Properties

Label 297.2.n.b.91.3
Level $297$
Weight $2$
Character 297.91
Analytic conductor $2.372$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [297,2,Mod(37,297)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("297.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(297, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([10, 6])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.n (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(9\) over \(\Q(\zeta_{15})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 91.3
Character \(\chi\) \(=\) 297.91
Dual form 297.2.n.b.235.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.31425 - 0.585142i) q^{2} +(0.0466010 + 0.0517556i) q^{4} +(3.18694 - 1.41892i) q^{5} +(0.330459 - 0.0702413i) q^{7} +(0.858159 + 2.64114i) q^{8} -5.01870 q^{10} +(3.01538 + 1.38112i) q^{11} +(-0.120893 - 1.15022i) q^{13} +(-0.475408 - 0.101051i) q^{14} +(0.432166 - 4.11179i) q^{16} +(-3.32650 - 2.41684i) q^{17} +(1.38230 + 4.25428i) q^{19} +(0.221951 + 0.0988191i) q^{20} +(-3.15481 - 3.57956i) q^{22} +(2.64122 - 4.57472i) q^{23} +(4.79760 - 5.32827i) q^{25} +(-0.514156 + 1.58241i) q^{26} +(0.0190351 + 0.0138298i) q^{28} +(5.16281 - 1.09739i) q^{29} +(-0.591027 - 5.62325i) q^{31} +(-0.196895 + 0.341031i) q^{32} +(2.95766 + 5.12281i) q^{34} +(0.953487 - 0.692749i) q^{35} +(1.10852 - 3.41166i) q^{37} +(0.672671 - 6.40003i) q^{38} +(6.48246 + 7.19950i) q^{40} +(-10.9211 - 2.32135i) q^{41} +(0.753935 + 1.30585i) q^{43} +(0.0690391 + 0.220424i) q^{44} +(-6.14808 + 4.46684i) q^{46} +(-5.90260 + 6.55551i) q^{47} +(-6.29055 + 2.80073i) q^{49} +(-9.42304 + 4.19541i) q^{50} +(0.0538964 - 0.0598580i) q^{52} +(1.63163 - 1.18545i) q^{53} +(11.5695 + 0.122962i) q^{55} +(0.469104 + 0.812512i) q^{56} +(-7.42735 - 1.57873i) q^{58} +(7.72787 + 8.58266i) q^{59} +(-0.823304 + 7.83322i) q^{61} +(-2.51364 + 7.73619i) q^{62} +(-6.23134 + 4.52733i) q^{64} +(-2.01734 - 3.49413i) q^{65} +(2.09211 - 3.62364i) q^{67} +(-0.0299329 - 0.284792i) q^{68} +(-1.65848 + 0.352520i) q^{70} +(1.95860 + 1.42300i) q^{71} +(-1.04183 + 3.20643i) q^{73} +(-3.45317 + 3.83514i) q^{74} +(-0.155767 + 0.269796i) q^{76} +(1.09347 + 0.244599i) q^{77} +(7.79960 + 3.47260i) q^{79} +(-4.45700 - 13.7172i) q^{80} +(12.9947 + 9.44124i) q^{82} +(-1.18499 + 11.2744i) q^{83} +(-14.0306 - 2.98231i) q^{85} +(-0.226749 - 2.15738i) q^{86} +(-1.06005 + 9.14926i) q^{88} +3.45994 q^{89} +(-0.120743 - 0.371608i) q^{91} +(0.359851 - 0.0764886i) q^{92} +(11.5934 - 5.16171i) q^{94} +(10.4418 + 11.5968i) q^{95} +(-11.9111 - 5.30317i) q^{97} +9.90618 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + q^{2} + 11 q^{4} + 8 q^{5} - 2 q^{7} - 6 q^{8} - 8 q^{10} + 2 q^{11} - 11 q^{13} + 10 q^{14} - 9 q^{16} + 20 q^{17} + 8 q^{19} + 45 q^{20} - 16 q^{22} - 20 q^{23} + 11 q^{25} + 12 q^{26} - 54 q^{28}+ \cdots + 328 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.31425 0.585142i −0.929315 0.413758i −0.114464 0.993427i \(-0.536515\pi\)
−0.814852 + 0.579670i \(0.803182\pi\)
\(3\) 0 0
\(4\) 0.0466010 + 0.0517556i 0.0233005 + 0.0258778i
\(5\) 3.18694 1.41892i 1.42524 0.634559i 0.458124 0.888888i \(-0.348521\pi\)
0.967118 + 0.254329i \(0.0818547\pi\)
\(6\) 0 0
\(7\) 0.330459 0.0702413i 0.124902 0.0265487i −0.145037 0.989426i \(-0.546330\pi\)
0.269938 + 0.962878i \(0.412997\pi\)
\(8\) 0.858159 + 2.64114i 0.303405 + 0.933784i
\(9\) 0 0
\(10\) −5.01870 −1.58705
\(11\) 3.01538 + 1.38112i 0.909171 + 0.416422i
\(12\) 0 0
\(13\) −0.120893 1.15022i −0.0335296 0.319013i −0.998412 0.0563310i \(-0.982060\pi\)
0.964883 0.262682i \(-0.0846069\pi\)
\(14\) −0.475408 0.101051i −0.127058 0.0270070i
\(15\) 0 0
\(16\) 0.432166 4.11179i 0.108042 1.02795i
\(17\) −3.32650 2.41684i −0.806795 0.586171i 0.106105 0.994355i \(-0.466162\pi\)
−0.912900 + 0.408184i \(0.866162\pi\)
\(18\) 0 0
\(19\) 1.38230 + 4.25428i 0.317121 + 0.976000i 0.974872 + 0.222764i \(0.0715080\pi\)
−0.657751 + 0.753236i \(0.728492\pi\)
\(20\) 0.221951 + 0.0988191i 0.0496298 + 0.0220966i
\(21\) 0 0
\(22\) −3.15481 3.57956i −0.672609 0.763164i
\(23\) 2.64122 4.57472i 0.550731 0.953895i −0.447491 0.894289i \(-0.647682\pi\)
0.998222 0.0596062i \(-0.0189845\pi\)
\(24\) 0 0
\(25\) 4.79760 5.32827i 0.959520 1.06565i
\(26\) −0.514156 + 1.58241i −0.100834 + 0.310336i
\(27\) 0 0
\(28\) 0.0190351 + 0.0138298i 0.00359730 + 0.00261359i
\(29\) 5.16281 1.09739i 0.958710 0.203780i 0.298121 0.954528i \(-0.403640\pi\)
0.660589 + 0.750748i \(0.270307\pi\)
\(30\) 0 0
\(31\) −0.591027 5.62325i −0.106152 1.00996i −0.909853 0.414932i \(-0.863806\pi\)
0.803701 0.595033i \(-0.202861\pi\)
\(32\) −0.196895 + 0.341031i −0.0348064 + 0.0602864i
\(33\) 0 0
\(34\) 2.95766 + 5.12281i 0.507234 + 0.878555i
\(35\) 0.953487 0.692749i 0.161169 0.117096i
\(36\) 0 0
\(37\) 1.10852 3.41166i 0.182239 0.560874i −0.817651 0.575714i \(-0.804724\pi\)
0.999890 + 0.0148406i \(0.00472409\pi\)
\(38\) 0.672671 6.40003i 0.109122 1.03822i
\(39\) 0 0
\(40\) 6.48246 + 7.19950i 1.02497 + 1.13834i
\(41\) −10.9211 2.32135i −1.70559 0.362535i −0.750965 0.660342i \(-0.770411\pi\)
−0.954626 + 0.297808i \(0.903745\pi\)
\(42\) 0 0
\(43\) 0.753935 + 1.30585i 0.114974 + 0.199141i 0.917769 0.397114i \(-0.129988\pi\)
−0.802795 + 0.596255i \(0.796655\pi\)
\(44\) 0.0690391 + 0.220424i 0.0104080 + 0.0332302i
\(45\) 0 0
\(46\) −6.14808 + 4.46684i −0.906484 + 0.658599i
\(47\) −5.90260 + 6.55551i −0.860983 + 0.956219i −0.999417 0.0341530i \(-0.989127\pi\)
0.138433 + 0.990372i \(0.455793\pi\)
\(48\) 0 0
\(49\) −6.29055 + 2.80073i −0.898650 + 0.400105i
\(50\) −9.42304 + 4.19541i −1.33262 + 0.593320i
\(51\) 0 0
\(52\) 0.0538964 0.0598580i 0.00747409 0.00830082i
\(53\) 1.63163 1.18545i 0.224122 0.162834i −0.470058 0.882635i \(-0.655767\pi\)
0.694180 + 0.719801i \(0.255767\pi\)
\(54\) 0 0
\(55\) 11.5695 + 0.122962i 1.56003 + 0.0165802i
\(56\) 0.469104 + 0.812512i 0.0626866 + 0.108576i
\(57\) 0 0
\(58\) −7.42735 1.57873i −0.975259 0.207298i
\(59\) 7.72787 + 8.58266i 1.00608 + 1.11737i 0.993079 + 0.117452i \(0.0374727\pi\)
0.0130039 + 0.999915i \(0.495861\pi\)
\(60\) 0 0
\(61\) −0.823304 + 7.83322i −0.105413 + 1.00294i 0.806131 + 0.591738i \(0.201558\pi\)
−0.911544 + 0.411203i \(0.865109\pi\)
\(62\) −2.51364 + 7.73619i −0.319233 + 0.982497i
\(63\) 0 0
\(64\) −6.23134 + 4.52733i −0.778918 + 0.565917i
\(65\) −2.01734 3.49413i −0.250220 0.433394i
\(66\) 0 0
\(67\) 2.09211 3.62364i 0.255592 0.442698i −0.709464 0.704741i \(-0.751063\pi\)
0.965056 + 0.262043i \(0.0843963\pi\)
\(68\) −0.0299329 0.284792i −0.00362989 0.0345361i
