Properties

Label 297.2.n.b.280.7
Level $297$
Weight $2$
Character 297.280
Analytic conductor $2.372$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [297,2,Mod(37,297)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(297, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([10, 6])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("297.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.n (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(9\) over \(\Q(\zeta_{15})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 280.7
Character \(\chi\) \(=\) 297.280
Dual form 297.2.n.b.262.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.992662 - 1.10246i) q^{2} +(-0.0209894 - 0.199701i) q^{4} +(0.0483964 + 0.0537496i) q^{5} +(1.78161 + 0.793226i) q^{7} +(2.15937 + 1.56887i) q^{8} +0.107298 q^{10} +(2.15852 - 2.51810i) q^{11} +(-1.08533 - 0.230693i) q^{13} +(2.64304 - 1.17676i) q^{14} +(4.26598 - 0.906761i) q^{16} +(0.0576906 - 0.177553i) q^{17} +(-4.20255 - 3.05333i) q^{19} +(0.00971804 - 0.0107930i) q^{20} +(-0.633432 - 4.87930i) q^{22} +(-3.42420 + 5.93089i) q^{23} +(0.522096 - 4.96741i) q^{25} +(-1.33169 + 0.967532i) q^{26} +(0.121013 - 0.372440i) q^{28} +(2.95048 + 1.31364i) q^{29} +(-1.61139 - 0.342511i) q^{31} +(0.565872 - 0.980120i) q^{32} +(-0.138479 - 0.239852i) q^{34} +(0.0435881 + 0.134150i) q^{35} +(-7.75416 + 5.63373i) q^{37} +(-7.53790 + 1.60223i) q^{38} +(0.0201793 + 0.191993i) q^{40} +(-4.62566 + 2.05948i) q^{41} +(4.06266 + 7.03673i) q^{43} +(-0.548173 - 0.378204i) q^{44} +(3.13951 + 9.66242i) q^{46} +(0.907572 - 8.63497i) q^{47} +(-2.13897 - 2.37557i) q^{49} +(-4.95812 - 5.50655i) q^{50} +(-0.0232893 + 0.221583i) q^{52} +(-0.467571 - 1.43904i) q^{53} +(0.239811 - 0.00584740i) q^{55} +(2.60269 + 4.50800i) q^{56} +(4.37707 - 1.94880i) q^{58} +(-0.554654 - 5.27718i) q^{59} +(-6.92183 + 1.47128i) q^{61} +(-1.97717 + 1.43649i) q^{62} +(2.17659 + 6.69887i) q^{64} +(-0.0401262 - 0.0695006i) q^{65} +(-0.447660 + 0.775370i) q^{67} +(-0.0366685 - 0.00779413i) q^{68} +(0.191164 + 0.0851116i) q^{70} +(0.476791 - 1.46741i) q^{71} +(9.31301 - 6.76630i) q^{73} +(-1.48629 + 14.1411i) q^{74} +(-0.521545 + 0.903343i) q^{76} +(5.84306 - 2.77409i) q^{77} +(-8.87869 + 9.86078i) q^{79} +(0.255196 + 0.185411i) q^{80} +(-2.32122 + 7.14398i) q^{82} +(-17.5744 + 3.73556i) q^{83} +(0.0123354 - 0.00549209i) q^{85} +(11.7906 + 2.50616i) q^{86} +(8.61161 - 2.05107i) q^{88} +12.3990 q^{89} +(-1.75064 - 1.27192i) q^{91} +(1.25628 + 0.559331i) q^{92} +(-8.61882 - 9.57217i) q^{94} +(-0.0392728 - 0.373656i) q^{95} +(6.99476 - 7.76847i) q^{97} -4.74225 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + q^{2} + 11 q^{4} + 8 q^{5} - 2 q^{7} - 6 q^{8} - 8 q^{10} + 2 q^{11} - 11 q^{13} + 10 q^{14} - 9 q^{16} + 20 q^{17} + 8 q^{19} + 45 q^{20} - 16 q^{22} - 20 q^{23} + 11 q^{25} + 12 q^{26} - 54 q^{28}+ \cdots + 328 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.992662 1.10246i 0.701918 0.779559i −0.281762 0.959484i \(-0.590919\pi\)
