\) 0 0
\(754\) 8.99223 + 42.3051i 0.327478 + 1.54066i
\(755\) −12.6666 + 9.20283i −0.460985 + 0.334925i
\(756\) 0 0
\(757\) −10.8996 33.5455i −0.396152 1.21923i −0.928060 0.372430i \(-0.878525\pi\)
0.531908 0.846802i \(-0.321475\pi\)
\(758\) −12.2854 21.2789i −0.446226 0.772886i
\(759\) 0 0
\(760\) 8.93025 15.4677i 0.323934 0.561071i
\(761\) 0.834612 + 0.177402i 0.0302547 + 0.00643083i 0.223014 0.974815i \(-0.428410\pi\)
−0.192759 + 0.981246i \(0.561744\pi\)
\(762\) 0 0
\(763\) 32.5758 + 14.5037i 1.17932 + 0.525069i
\(764\) 0.588323 + 0.191158i 0.0212848 + 0.00691585i
\(765\) 0 0
\(766\) −17.2750 23.7770i −0.624171 0.859097i
\(767\) −3.71209 + 35.3182i −0.134036 + 1.27527i
\(768\) 0 0
\(769\) −8.78388 5.07138i −0.316755 0.182879i 0.333190 0.942860i \(-0.391875\pi\)
−0.649945 + 0.759981i \(0.725208\pi\)
\(770\) 20.1922 + 16.5031i 0.727677 + 0.594731i
\(771\) 0 0
\(772\) −10.3787 9.34499i −0.373536 0.336334i
\(773\) 11.4055 15.6983i 0.410228 0.564630i −0.553046 0.833151i \(-0.686535\pi\)
0.963274 + 0.268520i \(0.0865346\pi\)
\(774\) 0 0
\(775\) −5.25272 + 16.1662i −0.188683 + 0.580707i
\(776\) −5.82703 + 1.23857i −0.209178 + 0.0444622i
\(777\) 0 0
\(778\) 16.1039 + 36.1699i 0.577351 + 1.29675i
\(779\) −0.257571 + 1.21178i −0.00922844 + 0.0434164i
\(780\) 0 0
\(781\) −12.2614 8.04175i −0.438749 0.287756i
\(782\) 2.62724i 0.0939500i
\(783\) 0 0
\(784\) −22.1645 16.1034i −0.791588 0.575122i
\(785\) 14.0477 31.5517i 0.501384 1.12613i
\(786\) 0 0
\(787\) 32.8856 29.6104i 1.17225 1.05550i 0.174762 0.984611i \(-0.444084\pi\)
0.997485 0.0708847i \(-0.0225822\pi\)
\(788\) 0.0259889 + 0.247268i 0.000925816 + 0.00880855i
\(789\) 0 0
\(790\) −0.776717 + 0.862632i −0.0276343 + 0.0306911i
\(791\) 23.8258 0.847149
\(792\) 0 0
\(793\) −20.5215 −0.728740
\(794\) −7.34567 + 8.15819i −0.260688 + 0.289523i
\(795\) 0 0
\(796\) −1.24871 11.8806i −0.0442592 0.421098i
\(797\) 10.0748 9.07140i 0.356868 0.321325i −0.471122 0.882068i \(-0.656151\pi\)
0.827990 + 0.560743i \(0.189484\pi\)
\(798\) 0 0
\(799\) 1.84825 4.15124i 0.0653864 0.146860i
\(800\) 7.23248 + 5.25470i 0.255707 + 0.185782i
\(801\) 0 0
\(802\) 24.0416i 0.848940i
\(803\) −2.88790 7.62617i −0.101912 0.269122i
\(804\) 0 0
\(805\) −3.92695 + 18.4749i −0.138407 + 0.651154i
\(806\) 15.7922 + 35.4699i 0.556256 + 1.24937i
\(807\) 0 0
\(808\) −40.0398 + 8.51072i −1.40859 + 0.299406i
\(809\) 7.82320 24.0773i 0.275049 0.846514i −0.714157 0.699985i \(-0.753190\pi\)