\(69\) 0 0
\(70\) −1.65848 + 0.352520i −0.198226 + 0.0421342i
\(71\) 1.95860 + 1.42300i 0.232442 + 0.168879i 0.697910 0.716186i \(-0.254114\pi\)
−0.465467 + 0.885065i \(0.654114\pi\)
\(72\) 0 0
\(73\) −1.04183 + 3.20643i −0.121937 + 0.375284i −0.993331 0.115301i \(-0.963217\pi\)
0.871394 + 0.490585i \(0.163217\pi\)
\(74\) −3.45317 + 3.83514i −0.401423 + 0.445826i
\(75\) 0 0
\(76\) −0.155767 + 0.269796i −0.0178676 + 0.0309477i
\(77\) 1.09347 + 0.244599i 0.124613 + 0.0278746i
\(78\) 0 0
\(79\) 7.79960 + 3.47260i 0.877523 + 0.390699i 0.795516 0.605933i \(-0.207200\pi\)
0.0820077 + 0.996632i \(0.473867\pi\)
\(80\) −4.45700 13.7172i −0.498307 1.53363i
\(81\) 0 0
\(82\) 12.9947 + 9.44124i 1.43503 + 1.04261i
\(83\) −1.18499 + 11.2744i −0.130069 + 1.23753i 0.713557 + 0.700597i \(0.247083\pi\)
−0.843626 + 0.536931i \(0.819584\pi\)
\(84\) 0 0
\(85\) −14.0306 2.98231i −1.52184 0.323477i
\(86\) −0.226749 2.15738i −0.0244510 0.232636i
\(87\) 0 0
\(88\) −1.06005 + 9.14926i −0.113002 + 0.975314i
\(89\) 3.45994 0.366753 0.183376 0.983043i \(-0.441297\pi\)
0.183376 + 0.983043i \(0.441297\pi\)
\(90\) 0 0
\(91\) −0.120743 0.371608i −0.0126573 0.0389551i
\(92\) 0.359851 0.0764886i 0.0375170 0.00797449i
\(93\) 0 0
\(94\) 11.5934 5.16171i 1.19577 0.532390i
\(95\) 10.4418 + 11.5968i 1.07130 + 1.18980i
\(96\) 0 0
\(97\) −11.9111 5.30317i −1.20939 0.538456i −0.299817 0.953997i \(-0.596926\pi\)
−0.909574 + 0.415541i \(0.863592\pi\)
\(98\) 9.90618 1.00068
\(99\) 0 0
\(100\) 0.499341 0.0499341
\(101\) 1.99464 + 0.888070i 0.198474 + 0.0883663i 0.503567 0.863956i \(-0.332021\pi\)
−0.305093 + 0.952323i \(0.598687\pi\)
\(102\) 0 0
\(103\) 0.583179 + 0.647686i 0.0574624 + 0.0638184i 0.771191 0.636604i \(-0.219662\pi\)
−0.713728 + 0.700423i \(0.752995\pi\)
\(104\) 2.93414 1.30636i 0.287716 0.128099i
\(105\) 0 0
\(106\) −2.83803 + 0.603242i −0.275654 + 0.0585920i
\(107\) −1.90401 5.85995i −0.184068 0.566502i 0.815863 0.578245i \(-0.196262\pi\)
−0.999931 + 0.0117425i \(0.996262\pi\)
\(108\) 0 0
\(109\) −11.7010 −1.12075 −0.560376 0.828238i \(-0.689343\pi\)
−0.560376 + 0.828238i \(0.689343\pi\)
\(110\) −15.1333 6.93141i −1.44290 0.660884i
\(111\) 0 0
\(112\) −0.146004 1.38914i −0.0137961 0.131261i
\(113\) −0.409378 0.0870160i −0.0385110 0.00818577i 0.188616 0.982051i \(-0.439600\pi\)
−0.227127 + 0.973865i \(0.572933\pi\)
\(114\) 0 0
\(115\) 1.92625 18.3270i 0.179623 1.70900i
\(116\) 0.297388 + 0.216065i 0.0276118 + 0.0200611i
\(117\) 0 0
\(118\) −5.13427 15.8017i −0.472648 1.45466i
\(119\) −1.26904 0.565011i −0.116332 0.0517945i
\(120\) 0 0
\(121\) 7.18503 + 8.32918i 0.653185 + 0.757198i
\(122\) 5.66557 9.81305i 0.512937 0.888432i
\(123\) 0 0
\(124\) 0.263492 0.292638i 0.0236623 0.0262796i
\(125\) 2.33919 7.19928i 0.209223 0.643924i
\(126\) 0 0
\(127\) −7.46315 5.42229i −0.662247 0.481151i 0.205174 0.978726i \(-0.434224\pi\)
−0.867421 + 0.497575i \(0.834224\pi\)
\(128\) 11.6090 2.46758i 1.02610 0.218105i
\(129\) 0 0
\(130\) 0.606724 + 5.77259i 0.0532132 + 0.506290i
\(131\) −7.68773 + 13.3155i −0.671680 + 1.16338i 0.305747 + 0.952113i \(0.401094\pi\)
−0.977427 + 0.211272i \(0.932239\pi\)
\(132\) 0 0
\(133\) 0.755621 + 1.30877i 0.0655206 + 0.113485i
\(134\) −4.86990 + 3.53819i −0.420695 + 0.305653i
\(135\) 0 0
\(136\) 3.52856 10.8598i 0.302571 0.931219i
\(137\) 0.205037 1.95080i 0.0175175 0.166668i −0.982266 0.187495i \(-0.939963\pi\)
0.999783 + 0.0208268i \(0.00662984\pi\)
\(138\) 0 0
\(139\) 11.8080 + 13.1141i 1.00154 + 1.11232i 0.993668 + 0.112356i \(0.0358397\pi\)
0.00787377 + 0.999969i \(0.497494\pi\)
\(140\) 0.0802871 + 0.0170655i 0.00678550 + 0.00144230i
\(141\) 0 0
\(142\) −1.74143 3.01624i −0.146137 0.253117i
\(143\) 1.22405 3.63531i 0.102360 0.304000i
\(144\) 0 0
\(145\) 14.8965 10.8229i 1.23708 0.898794i
\(146\) 3.24544 3.60443i 0.268595 0.298304i
\(147\) 0 0
\(148\) 0.228231 0.101615i 0.0187604 0.00835268i
\(149\) −0.616240 + 0.274368i −0.0504844 + 0.0224771i −0.431824 0.901958i \(-0.642130\pi\)
0.381339 + 0.924435i \(0.375463\pi\)
\(150\) 0 0
\(151\) 3.69632 4.10518i 0.300802 0.334075i −0.573728 0.819046i \(-0.694503\pi\)
0.874530 + 0.484971i \(0.161170\pi\)
\(152\) −10.0499 + 7.30170i −0.815157 + 0.592246i
\(153\) 0 0
\(154\) −1.29397 0.961300i −0.104271 0.0774638i
\(155\) −9.86248 17.0823i −0.792174 1.37209i
\(156\) 0 0
\(157\) −0.777453 0.165253i −0.0620475 0.0131886i 0.176783 0.984250i \(-0.443431\pi\)
−0.238831 + 0.971061i \(0.576764\pi\)
\(158\) −8.21866 9.12774i −0.653841 0.726164i
\(159\) 0 0
\(160\) −0.143596 + 1.36622i −0.0113522 + 0.108009i
\(161\) 0.551480 1.69728i 0.0434627 0.133765i
\(162\) 0 0
\(163\) −11.6538 + 8.46700i −0.912799 + 0.663187i −0.941721 0.336395i \(-0.890792\pi\)
0.0289225 + 0.999582i \(0.490792\pi\)
\(164\) −0.388791 0.673406i −0.0303595 0.0525842i
\(165\) 0 0
\(166\) 8.15450 14.1240i 0.632912 1.09624i
\(167\) −1.41854 13.4965i −0.109770 1.04439i −0.901280 0.433236i \(-0.857372\pi\)
0.791510 0.611156i \(-0.209295\pi\)
\(168\) 0 0
\(169\) 11.4075 2.42475i 0.877503 0.186519i
\(170\) 16.6947 + 12.1294i 1.28043 + 0.930284i
\(171\) 0 0
\(172\) −0.0324512 + 0.0998744i −0.00247438 + 0.00761535i
\(173\) 11.7677 13.0693i 0.894681 0.993644i −0.105319 0.994439i \(-0.533586\pi\)
1.00000 0.000794492i \(0.000252895\pi\)
\(174\) 0 0
\(175\) 1.21115 2.09777i 0.0915541 0.158576i
\(176\) 6.98201 11.8017i 0.526289 0.889589i
\(177\) 0 0
\(178\) −4.54722 2.02455i −0.340829 0.151747i
\(179\) 4.96972 + 15.2952i 0.371454 + 1.14322i 0.945840 + 0.324634i \(0.105241\pi\)
−0.574386 + 0.818585i \(0.694759\pi\)
\(180\) 0 0
\(181\) 12.0200 + 8.73306i 0.893441 + 0.649123i 0.936773 0.349938i \(-0.113797\pi\)
−0.0433317 + 0.999061i \(0.513797\pi\)
\(182\) −0.0587572 + 0.559038i −0.00435538 + 0.0414386i
\(183\) 0 0
\(184\) 14.3491 + 3.04999i 1.05783 + 0.224848i
\(185\) −1.30809 12.4456i −0.0961727 0.915022i
\(186\) 0 0
\(187\) −6.69272 11.8820i −0.489420 0.868897i
\(188\) −0.614351 −0.0448062
\(189\) 0 0
\(190\) −6.93735 21.3510i −0.503288 1.54896i
\(191\) −1.32489 + 0.281614i −0.0958655 + 0.0203768i −0.255595 0.966784i \(-0.582271\pi\)
0.159729 + 0.987161i \(0.448938\pi\)
\(192\) 0 0
\(193\) −20.4072 + 9.08585i −1.46894 + 0.654014i −0.976340 0.216242i \(-0.930620\pi\)
−0.492600 + 0.870256i \(0.663953\pi\)
\(194\) 12.5511 + 13.9394i 0.901116 + 1.00079i
\(195\) 0 0
\(196\) −0.438099 0.195054i −0.0312928 0.0139325i
\(197\) −8.74655 −0.623166 −0.311583 0.950219i \(-0.600859\pi\)
−0.311583 + 0.950219i \(0.600859\pi\)
\(198\) 0 0
