Properties

Label 297.2.n
Level $297$
Weight $2$
Character orbit 297.n
Rep. character $\chi_{297}(37,\cdot)$
Character field $\Q(\zeta_{15})$
Dimension $80$
Newform subspaces $2$
Sturm bound $72$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.n (of order \(15\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 99 \)
Character field: \(\Q(\zeta_{15})\)
Newform subspaces: \( 2 \)
Sturm bound: \(72\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(297, [\chi])\).

Total New Old
Modular forms 336 112 224
Cusp forms 240 80 160
Eisenstein series 96 32 64

Trace form

\( 80 q + 5 q^{2} + 5 q^{4} + 2 q^{5} - 3 q^{7} + 8 q^{8} - 40 q^{10} + q^{11} - 3 q^{13} + 11 q^{14} + 5 q^{16} + 8 q^{17} + 6 q^{19} + 21 q^{20} - 5 q^{22} - 6 q^{23} + 2 q^{25} + 28 q^{26} - 36 q^{28}+ \cdots + 256 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(297, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
297.2.n.a 297.n 99.m $8$ $2.372$ \(\Q(\zeta_{15})\) None 99.2.m.a \(4\) \(0\) \(-6\) \(-1\) $\mathrm{SU}(2)[C_{15}]$ \(q+(-\zeta_{15}-\zeta_{15}^{2}-\zeta_{15}^{5}-\zeta_{15}^{6}+\cdots)q^{2}+\cdots\)
297.2.n.b 297.n 99.m $72$ $2.372$ None 99.2.m.b \(1\) \(0\) \(8\) \(-2\) $\mathrm{SU}(2)[C_{15}]$

Decomposition of \(S_{2}^{\mathrm{old}}(297, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(297, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(99, [\chi])\)\(^{\oplus 2}\)