0.989206 0.146529i \(-0.0468100\pi\)
\(810\) 0 0
\(811\) −0.204607 + 0.281618i −0.00718473 + 0.00988893i −0.812594 0.582830i \(-0.801945\pi\)
0.805410 + 0.592719i \(0.201945\pi\)
\(812\) 15.0479 + 13.5492i 0.528077 + 0.475483i
\(813\) 0 0
\(814\) 6.41930 16.4994i 0.224996 0.578304i
\(815\) 2.56109 + 1.47865i 0.0897111 + 0.0517948i
\(816\) 0 0
\(817\) 0.436385 4.15193i 0.0152672 0.145258i
\(818\) −12.8709 17.7152i −0.450019 0.619398i
\(819\) 0 0
\(820\) 0.312465 + 0.101526i 0.0109118 + 0.00354544i
\(821\) 49.5773 + 22.0732i 1.73026 + 0.770361i 0.995784 + 0.0917268i \(0.0292386\pi\)
0.734476 + 0.678635i \(0.237428\pi\)
\(822\) 0 0
\(823\) 2.21233 + 0.470246i 0.0771170 + 0.0163917i 0.246309 0.969191i \(-0.420782\pi\)
−0.169192 + 0.985583i \(0.554116\pi\)
\(824\) 3.34780 5.79856i 0.116626 0.202002i
\(825\) 0 0
\(826\) −17.7456 30.7363i −0.617449 1.06945i
\(827\) −10.7309 33.0262i −0.373148 1.14843i −0.944719 0.327880i \(-0.893666\pi\)
0.571571 0.820553i \(-0.306334\pi\)
\(828\) 0 0
\(829\) −21.5813 + 15.6797i −0.749549 + 0.544579i −0.895687 0.444685i \(-0.853316\pi\)
0.146138 + 0.989264i \(0.453316\pi\)
\(830\) −0.701262 3.29918i −0.0243412 0.114516i
\(831\) 0 0
\(832\) 43.6565 4.58849i 1.51352 0.159077i
\(833\) 8.67504 3.86238i 0.300572 0.133823i
\(834\) 0 0
\(835\) −20.2941 + 11.7168i −0.702307 + 0.405477i
\(836\) −5.56479 5.61536i −0.192462 0.194211i
\(837\) 0 0
\(838\) −41.4997 + 13.4841i −1.43358 + 0.465800i
\(839\) −14.7365 1.54887i −0.508760 0.0534729i −0.153329 0.988175i \(-0.548999\pi\)
−0.355431 + 0.934702i \(0.615666\pi\)
\(840\) 0 0
\(841\) 16.3961 + 18.2097i 0.565383 + 0.627921i
\(842\) 21.0971 + 23.4307i 0.727052 + 0.807474i
\(843\) 0 0
\(844\) 15.3607 + 1.61447i 0.528736 + 0.0555724i
\(845\) −18.7119 + 6.07988i −0.643710 + 0.209154i
\(846\) 0 0
\(847\) 38.8638 27.7026i 1.33538 0.951871i
\(848\) 10.8282 6.25165i 0.371841 0.214683i
\(849\) 0 0
\(850\) 2.21627 0.986747i 0.0760174 0.0338451i
\(851\) 12.7523 1.34032i 0.437142 0.0459455i
\(852\) 0 0
\(853\) −6.53175 30.7294i −0.223643 1.05216i −0.936451 0.350798i \(-0.885911\pi\)
0.712809 0.701359i \(-0.247423\pi\)
\(854\) 16.5922 12.0549i 0.567773 0.412511i
\(855\) 0 0
\(856\) 5.79678 + 17.8407i 0.198130 + 0.609781i
\(857\) 13.1784 + 22.8257i 0.450166 + 0.779710i 0.998396 0.0566174i \(-0.0180315\pi\)
−0.548230 + 0.836328i \(0.684698\pi\)
\(858\) 0 0