\(199\) 6.39133 0.453070 0.226535 0.974003i \(-0.427260\pi\)
0.226535 + 0.974003i \(0.427260\pi\)
\(200\) 18.1898 + 8.09863i 1.28621 + 0.572660i
\(201\) 0 0
\(202\) −2.10181 2.33429i −0.147883 0.164240i
\(203\) 1.62902 0.725285i 0.114335 0.0509051i
\(204\) 0 0
\(205\) −38.0987 + 8.09813i −2.66093 + 0.565598i
\(206\) −0.387455 1.19246i −0.0269953 0.0830829i
\(207\) 0 0
\(208\) −4.78169 −0.331551
\(209\) −1.70750 + 14.7374i −0.118110 + 1.01941i
\(210\) 0 0
\(211\) −0.689268 6.55795i −0.0474512 0.451468i −0.992291 0.123934i \(-0.960449\pi\)
0.944839 0.327534i \(-0.106218\pi\)
\(212\) 0.137389 + 0.0292030i 0.00943594 + 0.00200567i
\(213\) 0 0
\(214\) −0.926552 + 8.81555i −0.0633378 + 0.602619i
\(215\) 4.25564 + 3.09190i 0.290232 + 0.210866i
\(216\) 0 0
\(217\) −0.590295 1.81674i −0.0400718 0.123328i
\(218\) 15.3780 + 6.84674i 1.04153 + 0.463720i
\(219\) 0 0
\(220\) 0.532787 + 0.604518i 0.0359205 + 0.0407566i
\(221\) −2.37774 + 4.11837i −0.159944 + 0.277032i
\(222\) 0 0
\(223\) −4.48111 + 4.97678i −0.300078 + 0.333270i −0.874260 0.485457i \(-0.838653\pi\)
0.574183 + 0.818727i \(0.305320\pi\)
\(224\) −0.0411112 + 0.126527i −0.00274686 + 0.00845395i
\(225\) 0 0
\(226\) 0.487108 + 0.353905i 0.0324020 + 0.0235414i
\(227\) −6.01302 + 1.27811i −0.399098 + 0.0848310i −0.403088 0.915161i \(-0.632063\pi\)
0.00399006 + 0.999992i \(0.498730\pi\)
\(228\) 0 0
\(229\) 2.39535 + 22.7902i 0.158289 + 1.50602i 0.728798 + 0.684729i \(0.240079\pi\)
−0.570509 + 0.821291i \(0.693254\pi\)
\(230\) −13.2555 + 22.9591i −0.874040 + 1.51388i
\(231\) 0 0
\(232\) 7.32887 + 12.6940i 0.481164 + 0.833400i
\(233\) −9.54280 + 6.93325i −0.625170 + 0.454212i −0.854724 0.519084i \(-0.826273\pi\)
0.229554 + 0.973296i \(0.426273\pi\)
\(234\) 0 0
\(235\) −9.50952 + 29.2673i −0.620333 + 1.90919i
\(236\) −0.0840751 + 0.799921i −0.00547282 + 0.0520704i
\(237\) 0 0
\(238\) 1.33722 + 1.48513i 0.0866790 + 0.0962668i
\(239\) −9.44182 2.00692i −0.610740 0.129817i −0.107850 0.994167i \(-0.534397\pi\)
−0.502890 + 0.864350i \(0.667730\pi\)
\(240\) 0 0
\(241\) 3.63345 + 6.29331i 0.234051 + 0.405388i 0.958996 0.283418i \(-0.0914685\pi\)
−0.724946 + 0.688806i \(0.758135\pi\)
\(242\) −4.56918 15.1509i −0.293718 0.973936i
\(243\) 0 0
\(244\) −0.443780 + 0.322425i −0.0284101 + 0.0206411i
\(245\) −16.0736 + 17.8515i −1.02690 + 1.14049i
\(246\) 0 0
\(247\) 4.72624 2.10426i 0.300723 0.133891i
\(248\) 14.3446 6.38662i 0.910882 0.405551i
\(249\) 0 0
\(250\) −7.28688 + 8.09290i −0.460863 + 0.511840i
\(251\) −10.6325 + 7.72498i −0.671119 + 0.487597i −0.870400 0.492346i \(-0.836140\pi\)
0.199280 + 0.979943i \(0.436140\pi\)
\(252\) 0 0
\(253\) 14.2825 10.1467i 0.897932 0.637917i
\(254\) 6.63563 + 11.4932i 0.416356 + 0.721150i
\(255\) 0 0
\(256\) −1.63297 0.347099i −0.102061 0.0216937i
\(257\) 1.22201 + 1.35718i 0.0762271 + 0.0846588i 0.780052 0.625715i \(-0.215193\pi\)
−0.703825 + 0.710374i \(0.748526\pi\)
\(258\) 0 0
\(259\) 0.126680 1.20528i 0.00787151 0.0748924i
\(260\) 0.0868310 0.267238i 0.00538503 0.0165734i
\(261\) 0 0
\(262\) 17.8951 13.0015i 1.10556 0.803238i
\(263\) 2.63718 + 4.56773i 0.162616 + 0.281658i 0.935806 0.352516i \(-0.114674\pi\)
−0.773190 + 0.634174i \(0.781340\pi\)
\(264\) 0 0
\(265\) 3.51786 6.09311i 0.216100 0.374297i
\(266\) −0.227256 2.16220i −0.0139340 0.132573i
\(267\) 0 0
\(268\) 0.285038 0.0605867i 0.0174115 0.00370092i
\(269\) −14.0391 10.2000i −0.855982 0.621907i 0.0708069 0.997490i \(-0.477443\pi\)
−0.926789 + 0.375583i \(0.877443\pi\)
\(270\) 0 0
\(271\) 2.50681 7.71516i 0.152278 0.468662i −0.845597 0.533821i \(-0.820755\pi\)
0.997875 + 0.0651590i \(0.0207555\pi\)
\(272\) −11.3752 + 12.6334i −0.689720 + 0.766012i
\(273\) 0 0
\(274\) −1.41097 + 2.44386i −0.0852396 + 0.147639i
\(275\) 21.8256 9.44072i 1.31613 0.569297i
\(276\) 0 0
\(277\) −17.7796 7.91601i −1.06828 0.475627i −0.204169 0.978936i \(-0.565449\pi\)
−0.864107 + 0.503309i \(0.832116\pi\)
\(278\) −7.84505 24.1446i −0.470515 1.44810i
\(279\) 0 0
\(280\) 2.64789 + 1.92381i 0.158242 + 0.114969i
\(281\) 3.03018 28.8302i 0.180765 1.71987i −0.409206 0.912442i \(-0.634194\pi\)
0.589971 0.807424i \(-0.299139\pi\)
\(282\) 0 0
\(283\) −9.56153 2.03237i −0.568374 0.120812i −0.0852437 0.996360i \(-0.527167\pi\)
−0.483130 + 0.875549i \(0.660500\pi\)
\(284\) 0.0176240 + 0.167682i 0.00104579 + 0.00995007i
\(285\) 0 0
\(286\) −3.73587 + 4.06146i −0.220907 + 0.240159i
\(287\) −3.77204 −0.222656
\(288\) 0 0
\(289\) −0.0288211 0.0887023i −0.00169536 0.00521778i
\(290\) −25.9106 + 5.50747i −1.52152 + 0.323410i
\(291\) 0 0
\(292\) −0.214501 + 0.0955019i −0.0125527 + 0.00558883i
\(293\) −16.8680 18.7338i −0.985440 1.09444i −0.995526 0.0944929i \(-0.969877\pi\)
0.0100855 0.999949i \(-0.496790\pi\)
\(294\) 0 0
\(295\) 36.8063 + 16.3872i 2.14295 + 0.954101i
\(296\) 9.96196 0.579027
\(297\) 0 0
\(298\) 0.970438 0.0562159
\(299\) −5.58122 2.48492i −0.322770 0.143707i
\(300\) 0 0
\(301\) 0.340870 + 0.378574i 0.0196474 + 0.0218207i
\(302\) −7.26000 + 3.23236i −0.417766 + 0.186001i
\(303\) 0 0
\(304\) 18.0901 3.84517i 1.03754 0.220536i
\(305\) 8.49086 + 26.1322i 0.486185 + 1.49632i
\(306\) 0 0
\(307\) 4.47659 0.255492 0.127746 0.991807i \(-0.459226\pi\)
0.127746 + 0.991807i \(0.459226\pi\)
\(308\) 0.0382975 + 0.0679919i 0.00218220 + 0.00387420i
\(309\) 0 0
\(310\) 2.96619 + 28.2214i 0.168468 + 1.60287i
\(311\) −22.1664 4.71160i −1.25694 0.267171i −0.469151 0.883118i \(-0.655440\pi\)
−0.787787 + 0.615947i \(0.788773\pi\)
\(312\) 0 0
\(313\) −1.74382 + 16.5913i −0.0985664 + 0.937797i 0.827762 + 0.561080i \(0.189614\pi\)
−0.926328 + 0.376717i \(0.877053\pi\)
\(314\) 0.925071 + 0.672104i 0.0522048 + 0.0379290i
\(315\) 0 0
\(316\) 0.183742 + 0.565500i 0.0103363 + 0.0318118i
\(317\) 23.1745 + 10.3180i 1.30161 + 0.579515i 0.936245 0.351348i \(-0.114277\pi\)
0.365367 + 0.930863i \(0.380943\pi\)
\(318\) 0 0
\(319\) 17.0835 + 3.82140i 0.956490 + 0.213957i
\(320\) −13.4350 + 23.2701i −0.751039 + 1.30084i
\(321\) 0 0
\(322\) −1.71793 + 1.90796i −0.0957367 + 0.106326i
\(323\) 5.68372 17.4927i 0.316250 0.973319i
\(324\) 0 0
\(325\) −6.70866 4.87413i −0.372129 0.270368i
\(326\) 20.2704 4.30862i 1.12268 0.238632i
\(327\) 0 0
\(328\) −3.24102 30.8363i −0.178956 1.70265i
\(329\) −1.49010 + 2.58094i −0.0821521 + 0.142292i
\(330\) 0 0
\(331\) −3.79418 6.57172i −0.208547 0.361214i 0.742710 0.669613i \(-0.233540\pi\)
−0.951257 + 0.308399i \(0.900207\pi\)
\(332\) −0.638736 + 0.464069i −0.0350552 + 0.0254691i
\(333\) 0 0
\(334\) −6.03306 + 18.5678i −0.330114 + 1.01599i
\(335\) 1.52578 14.5168i 0.0833624 0.793140i
\(336\) 0 0
\(337\) −9.64234 10.7089i −0.525252 0.583351i 0.420887 0.907113i \(-0.361719\pi\)
−0.946139 + 0.323762i \(0.895052\pi\)
\(338\) −16.4112 3.48830i −0.892650 0.189739i
\(339\) 0 0
\(340\) −0.499491 0.865143i −0.0270887 0.0469190i
\(341\) 5.98419 17.7725i 0.324062 0.962435i
\(342\) 0 0
\(343\) −3.79528 + 2.75744i −0.204926 + 0.148888i
\(344\) −2.80195 + 3.11188i −0.151071 + 0.167781i
\(345\) 0 0
\(346\) −23.1131 + 10.2906i −1.24257 + 0.553227i
\(347\) 15.3861 6.85035i 0.825971 0.367746i 0.0501836 0.998740i \(-0.484019\pi\)
0.775788 + 0.630994i \(0.217353\pi\)
\(348\) 0 0
\(349\) 20.4612 22.7245i 1.09526 1.21641i 0.120609 0.992700i \(-0.461515\pi\)
0.974655 0.223714i \(-0.0718181\pi\)
\(350\) −2.81924 + 2.04830i −0.150695 + 0.109486i
\(351\) 0 0
\(352\) −1.06472 + 0.756405i −0.0567496 + 0.0403165i
\(353\) 0.243243 + 0.421309i 0.0129465 + 0.0224240i 0.872426 0.488746i \(-0.162546\pi\)
−0.859480 + 0.511170i \(0.829212\pi\)
\(354\) 0 0
\(355\) 8.26104 + 1.75594i 0.438451 + 0.0931956i
\(356\) 0.161236 + 0.179071i 0.00854552 + 0.00949076i
\(357\) 0 0
\(358\) 2.41842 23.0097i 0.127817 1.21610i
\(359\) −10.5622 + 32.5072i −0.557453 + 1.71566i 0.131924 + 0.991260i \(0.457884\pi\)
−0.689377 + 0.724403i \(0.742116\pi\)
\(360\) 0 0
\(361\) −0.816851 + 0.593477i −0.0429921 + 0.0312356i
\(362\) −10.6872 18.5108i −0.561709 0.972908i
\(363\) 0 0
\(364\) 0.0136061 0.0235664i 0.000713152 0.00123522i
\(365\) 1.22940 + 11.6970i 0.0643497 + 0.612246i
\(366\) 0 0
\(367\) 2.31194 0.491418i 0.120682 0.0256518i −0.147175 0.989111i \(-0.547018\pi\)
0.267857 + 0.963459i \(0.413685\pi\)
\(368\) −17.6688 12.8372i −0.921052 0.669183i
\(369\) 0 0
\(370\) −5.56331 + 17.1221i −0.289223 + 0.890136i
\(371\) 0.455921 0.506351i 0.0236702 0.0262885i
\(372\) 0 0
\(373\) 11.4332 19.8028i 0.591987 1.02535i −0.401978 0.915649i \(-0.631677\pi\)
0.993965 0.109701i \(-0.0349895\pi\)
\(374\) 1.84326 + 19.5321i 0.0953126 + 1.00998i
\(375\) 0 0
\(376\) −22.3794 9.96394i −1.15413 0.513851i
\(377\) −1.88638 5.80568i −0.0971535 0.299008i
\(378\) 0 0
\(379\) −21.9257 15.9299i −1.12625 0.818266i −0.141102 0.989995i \(-0.545065\pi\)
−0.985144 + 0.171729i \(0.945065\pi\)
\(380\) −0.113601 + 1.08084i −0.00582761 + 0.0554460i
\(381\) 0 0
\(382\) 1.90602 + 0.405136i 0.0975203 + 0.0207286i
\(383\) 2.19467 + 20.8808i 0.112142 + 1.06696i 0.895399 + 0.445264i \(0.146890\pi\)
−0.783257 + 0.621698i \(0.786443\pi\)
\(384\) 0 0
\(385\) 3.83189 0.772025i 0.195291 0.0393460i
\(386\) 32.1366 1.63571
\(387\) 0 0
\(388\) −0.280601 0.863601i −0.0142454 0.0438427i
\(389\) 6.90000 1.46664i 0.349844 0.0743616i −0.0296383 0.999561i \(-0.509436\pi\)
0.379482 + 0.925199i \(0.376102\pi\)
\(390\) 0 0
\(391\) −19.8424 + 8.83440i −1.00347 + 0.446775i
\(392\) −12.7954 14.2108i −0.646266 0.717751i
\(393\) 0 0
\(394\) 11.4952 + 5.11797i 0.579118 + 0.257840i
\(395\) 29.7842 1.49860
\(396\) 0 0
\(397\) 1.54426 0.0775042 0.0387521 0.999249i \(-0.487662\pi\)
0.0387521 + 0.999249i \(0.487662\pi\)
\(398\) −8.39981 3.73984i −0.421044 0.187461i
\(399\) 0 0
\(400\) −19.8354 22.0294i −0.991769 1.10147i
\(401\) −20.2465 + 9.01430i −1.01106 + 0.450153i −0.844315 0.535847i \(-0.819992\pi\)
−0.166745 + 0.986000i \(0.553326\pi\)
\(402\) 0 0
\(403\) −6.39650 + 1.35962i −0.318632 + 0.0677274i
\(404\) 0.0469894 + 0.144619i 0.00233781 + 0.00719505i
\(405\) 0 0
\(406\) −2.56533 −0.127315
\(407\) 8.05450 8.75646i 0.399247 0.434042i
\(408\) 0 0
\(409\) 0.495068 + 4.71026i 0.0244796 + 0.232907i 0.999920 + 0.0126443i \(0.00402493\pi\)
−0.975440 + 0.220263i \(0.929308\pi\)
\(410\) 54.8098 + 11.6502i 2.70686 + 0.575361i
\(411\) 0 0
\(412\) −0.00634468 + 0.0603656i −0.000312580 + 0.00297400i
\(413\) 3.15660 + 2.29341i 0.155326 + 0.112851i
\(414\) 0 0
\(415\) 12.2210 + 37.6123i 0.599904 + 1.84631i
\(416\) 0.416063 + 0.185243i 0.0203992 + 0.00908229i
\(417\) 0 0
\(418\) 10.8676 18.3695i 0.531549 0.898482i
\(419\) 20.1474 34.8963i 0.984265 1.70480i 0.339109 0.940747i \(-0.389875\pi\)
0.645157 0.764050i \(-0.276792\pi\)
\(420\) 0 0
\(421\) −9.10282 + 10.1097i −0.443644 + 0.492717i −0.922944 0.384934i \(-0.874224\pi\)
0.479300 + 0.877651i \(0.340891\pi\)
\(422\) −2.93146 + 9.02210i −0.142701 + 0.439189i
\(423\) 0 0
\(424\) 4.53114 + 3.29207i 0.220052 + 0.159877i
\(425\) −28.8368 + 6.12945i −1.39879 + 0.297322i
\(426\) 0 0
\(427\) 0.278147 + 2.64639i 0.0134605 + 0.128068i
\(428\) 0.214556 0.371622i 0.0103710 0.0179630i
\(429\) 0 0
\(430\) −3.78377 6.55369i −0.182470 0.316047i
\(431\) 6.35439 4.61673i 0.306080 0.222380i −0.424133 0.905600i \(-0.639421\pi\)
0.730213 + 0.683220i \(0.239421\pi\)
\(432\) 0 0
\(433\) 0.426664 1.31314i 0.0205041 0.0631053i −0.940281 0.340400i \(-0.889438\pi\)
0.960785 + 0.277294i \(0.0894377\pi\)
\(434\) −0.287256 + 2.73306i −0.0137887 + 0.131191i
\(435\) 0 0
\(436\) −0.545277 0.605592i −0.0261141 0.0290026i
\(437\) 23.1131 + 4.91284i 1.10565 + 0.235013i
\(438\) 0 0
\(439\) 2.75465 + 4.77119i 0.131472 + 0.227717i 0.924244 0.381802i \(-0.124696\pi\)
−0.792772 + 0.609518i \(0.791363\pi\)
\(440\) 9.60372 + 30.6622i 0.457840 + 1.46177i
\(441\) 0 0
\(442\) 5.53478 4.02125i 0.263263 0.191272i
\(443\) −0.738277 + 0.819940i −0.0350766 + 0.0389565i −0.760428 0.649422i \(-0.775011\pi\)
0.725351 + 0.688379i \(0.241677\pi\)
\(444\) 0 0
\(445\) 11.0266 4.90936i 0.522711 0.232726i
\(446\) 8.80143 3.91865i 0.416760 0.185553i
\(447\) 0 0
\(448\) −1.74120 + 1.93380i −0.0822639 + 0.0913634i
\(449\) 1.16721 0.848031i 0.0550843 0.0400211i −0.559902 0.828559i \(-0.689161\pi\)
0.614987 + 0.788538i \(0.289161\pi\)
\(450\) 0 0
\(451\) −29.7252 22.0831i −1.39971 1.03985i
\(452\) −0.0145738 0.0252426i −0.000685496 0.00118731i
\(453\) 0 0
\(454\) 8.65049 + 1.83872i 0.405987 + 0.0862953i
\(455\) −0.912081 1.01297i −0.0427590 0.0474887i
\(456\) 0 0
\(457\) 3.15336 30.0022i 0.147508 1.40344i −0.630988 0.775793i \(-0.717350\pi\)
0.778496 0.627650i \(-0.215983\pi\)
\(458\) 10.1874 31.3537i 0.476027 1.46506i
\(459\) 0 0
\(460\) 1.03829 0.754362i 0.0484105 0.0351723i
\(461\) −13.3385 23.1030i −0.621237 1.07601i −0.989256 0.146195i \(-0.953297\pi\)
0.368019 0.929818i \(-0.380036\pi\)
\(462\) 0 0
\(463\) −0.348740 + 0.604035i −0.0162073 + 0.0280719i −0.874015 0.485898i \(-0.838493\pi\)
0.857808 + 0.513970i \(0.171826\pi\)
\(464\) −2.28104 21.7026i −0.105895 1.00752i
\(465\) 0 0
\(466\) 16.5986 3.52813i 0.768914 0.163438i
\(467\) 25.9087 + 18.8238i 1.19891 + 0.871061i 0.994177 0.107756i \(-0.0343666\pi\)