\(859\) −12.2081 + 21.1450i −0.416535 + 0.721459i −0.995588 0.0938303i \(-0.970089\pi\)
0.579054 + 0.815290i \(0.303422\pi\)
\(860\) −1.08297 0.230193i −0.0369290 0.00784950i
\(861\) 0 0
\(862\) −30.9653 13.7866i −1.05468 0.469574i
\(863\) −8.44399 2.74362i −0.287437 0.0933939i 0.161750 0.986832i \(-0.448286\pi\)
−0.449187 + 0.893438i \(0.648286\pi\)
\(864\) 0 0
\(865\) 20.0346 + 27.5752i 0.681196 + 0.937586i
\(866\) −2.47275 + 23.5266i −0.0840273 + 0.799467i
\(867\) 0 0
\(868\) 15.7425 + 9.08893i 0.534335 + 0.308498i
\(869\) 1.14895 + 1.78687i 0.0389755 + 0.0606155i
\(870\) 0 0
\(871\) 39.3476 + 35.4288i 1.33324 + 1.20046i
\(872\) 14.8724 20.4701i 0.503642 0.693204i
\(873\) 0 0
\(874\) −3.77695 + 11.6242i −0.127757 + 0.393196i
\(875\) 50.0112 10.6302i 1.69069 0.359367i
\(876\) 0 0
\(877\) −14.0858 31.6371i −0.475642 1.06831i −0.978931 0.204192i \(-0.934543\pi\)
0.503289 0.864118i \(-0.332123\pi\)
\(878\) −6.90667 + 32.4933i −0.233089 + 1.09660i
\(879\) 0 0
\(880\) 9.30705 7.46726i 0.313741 0.251721i
\(881\) 3.07797i 0.103699i 0.998655 + 0.0518497i \(0.0165117\pi\)
−0.998655 + 0.0518497i \(0.983488\pi\)
\(882\) 0 0
\(883\) 44.0733 + 32.0212i 1.48319 + 1.07760i 0.976513 + 0.215460i \(0.0691250\pi\)
0.506673 + 0.862138i \(0.330875\pi\)
\(884\) −1.05587 + 2.37152i −0.0355127 + 0.0797628i
\(885\) 0 0
\(886\) −0.304632 + 0.274292i −0.0102343 + 0.00921502i
\(887\) 5.47219 + 52.0644i 0.183738 + 1.74815i 0.566281 + 0.824213i \(0.308382\pi\)
−0.382543 + 0.923938i \(0.624951\pi\)
\(888\) 0 0
\(889\) 13.0323 14.4739i 0.437091 0.485439i
\(890\) −9.95228 −0.333601
\(891\) 0 0
\(892\) −16.1281 −0.540009
\(893\) 14.1455 15.7101i 0.473359 0.525719i
\(894\) 0 0
\(895\) 4.18094 + 39.7790i 0.139753 + 1.32966i
\(896\) −10.3315 + 9.30256i −0.345153 + 0.310777i
\(897\) 0 0
\(898\) −5.37411 + 12.0704i −0.179336 + 0.402796i
\(899\) 38.8581 + 28.2320i 1.29599 + 0.941591i
\(900\) 0 0
\(901\) 4.33378i 0.144379i
\(902\) −0.703912 + 1.07327i −0.0234377 + 0.0357360i
\(903\) 0 0
\(904\) 3.51498 16.5367i 0.116906 0.550002i
\(905\) −8.09448 18.1805i −0.269070 0.604341i
\(906\) 0 0
\(907\) −55.0901 + 11.7098i −1.82924 + 0.388817i −0.988326 0.152355i \(-0.951314\pi\)
−0.840912 + 0.541172i \(0.817981\pi\)
\(908\) 3.00058 9.23484i 0.0995778 0.306469i
\(909\) 0 0
\(910\) 23.4162 32.2296i 0.776238 1.06840i
\(911\) 18.4676 + 16.6283i 0.611860 + 0.550921i 0.915731 0.401792i \(-0.131612\pi\)
−0.303871 + 0.952713i \(0.598279\pi\)