0.204736 + 0.978817i \(0.434367\pi\)
\(468\) 0 0
\(469\) 0.436828 1.34442i 0.0201709 0.0620795i
\(470\) 29.6234 32.9001i 1.36643 1.51757i
\(471\) 0 0
\(472\) −16.0363 + 27.7757i −0.738130 + 1.27848i
\(473\) 0.469864 + 4.97892i 0.0216044 + 0.228931i
\(474\) 0 0
\(475\) 29.2997 + 13.0451i 1.34436 + 0.598549i
\(476\) −0.0298958 0.0920098i −0.00137027 0.00421726i
\(477\) 0 0
\(478\) 11.2346 + 8.16240i 0.513858 + 0.373339i
\(479\) −2.29842 + 21.8680i −0.105017 + 0.999174i 0.807426 + 0.589969i \(0.200860\pi\)
−0.912443 + 0.409204i \(0.865806\pi\)
\(480\) 0 0
\(481\) −4.05816 0.862588i −0.185036 0.0393306i
\(482\) −1.09278 10.3971i −0.0497746 0.473573i
\(483\) 0 0
\(484\) −0.0962525 + 0.760014i −0.00437511 + 0.0345461i
\(485\) −45.4848 −2.06536
\(486\) 0 0
\(487\) 5.41429 + 16.6635i 0.245345 + 0.755094i 0.995580 + 0.0939221i \(0.0299405\pi\)
−0.750235 + 0.661172i \(0.770060\pi\)
\(488\) −21.3952 + 4.54768i −0.968513 + 0.205864i
\(489\) 0 0
\(490\) 31.5704 14.0560i 1.42620 0.634987i
\(491\) 0.134679 + 0.149576i 0.00607798 + 0.00675028i 0.746176 0.665749i \(-0.231888\pi\)
−0.740098 + 0.672499i \(0.765221\pi\)
\(492\) 0 0
\(493\) −19.8263 8.82724i −0.892932 0.397559i
\(494\) −7.44274 −0.334865
\(495\) 0 0
\(496\) −23.3770 −1.04966
\(497\) 0.747190 + 0.332670i 0.0335161 + 0.0149223i
\(498\) 0 0
\(499\) −16.3288 18.1349i −0.730976 0.811831i 0.257004 0.966410i \(-0.417264\pi\)
−0.987980 + 0.154579i \(0.950598\pi\)
\(500\) 0.481612 0.214427i 0.0215383 0.00958948i
\(501\) 0 0
\(502\) 18.4940 3.93102i 0.825428 0.175450i
\(503\) 5.13640 + 15.8082i 0.229021 + 0.704853i 0.997859 + 0.0654093i \(0.0208353\pi\)
−0.768838 + 0.639444i \(0.779165\pi\)
\(504\) 0 0
\(505\) 7.61689 0.338947
\(506\) −24.7080 + 4.97801i −1.09841 + 0.221299i
\(507\) 0 0
\(508\) −0.0671557 0.638944i −0.00297955 0.0283485i
\(509\) 16.5182 + 3.51105i 0.732157 + 0.155625i 0.558880 0.829249i \(-0.311231\pi\)
0.173277 + 0.984873i \(0.444565\pi\)
\(510\) 0 0
\(511\) −0.119059 + 1.13277i −0.00526687 + 0.0501109i
\(512\) −17.2604 12.5404i −0.762810 0.554214i
\(513\) 0 0
\(514\) −0.811886 2.49873i −0.0358108 0.110214i
\(515\) 2.77757 + 1.23665i 0.122394 + 0.0544935i
\(516\) 0 0
\(517\) −26.8525 + 11.6152i −1.18097 + 0.510834i
\(518\) −0.871748 + 1.50991i −0.0383024 + 0.0663418i
\(519\) 0 0
\(520\) 7.49730 8.32659i 0.328778 0.365145i
\(521\) 5.89465 18.1419i 0.258249 0.794809i −0.734923 0.678151i \(-0.762782\pi\)
0.993172 0.116658i \(-0.0372183\pi\)
\(522\) 0 0
\(523\) 12.1874 + 8.85469i 0.532919 + 0.387189i 0.821449 0.570283i \(-0.193166\pi\)
−0.288529 + 0.957471i \(0.593166\pi\)
\(524\) −1.04741 + 0.222634i −0.0457563 + 0.00972581i
\(525\) 0 0
\(526\) −0.793144 7.54626i −0.0345827 0.329033i
\(527\) −11.6245 + 20.1341i −0.506369 + 0.877057i
\(528\) 0 0
\(529\) −2.45203 4.24705i −0.106610 0.184654i
\(530\) −8.18868 + 5.94942i −0.355693 + 0.258426i
\(531\) 0 0
\(532\) −0.0325237 + 0.100098i −0.00141008 + 0.00433979i
\(533\) −1.34978 + 12.8423i −0.0584653 + 0.556261i
\(534\) 0 0
\(535\) −14.3827 15.9737i −0.621820 0.690601i
\(536\) 11.3659 + 2.41590i 0.490932 + 0.104351i
\(537\) 0 0
\(538\) 12.4825 + 21.6203i 0.538158 + 0.932117i
\(539\) −22.8365 0.242708i −0.983639 0.0104542i
\(540\) 0 0
\(541\) 5.44671 3.95727i 0.234172 0.170136i −0.464511 0.885568i \(-0.653770\pi\)
0.698683 + 0.715431i \(0.253770\pi\)
\(542\) −7.80903 + 8.67281i −0.335427 + 0.372529i
\(543\) 0 0
\(544\) 1.47919 0.658577i 0.0634197 0.0282363i
\(545\) −37.2903 + 16.6027i −1.59734 + 0.711183i
\(546\) 0 0
\(547\) 6.21789 6.90567i 0.265858 0.295265i −0.595404 0.803426i \(-0.703008\pi\)
0.861262 + 0.508161i \(0.169675\pi\)
\(548\) 0.110520 0.0802974i 0.00472117 0.00343013i
\(549\) 0 0
\(550\) −34.2084 0.363569i −1.45865 0.0155027i
\(551\) 11.8052 + 20.4471i 0.502917 + 0.871077i
\(552\) 0 0
\(553\) 2.82137 + 0.599701i 0.119977 + 0.0255019i
\(554\) 18.7349 + 20.8072i 0.795970 + 0.884014i
\(555\) 0 0
\(556\) −0.128465 + 1.22226i −0.00544812 + 0.0518354i
\(557\) 10.5763 32.5504i 0.448131 1.37921i −0.430882 0.902408i \(-0.641797\pi\)
0.879013 0.476798i \(-0.158203\pi\)
\(558\) 0 0
\(559\) 1.41087 1.02506i 0.0596734 0.0433553i
\(560\) −2.43637 4.21992i −0.102956 0.178324i
\(561\) 0 0
\(562\) −20.8522 + 36.1170i −0.879596 + 1.52350i
\(563\) −1.08683 10.3405i −0.0458044 0.435799i −0.993260 0.115911i \(-0.963021\pi\)
0.947455 0.319888i \(-0.103645\pi\)
\(564\) 0 0
\(565\) −1.42813 + 0.303558i −0.0600819 + 0.0127708i
\(566\) 11.3770 + 8.26589i 0.478212 + 0.347441i
\(567\) 0 0
\(568\) −2.07757 + 6.39409i −0.0871727 + 0.268290i
\(569\) 12.7246 14.1321i 0.533443 0.592449i −0.414832 0.909898i \(-0.636160\pi\)
0.948275 + 0.317449i \(0.102826\pi\)
\(570\) 0 0
\(571\) 15.5552 26.9425i 0.650966 1.12751i −0.331922 0.943307i \(-0.607697\pi\)
0.982889 0.184200i \(-0.0589694\pi\)
\(572\) 0.245189 0.106058i 0.0102519 0.00443449i
\(573\) 0 0
\(574\) 4.95740 + 2.20718i 0.206918 + 0.0921258i
\(575\) −11.7039 36.0208i −0.488085 1.50217i
\(576\) 0 0
\(577\) −8.81901 6.40738i −0.367140 0.266743i 0.388884 0.921287i \(-0.372861\pi\)
−0.756024 + 0.654544i \(0.772861\pi\)
\(578\) −0.0140253 + 0.133441i −0.000583374 + 0.00555043i
\(579\) 0 0
\(580\) 1.25434 + 0.266617i 0.0520834 + 0.0110707i
\(581\) 0.400339 + 3.80897i 0.0166089 + 0.158023i
\(582\) 0 0
\(583\) 6.55724 1.32111i 0.271573 0.0547147i
\(584\) −9.36268 −0.387430
\(585\) 0 0
\(586\) 11.2068 + 34.4911i 0.462950 + 1.42482i
\(587\) 22.0454 4.68590i 0.909912 0.193408i 0.270902 0.962607i \(-0.412678\pi\)
0.639009 + 0.769199i \(0.279345\pi\)
\(588\) 0 0
\(589\) 23.1059 10.2874i 0.952062 0.423885i
\(590\) −38.7838 43.0738i −1.59671 1.77332i
\(591\) 0 0
\(592\) −13.5490 6.03239i −0.556859 0.247930i
\(593\) 39.7293 1.63148 0.815742 0.578415i \(-0.196329\pi\)
0.815742 + 0.578415i \(0.196329\pi\)
\(594\) 0 0
\(595\) −4.84604 −0.198668
\(596\) −0.0429174 0.0191081i −0.00175797 0.000782697i
\(597\) 0 0
\(598\) 5.88109 + 6.53161i 0.240496 + 0.267097i
\(599\) −7.51680 + 3.34669i −0.307128 + 0.136742i −0.554513 0.832175i \(-0.687095\pi\)
0.247385 + 0.968917i \(0.420429\pi\)
\(600\) 0 0
\(601\) 22.4921 4.78084i 0.917471 0.195015i 0.275107 0.961414i \(-0.411287\pi\)
0.642365 + 0.766399i \(0.277953\pi\)
\(602\) −0.226469 0.696998i −0.00923017 0.0284075i
\(603\) 0 0
\(604\) 0.384718 0.0156539
\(605\) 34.7167 + 16.3496i 1.41143 + 0.664707i
\(606\) 0 0
\(607\) −0.00457413 0.0435199i −0.000185658 0.00176642i 0.994429 0.105412i \(-0.0336160\pi\)
−0.994614 + 0.103645i \(0.966949\pi\)
\(608\) −1.72301 0.366237i −0.0698773 0.0148529i
\(609\) 0 0
\(610\) 4.13192 39.3126i 0.167296 1.59172i
\(611\) 8.25383 + 5.99676i 0.333914 + 0.242603i
\(612\) 0 0
\(613\) −9.45678 29.1050i −0.381956 1.17554i −0.938665 0.344832i \(-0.887936\pi\)
0.556709 0.830708i \(-0.312064\pi\)
\(614\) −5.88336 2.61944i −0.237433 0.105712i
\(615\) 0 0
\(616\) 0.292353 + 3.09792i 0.0117792 + 0.124819i
\(617\) −4.32264 + 7.48703i −0.174023 + 0.301416i −0.939823 0.341663i \(-0.889010\pi\)
0.765800 + 0.643079i \(0.222343\pi\)
\(618\) 0 0
\(619\) −22.5537 + 25.0484i −0.906508 + 1.00678i 0.0934301 + 0.995626i \(0.470217\pi\)
−0.999938 + 0.0111530i \(0.996450\pi\)
\(620\) 0.424505 1.30649i 0.0170485 0.0524700i
\(621\) 0 0
\(622\) 26.3752 + 19.1627i 1.05755 + 0.768354i
\(623\) 1.14337 0.243031i 0.0458081 0.00973682i
\(624\) 0 0
\(625\) 0.986962 + 9.39032i 0.0394785 + 0.375613i
\(626\) 12.0001 20.7848i 0.479620 0.830726i
\(627\) 0 0
\(628\) −0.0276773 0.0479385i −0.00110444 0.00191295i
\(629\) −11.9329 + 8.66978i −0.475797 + 0.345687i
\(630\) 0 0
\(631\) 4.15555 12.7895i 0.165430 0.509140i −0.833638 0.552311i \(-0.813746\pi\)
0.999068 + 0.0431710i \(0.0137460\pi\)
\(632\) −2.47835 + 23.5799i −0.0985833 + 0.937957i
\(633\) 0 0
\(634\) −24.4197 27.1208i −0.969829 1.07710i
\(635\) −31.4784 6.69093i −1.24918 0.265522i
\(636\) 0 0
\(637\) 3.98193 + 6.89690i 0.157770 + 0.273265i
\(638\) −20.2159 15.0185i −0.800354 0.594589i
\(639\) 0 0
\(640\) 33.4960 24.3363i 1.32405 0.961976i
\(641\) 10.0567 11.1691i 0.397215 0.441152i −0.511047 0.859553i \(-0.670742\pi\)
0.908263 + 0.418400i \(0.137409\pi\)
\(642\) 0 0
\(643\) 11.7551 5.23371i 0.463576 0.206397i −0.161639 0.986850i \(-0.551678\pi\)
0.625215 + 0.780453i \(0.285011\pi\)
\(644\) 0.113543 0.0505528i 0.00447424 0.00199206i
\(645\) 0 0
\(646\) −17.7055 + 19.6640i −0.696614 + 0.773669i
\(647\) −15.1827 + 11.0309i −0.596894 + 0.433669i −0.844775 0.535121i \(-0.820266\pi\)
0.247881 + 0.968791i \(0.420266\pi\)
\(648\) 0 0
\(649\) 11.4488 + 36.5531i 0.449404 + 1.43483i
\(650\) 5.96480 + 10.3313i 0.233959 + 0.405228i
\(651\) 0 0
\(652\) −0.981295 0.208581i −0.0384305 0.00816865i
\(653\) 11.4699 + 12.7386i 0.448850 + 0.498499i 0.924524 0.381123i \(-0.124462\pi\)
−0.475674 + 0.879622i \(0.657796\pi\)
\(654\) 0 0
\(655\) −5.60669 + 53.3441i −0.219071 + 2.08433i
\(656\) −14.2647 + 43.9021i −0.556941 + 1.71409i
\(657\) 0 0
\(658\) 3.46858 2.52007i 0.135219 0.0982427i
\(659\) −20.2286 35.0370i −0.787995 1.36485i −0.927193 0.374583i \(-0.877786\pi\)
0.139198 0.990265i \(-0.455548\pi\)
\(660\) 0 0
\(661\) −13.2018 + 22.8661i −0.513489 + 0.889390i 0.486388 + 0.873743i \(0.338314\pi\)
−0.999878 + 0.0156469i \(0.995019\pi\)
\(662\) 1.14112 + 10.8570i 0.0443508 + 0.421970i
\(663\) 0 0
\(664\) −30.7942 + 6.54551i −1.19505 + 0.254015i
\(665\) 4.26516 + 3.09882i 0.165396 + 0.120167i
\(666\) 0 0
\(667\) 8.61585 26.5168i 0.333607 1.02674i
\(668\) 0.632415 0.702368i 0.0244689 0.0271754i
\(669\) 0 0
\(670\) −10.4997 + 18.1860i −0.405638 + 0.702585i
\(671\) −13.3012 + 22.4830i −0.513486 + 0.867948i
\(672\) 0 0
\(673\) −20.2772 9.02800i −0.781630 0.348004i −0.0231764 0.999731i \(-0.507378\pi\)
−0.758453 + 0.651727i \(0.774045\pi\)
\(674\) 6.40622 + 19.7163i 0.246758 + 0.759444i
\(675\) 0 0
\(676\) 0.657096 + 0.477409i 0.0252729 + 0.0183619i
\(677\) −3.87015 + 36.8221i −0.148742 + 1.41519i 0.624475 + 0.781045i \(0.285313\pi\)
−0.773217 + 0.634142i \(0.781354\pi\)
\(678\) 0 0
\(679\) −4.30865 0.915831i −0.165351 0.0351464i
\(680\) −4.16383 39.6162i −0.159676 1.51921i
\(681\) 0 0
\(682\) −18.2642 + 19.8559i −0.699371 + 0.760322i
\(683\) −27.2029 −1.04089 −0.520445 0.853895i \(-0.674234\pi\)
−0.520445 + 0.853895i \(0.674234\pi\)
\(684\) 0 0
\(685\) −2.11458 6.50801i −0.0807940 0.248658i
\(686\) 6.60144 1.40318i 0.252044 0.0535737i
\(687\) 0 0
\(688\) 5.69522 2.53567i 0.217128 0.0966717i
\(689\) −1.56078 1.73342i −0.0594609 0.0660380i
\(690\) 0 0
\(691\) 13.6125 + 6.06070i 0.517846 + 0.230560i 0.648981 0.760805i \(-0.275196\pi\)
−0.131135 + 0.991364i \(0.541862\pi\)
\(692\) 1.22480 0.0465598
\(693\) 0 0
\(694\) −24.2297 −0.919746
\(695\) 56.2392 + 25.0393i 2.13327 + 0.949795i
\(696\) 0 0
\(697\) 30.7187 + 34.1166i 1.16355 + 1.29226i
\(698\) −40.1882 + 17.8929i −1.52115 + 0.677258i
\(699\) 0 0
\(700\) 0.165012 0.0350744i 0.00623686 0.00132569i
\(701\) 1.74688 + 5.37634i 0.0659787 + 0.203062i 0.978611 0.205720i \(-0.0659537\pi\)
−0.912632 + 0.408782i \(0.865954\pi\)
\(702\) 0 0
\(703\) 16.0465 0.605204
\(704\) −25.0426 + 5.04542i −0.943830 + 0.190157i
\(705\) 0 0
\(706\) −0.0731564 0.696037i −0.00275328 0.0261957i
\(707\) 0.721526 + 0.153365i 0.0271358 + 0.00576789i
\(708\) 0 0
\(709\) −4.95891 + 47.1808i −0.186236 + 1.77191i 0.358716 + 0.933447i \(0.383215\pi\)
−0.544952 + 0.838467i \(0.683452\pi\)
\(710\) −9.82960 7.14163i −0.368898 0.268020i
\(711\) 0 0
\(712\) 2.96918 + 9.13819i 0.111275 + 0.342468i
\(713\) −27.2858 12.1484i −1.02186 0.454962i
\(714\) 0 0
\(715\) −1.25724 13.3223i −0.0470180 0.498226i
\(716\) −0.560020 + 0.969983i −0.0209289 + 0.0362500i
\(717\) 0 0
\(718\) 32.9027 36.5422i 1.22792 1.36374i
\(719\) −6.92225 + 21.3045i −0.258157 + 0.794524i 0.735035 + 0.678029i \(0.237166\pi\)
−0.993191 + 0.116495i \(0.962834\pi\)
\(720\) 0 0
\(721\) 0.238212 + 0.173071i 0.00887146 + 0.00644549i
\(722\) 1.42081 0.302003i 0.0528772 0.0112394i
\(723\) 0 0
\(724\) 0.108160 + 1.02907i 0.00401973 + 0.0382452i
\(725\) 18.9219 32.7737i 0.702742 1.21718i
\(726\) 0 0
\(727\) −9.63134 16.6820i −0.357207 0.618700i 0.630286 0.776363i \(-0.282937\pi\)
−0.987493 + 0.157663i \(0.949604\pi\)
\(728\) 0.877853 0.637798i 0.0325354 0.0236383i
\(729\) 0 0
\(730\) 5.22864 16.0921i 0.193521 0.595595i
\(731\) 0.648079 6.16606i 0.0239701 0.228060i
\(732\) 0 0
\(733\) 24.8205 + 27.5659i 0.916765 + 1.01817i 0.999766 + 0.0216214i \(0.00688283\pi\)
−0.0830011 + 0.996549i \(0.526451\pi\)
\(734\) −3.32601 0.706966i −0.122765 0.0260946i
\(735\) 0 0
\(736\) 1.04008 + 1.80147i 0.0383379 + 0.0664032i
\(737\) 11.3132 8.03721i 0.416726 0.296054i
\(738\) 0 0
\(739\) −24.2184 + 17.5957i −0.890888 + 0.647268i −0.936109 0.351709i \(-0.885601\pi\)
0.0452217 + 0.998977i \(0.485601\pi\)
\(740\) 0.583174 0.647680i 0.0214379 0.0238092i
\(741\) 0 0
\(742\) −0.895481 + 0.398694i −0.0328742 + 0.0146365i
\(743\) 5.66871 2.52387i 0.207965 0.0925919i −0.300111 0.953904i \(-0.597024\pi\)
0.508076 + 0.861312i \(0.330357\pi\)
\(744\) 0 0
\(745\) −1.57461 + 1.74879i −0.0576894 + 0.0640706i
\(746\) −26.6135 + 19.3358i −0.974389 + 0.707935i
\(747\) 0 0