\(912\) 0 0
\(913\) −6.16281 0.350937i −0.203959 0.0116143i
\(914\) −8.45472 4.88134i −0.279657 0.161460i
\(915\) 0 0
\(916\) 0.522345 4.96978i 0.0172588 0.164206i
\(917\) 16.7386 + 23.0387i 0.552758 + 0.760806i
\(918\) 0 0
\(919\) −17.1331 5.56688i −0.565168 0.183634i 0.0124770 0.999922i \(-0.496028\pi\)
−0.577645 + 0.816288i \(0.696028\pi\)
\(920\) 12.2434 + 5.45112i 0.403654 + 0.179718i
\(921\) 0 0
\(922\) 14.5663 + 3.09616i 0.479715 + 0.101967i
\(923\) −11.2000 + 19.3990i −0.368654 + 0.638527i
\(924\) 0 0
\(925\) −5.92019 10.2541i −0.194655 0.337152i
\(926\) 7.97064 + 24.5311i 0.261931 + 0.806142i
\(927\) 0 0
\(928\) 20.4366 14.8481i 0.670865 0.487412i
\(929\) −6.98358 32.8552i −0.229124 1.07794i −0.930823 0.365470i \(-0.880908\pi\)
0.701699 0.712473i \(-0.252425\pi\)
\(930\) 0 0
\(931\) 43.9354 4.61779i 1.43992 0.151342i
\(932\) −4.75847 + 2.11861i −0.155869 + 0.0693973i
\(933\) 0 0
\(934\) 8.20654 4.73805i 0.268526 0.155034i
\(935\) 0.628512 + 4.08785i 0.0205545 + 0.133687i
\(936\) 0 0
\(937\) 13.8611 4.50374i 0.452822 0.147131i −0.0737215 0.997279i \(-0.523488\pi\)
0.526544 + 0.850148i \(0.323488\pi\)
\(938\) −52.6256 5.53117i −1.71829 0.180599i
\(939\) 0 0
\(940\) −3.75140 4.16636i −0.122357 0.135892i
\(941\) −19.4672 21.6205i −0.634613 0.704809i 0.336968 0.941516i \(-0.390599\pi\)
−0.971581 + 0.236707i \(0.923932\pi\)
\(942\) 0 0
\(943\) −0.924510 0.0971699i −0.0301062 0.00316429i
\(944\) −15.4445 + 5.01823i −0.502676 + 0.163329i
\(945\) 0 0
\(946\) 1.98106 3.84496i 0.0644098 0.125010i
\(947\) 39.8858 23.0281i 1.29611 0.748311i 0.316383 0.948632i \(-0.397532\pi\)
0.979730 + 0.200320i \(0.0641983\pi\)
\(948\) 0 0
\(949\) −11.3803 + 5.06683i −0.369420 + 0.164476i
\(950\) 11.2245 1.17974i 0.364169 0.0382758i
\(951\) 0 0
\(952\) −2.23023 10.4924i −0.0722822 0.340061i
\(953\) 22.8291 16.5863i 0.739509 0.537284i −0.153049 0.988219i \(-0.548909\pi\)
0.892557 + 0.450934i \(0.148909\pi\)
\(954\) 0 0
\(955\) −0.465244 1.43188i −0.0150550 0.0463344i
\(956\) −5.95910 10.3215i −0.192731 0.333820i
\(957\) 0 0
\(958\) −20.0964 + 34.8081i −0.649287 + 1.12460i
\(959\) 35.6985 + 7.58796i 1.15277 + 0.245028i
\(960\) 0 0
\(961\) 11.0708 + 4.92905i 0.357124 + 0.159002i
\(962\) −25.7217 8.35749i −0.829301 0.269456i
\(963\) 0 0
\(964\) 0.460754 + 0.634173i 0.0148399 + 0.0204253i
\(965\) −3.55297 + 33.8043i −0.114374 + 1.08820i
\(966\) 0 0
\(967\) 36.6176 + 21.1412i 1.17754 + 0.679854i 0.955445 0.295170i \(-0.0953764\pi\)
0.222097 + 0.975025i \(0.428710\pi\)
\(968\) −13.4939 31.0609i −0.433710 0.998336i
\(969\) 0 0
\(970\) 2.60596 + 2.34642i 0.0836725 + 0.0753391i
\(971\) −0.665728 + 0.916296i −0.0213642 + 0.0294053i −0.819566 0.572986i \(-0.805785\pi\)
0.798201 + 0.602391i \(0.205785\pi\)
\(972\) 0 0
\(973\) 2.74702 8.45445i 0.0880654 0.271037i
\(974\) 19.0574 4.05077i 0.610637 0.129795i
\(975\) 0 0
\(976\) −3.81686 8.57281i −0.122175 0.274409i
\(977\) −8.13400 + 38.2675i −0.260230 + 1.22428i 0.632810 + 0.774307i \(0.281901\pi\)
−0.893040 + 0.449978i \(0.851432\pi\)
\(978\) 0 0
\(979\) −4.79363 + 17.5718i −0.153205 + 0.561597i
\(980\) 11.7159i 0.374252i
\(981\) 0 0
\(982\) 16.2123 + 11.7789i 0.517355 + 0.375880i
\(983\) −16.5126 + 37.0879i −0.526670 + 1.18292i 0.432898 + 0.901443i \(0.357491\pi\)
−0.959568 + 0.281477i \(0.909176\pi\)
\(984\) 0 0
\(985\) 0.449693 0.404905i 0.0143284 0.0129013i
\(986\) −0.716554 6.81756i −0.0228197 0.217115i
\(987\) 0 0
\(988\) −8.08101 + 8.97487i −0.257091 + 0.285529i
\(989\) 3.13267 0.0996131
\(990\) 0 0
\(991\) 16.7057 0.530675 0.265338 0.964156i \(-0.414517\pi\)
0.265338 + 0.964156i \(0.414517\pi\)
\(992\) 15.1741 16.8525i 0.481778 0.535069i
\(993\) 0 0
\(994\) −2.34003 22.2639i −0.0742212 0.706167i
\(995\) −21.6067 + 19.4548i −0.684978 + 0.616757i
\(996\) 0 0
\(997\) −0.873727 + 1.96242i −0.0276712 + 0.0621505i −0.926852 0.375426i \(-0.877496\pi\)
0.899181 + 0.437577i \(0.144163\pi\)
\(998\) 32.2238 + 23.4120i 1.02003 + 0.741093i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.t.a.17.3 80
3.2 odd 2 99.2.p.a.50.8 yes 80
9.2 odd 6 inner 297.2.t.a.116.3 80
9.4 even 3 891.2.k.a.809.7 80
9.5 odd 6 891.2.k.a.809.14 80
9.7 even 3 99.2.p.a.83.8 yes 80
11.2 odd 10 inner 297.2.t.a.233.3 80
33.2 even 10 99.2.p.a.68.8 yes 80
99.2 even 30 inner 297.2.t.a.35.3 80
99.13 odd 30 891.2.k.a.728.14 80
99.68 even 30 891.2.k.a.728.7 80
99.79 odd 30 99.2.p.a.2.8 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.p.a.2.8 80 99.79 odd 30
99.2.p.a.50.8 yes 80 3.2 odd 2
99.2.p.a.68.8 yes 80 33.2 even 10
99.2.p.a.83.8 yes 80 9.7 even 3
297.2.t.a.17.3 80 1.1 even 1 trivial
297.2.t.a.35.3 80 99.2 even 30 inner
297.2.t.a.116.3 80 9.2 odd 6 inner
297.2.t.a.233.3 80 11.2 odd 10 inner
891.2.k.a.728.7 80 99.68 even 30
891.2.k.a.728.14 80 99.13 odd 30
891.2.k.a.809.7 80 9.4 even 3
891.2.k.a.809.14 80 9.5 odd 6