\(748\) 0.303072 0.900098i 0.0110814 0.0329108i
\(749\) −1.04081 1.80273i −0.0380303 0.0658705i
\(750\) 0 0
\(751\) −0.470257 0.0999562i −0.0171599 0.00364745i 0.199324 0.979934i \(-0.436125\pi\)
−0.216484 + 0.976286i \(0.569459\pi\)
\(752\) 24.4039 + 27.1033i 0.889920 + 0.988357i
\(753\) 0 0
\(754\) −0.917972 + 8.73392i −0.0334306 + 0.318071i
\(755\) 5.95503 18.3277i 0.216726 0.667014i
\(756\) 0 0
\(757\) −7.65001 + 5.55806i −0.278045 + 0.202011i −0.718064 0.695977i \(-0.754972\pi\)
0.440020 + 0.897988i \(0.354972\pi\)
\(758\) 19.4945 + 33.7655i 0.708074 + 1.22642i
\(759\) 0 0
\(760\) −21.6680 + 37.5301i −0.785981 + 1.36136i
\(761\) 0.0588940 + 0.560339i 0.00213491 + 0.0203123i 0.995537 0.0943669i \(-0.0300827\pi\)
−0.993403 + 0.114679i \(0.963416\pi\)
\(762\) 0 0
\(763\) −3.86670 + 0.821893i −0.139984 + 0.0297545i
\(764\) −0.0763161 0.0554469i −0.00276102 0.00200600i
\(765\) 0 0
\(766\) 9.33392 28.7268i 0.337248 1.03794i
\(767\) 8.93768 9.92630i 0.322721 0.358418i
\(768\) 0 0
\(769\) 22.9258 39.7086i 0.826725 1.43193i −0.0738688 0.997268i \(-0.523535\pi\)
0.900594 0.434662i \(-0.143132\pi\)
\(770\) −5.48781 1.22757i −0.197767 0.0442385i
\(771\) 0 0
\(772\) −1.42124 0.632776i −0.0511514 0.0227741i
\(773\) 14.6681 + 45.1438i 0.527575 + 1.62371i 0.759166 + 0.650897i \(0.225607\pi\)
−0.231591 + 0.972813i \(0.574393\pi\)
\(774\) 0 0
\(775\) −32.7977 23.8289i −1.17813 0.855960i
\(776\) 3.78480 36.0099i 0.135866 1.29268i
\(777\) 0 0
\(778\) −9.92651 2.10995i −0.355883 0.0756452i
\(779\) −5.22056 49.6703i −0.187046 1.77962i
\(780\) 0 0
\(781\) 3.94058 + 6.99594i 0.141005 + 0.250335i
\(782\) 31.2472 1.11740
\(783\) 0 0
\(784\) 8.79746 + 27.0758i 0.314195 + 0.966993i
\(785\) −2.71217 + 0.576490i −0.0968017 + 0.0205758i
\(786\) 0 0
\(787\) −22.5174 + 10.0254i −0.802659 + 0.357367i −0.766716 0.641987i \(-0.778110\pi\)
−0.0359435 + 0.999354i \(0.511444\pi\)
\(788\) −0.407598 0.452683i −0.0145201 0.0161262i
\(789\) 0 0
\(790\) −39.1438 17.4280i −1.39268 0.620059i
\(791\) −0.141395 −0.00502742
\(792\) 0 0
\(793\) 9.10942 0.323485
\(794\) −2.02954 0.903611i −0.0720258 0.0320679i
\(795\) 0 0
\(796\) 0.297842 + 0.330787i 0.0105567 + 0.0117244i
\(797\) 36.9213 16.4384i 1.30782 0.582278i 0.369880 0.929080i \(-0.379399\pi\)
0.937939 + 0.346801i \(0.112732\pi\)
\(798\) 0 0
\(799\) 35.4786 7.54122i 1.25514 0.266789i
\(800\) 0.872487 + 2.68524i 0.0308471 + 0.0949376i
\(801\) 0 0
\(802\) 31.8835 1.12585
\(803\) −7.56996 + 8.22970i −0.267138 + 0.290420i
\(804\) 0 0
\(805\) −0.650767 6.19164i −0.0229365 0.218226i
\(806\) 9.20217 + 1.95598i 0.324132 + 0.0688965i
\(807\) 0 0
\(808\) −0.633802 + 6.03023i −0.0222971 + 0.212143i
\(809\) 10.3850 + 7.54517i 0.365119 + 0.265274i 0.755184 0.655513i \(-0.227548\pi\)
−0.390065 + 0.920787i \(0.627548\pi\)
\(810\) 0 0
\(811\) 11.5743 + 35.6220i 0.406428 + 1.25086i 0.919697 + 0.392629i \(0.128434\pi\)
−0.513269 + 0.858228i \(0.671566\pi\)
\(812\) 0.113451 + 0.0505118i 0.00398136 + 0.00177262i
\(813\) 0 0
\(814\) −15.7094 + 6.79516i −0.550614 + 0.238170i
\(815\) −25.1261 + 43.5196i −0.880128 + 1.52443i
\(816\) 0 0
\(817\) −4.51331 + 5.01253i −0.157901 + 0.175366i
\(818\) 2.10553 6.48015i 0.0736180 0.226573i
\(819\) 0 0
\(820\) −2.19456 1.59444i −0.0766374 0.0556803i
\(821\) −46.5293 + 9.89011i −1.62388 + 0.345167i −0.927882 0.372873i \(-0.878373\pi\)
−0.696002 + 0.718040i \(0.745039\pi\)
\(822\) 0 0
\(823\) −4.20257 39.9847i −0.146492 1.39378i −0.782765 0.622317i \(-0.786192\pi\)
0.636273 0.771464i \(-0.280475\pi\)
\(824\) −1.21017 + 2.09608i −0.0421583 + 0.0730203i
\(825\) 0 0
\(826\) −2.80660 4.86117i −0.0976541 0.169142i
\(827\) 22.4362 16.3008i 0.780182 0.566835i −0.124852 0.992175i \(-0.539846\pi\)
0.905034 + 0.425340i \(0.139846\pi\)
\(828\) 0 0
\(829\) 15.8416 48.7555i 0.550202 1.69335i −0.158087 0.987425i \(-0.550533\pi\)
0.708289 0.705923i \(-0.249467\pi\)
\(830\) 5.94710 56.5829i 0.206427 1.96402i
\(831\) 0 0
\(832\) 5.96074 + 6.62007i 0.206651 + 0.229510i
\(833\) 27.6944 + 5.88664i 0.959555 + 0.203960i
\(834\) 0 0
\(835\) −23.6712 40.9998i −0.819177 1.41886i
\(836\) −0.842314 + 0.598404i −0.0291320 + 0.0206962i
\(837\) 0 0
\(838\) −46.8980 + 34.0734i −1.62007 + 1.17705i
\(839\) −0.0921287 + 0.102319i −0.00318063 + 0.00353245i −0.744733 0.667362i \(-0.767423\pi\)
0.741552 + 0.670895i \(0.234090\pi\)
\(840\) 0 0
\(841\) −1.04247 + 0.464137i −0.0359472 + 0.0160047i
\(842\) 17.8790 7.96024i 0.616151 0.274328i
\(843\) 0 0
\(844\) 0.307290 0.341280i 0.0105774 0.0117474i
\(845\) 32.9146 23.9139i 1.13230 0.822662i
\(846\) 0 0
\(847\) 2.95942 + 2.24777i 0.101687 + 0.0772343i
\(848\) −4.16919 7.22124i −0.143170 0.247978i
\(849\) 0 0
\(850\) 41.4854 + 8.81799i 1.42294 + 0.302455i
\(851\) −12.6796 14.0821i −0.434650 0.482727i
\(852\) 0 0
\(853\) −1.60566 + 15.2768i −0.0549767 + 0.523068i 0.932029 + 0.362383i \(0.118037\pi\)
−0.987006 + 0.160685i \(0.948630\pi\)
\(854\) 1.18296 3.64077i 0.0404800 0.124585i
\(855\) 0 0
\(856\) 13.8430 10.0575i 0.473144 0.343759i
\(857\) −11.5275 19.9662i −0.393773 0.682034i 0.599171 0.800621i \(-0.295497\pi\)
−0.992944 + 0.118587i \(0.962164\pi\)
\(858\) 0 0
\(859\) 27.0597 46.8688i 0.923265 1.59914i 0.128937 0.991653i \(-0.458844\pi\)
0.794328 0.607489i \(-0.207823\pi\)
\(860\) 0.0382936 + 0.364339i 0.00130580 + 0.0124239i
\(861\) 0 0
\(862\) −11.0527 + 2.34932i −0.376457 + 0.0800183i
\(863\) −34.3062 24.9249i −1.16780 0.848453i −0.177052 0.984201i \(-0.556656\pi\)
−0.990743 + 0.135748i \(0.956656\pi\)
\(864\) 0 0
\(865\) 18.9586 58.3486i 0.644612 1.98391i
\(866\) −1.32911 + 1.47613i −0.0451651 + 0.0501609i
\(867\) 0 0
\(868\) 0.0665182 0.115213i 0.00225778 0.00391058i
\(869\) 18.7227 + 21.2434i 0.635123 + 0.720632i
\(870\) 0 0
\(871\) −4.42089 1.96831i −0.149796 0.0666935i
\(872\) −10.0413 30.9040i −0.340042 1.04654i
\(873\) 0 0
\(874\) −27.5017 19.9811i −0.930258 0.675872i
\(875\) 0.267320 2.54338i 0.00903706 0.0859819i
\(876\) 0 0
\(877\) 49.7123 + 10.5667i 1.67866 + 0.356811i 0.946097 0.323884i \(-0.104989\pi\)
0.732567 + 0.680695i \(0.238322\pi\)
\(878\) −0.828474 7.88240i −0.0279596 0.266018i
\(879\) 0 0
\(880\) 5.50555 47.5183i 0.185592 1.60184i
\(881\) 33.9359 1.14333 0.571665 0.820487i \(-0.306298\pi\)
0.571665 + 0.820487i \(0.306298\pi\)
\(882\) 0 0
\(883\) −14.3560 44.1833i −0.483119 1.48689i −0.834687 0.550725i \(-0.814351\pi\)
0.351568 0.936162i \(-0.385649\pi\)
\(884\) −0.323954 + 0.0688585i −0.0108958 + 0.00231596i
\(885\) 0 0
\(886\) 1.45006 0.645609i 0.0487158 0.0216897i
\(887\) 16.3803 + 18.1922i 0.549997 + 0.610833i 0.952483 0.304593i \(-0.0985204\pi\)
−0.402486 + 0.915426i \(0.631854\pi\)
\(888\) 0 0
\(889\) −2.84714 1.26763i −0.0954899 0.0425148i
\(890\) −17.3644 −0.582056
\(891\) 0 0
\(892\) −0.466401 −0.0156162
\(893\) −36.0482 16.0497i −1.20631 0.537082i
\(894\) 0 0
\(895\) 37.5408 + 41.6933i 1.25485 + 1.39365i
\(896\) 3.66299 1.63087i 0.122372 0.0544835i
\(897\) 0 0
\(898\) −2.03023 + 0.431539i −0.0677497 + 0.0144006i
\(899\) −9.22225 28.3832i −0.307579 0.946632i
\(900\) 0 0
\(901\) −8.29267 −0.276269
\(902\) 26.1447 + 46.4162i 0.870522 + 1.54549i
\(903\) 0 0
\(904\) −0.121490 1.15590i −0.00404069 0.0384446i
\(905\) 50.6985 + 10.7763i 1.68528 + 0.358217i
\(906\) 0 0
\(907\) 3.59491 34.2032i 0.119367 1.13570i −0.756785 0.653664i \(-0.773231\pi\)
0.876152 0.482036i \(-0.160102\pi\)
\(908\) −0.346362 0.251647i −0.0114944 0.00835118i
\(909\) 0 0
\(910\) 0.605972 + 1.86499i 0.0200878 + 0.0618238i
\(911\) 14.4082 + 6.41493i 0.477364 + 0.212536i 0.631291 0.775546i \(-0.282525\pi\)
−0.153927 + 0.988082i \(0.549192\pi\)
\(912\) 0 0
\(913\) −19.1445 + 32.3600i −0.633590 + 1.07096i
\(914\) −21.6998 + 37.5852i −0.717767 + 1.24321i
\(915\) 0 0
\(916\) −1.06790 + 1.18602i −0.0352843 + 0.0391872i
\(917\) −1.60518 + 4.94024i −0.0530078 + 0.163141i
\(918\) 0 0
\(919\) −24.4677 17.7768i −0.807115 0.586403i 0.105878 0.994379i \(-0.466235\pi\)
−0.912993 + 0.407976i \(0.866235\pi\)
\(920\) 50.0572 10.6400i 1.65034 0.350790i
\(921\) 0 0
\(922\) 4.01162 + 38.1680i 0.132116 + 1.25700i
\(923\) 1.39998 2.42484i 0.0460809 0.0798145i
\(924\) 0 0
\(925\) −12.8600 22.2743i −0.422836 0.732373i
\(926\) 0.811777 0.589790i 0.0266766 0.0193817i
\(927\) 0 0
\(928\) −0.642285 + 1.97675i −0.0210840 + 0.0648900i
\(929\) 0.0320686 0.305112i 0.00105214 0.0100104i −0.993983 0.109532i \(-0.965065\pi\)
0.995035 + 0.0995219i \(0.0317313\pi\)
\(930\) 0 0
\(931\) −20.6105 22.8903i −0.675483 0.750200i
\(932\) −0.803538 0.170797i −0.0263208 0.00559465i
\(933\) 0 0
\(934\) −23.0360 39.8994i −0.753760 1.30555i
\(935\) −38.1888 28.3707i −1.24891 0.927823i
\(936\) 0 0
\(937\) −11.1295 + 8.08603i −0.363584 + 0.264159i −0.754545 0.656248i \(-0.772143\pi\)
0.390962 + 0.920407i \(0.372143\pi\)
\(938\) −1.36078 + 1.51130i −0.0444309 + 0.0493456i
\(939\) 0 0
\(940\) −1.95790 + 0.871713i −0.0638596 + 0.0284321i
\(941\) −2.27374 + 1.01233i −0.0741216 + 0.0330011i −0.443463 0.896293i \(-0.646250\pi\)
0.369341 + 0.929294i \(0.379583\pi\)
\(942\) 0 0
\(943\) −39.4645 + 43.8298i −1.28514 + 1.42730i
\(944\) 38.6298 28.0662i 1.25729 0.913477i
\(945\) 0 0
\(946\) 2.29585 6.81848i 0.0746446 0.221688i
\(947\) −7.58098 13.1306i −0.246349 0.426689i 0.716161 0.697935i \(-0.245898\pi\)
−0.962510 + 0.271246i \(0.912564\pi\)
\(948\) 0 0
\(949\) 3.81403 + 0.810698i 0.123809 + 0.0263164i
\(950\) −30.8739 34.2890i −1.00168 1.11248i
\(951\) 0 0
\(952\) 0.403240 3.83657i 0.0130691 0.124344i
\(953\) −6.45470 + 19.8655i −0.209088 + 0.643507i 0.790433 + 0.612549i \(0.209856\pi\)
−0.999521 + 0.0309580i \(0.990144\pi\)
\(954\) 0 0
\(955\) −3.82275 + 2.77739i −0.123701 + 0.0898742i
\(956\) −0.336128 0.582191i −0.0108712 0.0188294i
\(957\) 0 0
\(958\) 15.8166 27.3951i 0.511010 0.885095i
\(959\) −0.0692703 0.659063i −0.00223685 0.0212822i
\(960\) 0 0
\(961\) −0.949012 + 0.201719i −0.0306133 + 0.00650705i
\(962\) 4.82870 + 3.50825i 0.155683 + 0.113111i
\(963\) 0 0
\(964\) −0.156392 + 0.481326i −0.00503705 + 0.0155025i
\(965\) −52.1443 + 57.9121i −1.67858 + 1.86426i
\(966\) 0 0
\(967\) −28.6868 + 49.6870i −0.922505 + 1.59783i −0.126980 + 0.991905i \(0.540528\pi\)
−0.795525 + 0.605920i \(0.792805\pi\)
\(968\) −15.8326 + 26.1244i −0.508881 + 0.839671i
\(969\) 0 0
\(970\) 59.7784 + 26.6150i 1.91937 + 0.854558i
\(971\) −1.39820 4.30322i −0.0448704 0.138097i 0.926111 0.377250i \(-0.123130\pi\)
−0.970982 + 0.239153i \(0.923130\pi\)
\(972\) 0 0
\(973\) 4.82322 + 3.50427i 0.154625 + 0.112342i
\(974\) 2.63476 25.0681i 0.0844232 0.803233i
\(975\) 0 0
\(976\) 31.8527 + 6.77051i 1.01958 + 0.216719i
\(977\) −1.87556 17.8447i −0.0600043 0.570903i −0.982678 0.185321i \(-0.940667\pi\)
0.922674 0.385582i \(-0.125999\pi\)
\(978\) 0 0
\(979\) 10.4330 + 4.77858i 0.333441 + 0.152724i
\(980\) −1.67296 −0.0534408
\(981\) 0 0
\(982\) −0.0894786 0.275387i −0.00285538 0.00878795i
\(983\) −6.31572 + 1.34245i −0.201440 + 0.0428175i −0.307527 0.951539i \(-0.599501\pi\)
0.106086 + 0.994357i \(0.466168\pi\)
\(984\) 0 0
\(985\) −27.8747 + 12.4106i −0.888162 + 0.395435i
\(986\) 20.8915 + 23.2024i 0.665322 + 0.738915i
\(987\) 0 0
\(988\) 0.329154 + 0.146549i 0.0104718 + 0.00466234i
\(989\) 7.96522 0.253279
\(990\) 0 0
\(991\) 12.2590 0.389420 0.194710 0.980861i \(-0.437623\pi\)
0.194710 + 0.980861i \(0.437623\pi\)
\(992\) 2.03407 + 0.905628i 0.0645819 + 0.0287537i
\(993\) 0 0
\(994\) −0.787335 0.874424i −0.0249728 0.0277351i
\(995\) 20.3688 9.06877i 0.645734 0.287499i
\(996\) 0 0
\(997\) −11.9369 + 2.53726i −0.378044 + 0.0803557i −0.393015 0.919532i \(-0.628568\pi\)
0.0149707 + 0.999888i \(0.495234\pi\)
\(998\) 10.8486 + 33.3885i 0.343406 + 1.05689i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.n.b.91.3 72
3.2 odd 2 99.2.m.b.58.7 yes 72
9.2 odd 6 99.2.m.b.25.3 yes 72
9.4 even 3 891.2.f.e.487.7 36
9.5 odd 6 891.2.f.f.487.3 36
9.7 even 3 inner 297.2.n.b.289.7 72
11.4 even 5 inner 297.2.n.b.37.7 72
33.2 even 10 1089.2.e.o.364.14 36
33.20 odd 10 1089.2.e.p.364.5 36
33.26 odd 10 99.2.m.b.4.3 72
99.2 even 30 1089.2.e.o.727.14 36
99.4 even 15 891.2.f.e.730.7 36
99.13 odd 30 9801.2.a.cn.1.14 18
99.20 odd 30 1089.2.e.p.727.5 36
99.31 even 15 9801.2.a.cp.1.5 18
99.59 odd 30 891.2.f.f.730.3 36
99.68 even 30 9801.2.a.co.1.5 18
99.70 even 15 inner 297.2.n.b.235.3 72
99.86 odd 30 9801.2.a.cm.1.14 18
99.92 odd 30 99.2.m.b.70.7 yes 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.m.b.4.3 72 33.26 odd 10
99.2.m.b.25.3 yes 72 9.2 odd 6
99.2.m.b.58.7 yes 72 3.2 odd 2
99.2.m.b.70.7 yes 72 99.92 odd 30
297.2.n.b.37.7 72 11.4 even 5 inner
297.2.n.b.91.3 72 1.1 even 1 trivial
297.2.n.b.235.3 72 99.70 even 15 inner
297.2.n.b.289.7 72 9.7 even 3 inner
891.2.f.e.487.7 36 9.4 even 3
891.2.f.e.730.7 36 99.4 even 15
891.2.f.f.487.3 36 9.5 odd 6
891.2.f.f.730.3 36 99.59 odd 30
1089.2.e.o.364.14 36 33.2 even 10
1089.2.e.o.727.14 36 99.2 even 30
1089.2.e.p.364.5 36 33.20 odd 10
1089.2.e.p.727.5 36 99.20 odd 30
9801.2.a.cm.1.14 18 99.86 odd 30
9801.2.a.cn.1.14 18 99.13 odd 30
9801.2.a.co.1.5 18 99.68 even 30
9801.2.a.cp.1.5 18 99.31 even 15