0.983680 + 0.179925i \(0.0575857\pi\)
\(3\) 0 0
\(4\) −0.0209894 0.199701i −0.0104947 0.0998506i
\(5\) 0.0483964 + 0.0537496i 0.0216435 + 0.0240376i 0.753869 0.657024i \(-0.228185\pi\)
−0.732226 + 0.681062i \(0.761518\pi\)
\(6\) 0 0
\(7\) 1.78161 + 0.793226i 0.673387 + 0.299811i 0.714798 0.699331i \(-0.246519\pi\)
−0.0414112 + 0.999142i \(0.513185\pi\)
\(8\) 2.15937 + 1.56887i 0.763453 + 0.554681i
\(9\) 0 0
\(10\) 0.107298 0.0339307
\(11\) 2.15852 2.51810i 0.650817 0.759235i
\(12\) 0 0
\(13\) −1.08533 0.230693i −0.301015 0.0639828i 0.0549280 0.998490i \(-0.482507\pi\)
−0.355943 + 0.934508i \(0.615840\pi\)
\(14\) 2.64304 1.17676i 0.706383 0.314502i
\(15\) 0 0
\(16\) 4.26598 0.906761i 1.06649 0.226690i
\(17\) 0.0576906 0.177553i 0.0139920 0.0430630i −0.943817 0.330469i \(-0.892793\pi\)
0.957809 + 0.287406i \(0.0927930\pi\)
\(18\) 0 0
\(19\) −4.20255 3.05333i −0.964132 0.700483i −0.0100254 0.999950i \(-0.503191\pi\)
−0.954107 + 0.299467i \(0.903191\pi\)
\(20\) 0.00971804 0.0107930i 0.00217302 0.00241338i
\(21\) 0 0
\(22\) −0.633432 4.87930i −0.135048 1.04027i
\(23\) −3.42420 + 5.93089i −0.713995 + 1.23668i 0.249351 + 0.968413i \(0.419783\pi\)
−0.963346 + 0.268263i \(0.913551\pi\)
\(24\) 0 0
\(25\) 0.522096 4.96741i 0.104419 0.993481i
\(26\) −1.33169 + 0.967532i −0.261166 + 0.189749i
\(27\) 0 0
\(28\) 0.121013 0.372440i 0.0228693 0.0703845i
\(29\) 2.95048 + 1.31364i 0.547890 + 0.243937i 0.661964 0.749536i \(-0.269723\pi\)
−0.114073 + 0.993472i \(0.536390\pi\)
\(30\) 0 0
\(31\) −1.61139 0.342511i −0.289413 0.0615167i 0.0609172 0.998143i \(-0.480597\pi\)
−0.350331 + 0.936626i \(0.613931\pi\)
\(32\) 0.565872 0.980120i 0.100033 0.173262i
\(33\) 0 0
\(34\) −0.138479 0.239852i −0.0237489 0.0411343i
\(35\) 0.0435881 + 0.134150i 0.00736773 + 0.0226755i
\(36\) 0 0
\(37\) −7.75416 + 5.63373i −1.27478 + 0.926179i −0.999382 0.0351519i \(-0.988808\pi\)
−0.275395 + 0.961331i \(0.588808\pi\)
\(38\) −7.53790 + 1.60223i −1.22281 + 0.259916i
\(39\) 0 0
\(40\) 0.0201793 + 0.191993i 0.00319063 + 0.0303568i
\(41\) −4.62566 + 2.05948i −0.722407 + 0.321636i −0.734797 0.678287i \(-0.762723\pi\)
0.0123903 + 0.999923i \(0.496056\pi\)
\(42\) 0 0
\(43\) 4.06266 + 7.03673i 0.619549 + 1.07309i 0.989568 + 0.144066i \(0.0460179\pi\)
−0.370019 + 0.929024i \(0.620649\pi\)
\(44\) −0.548173 0.378204i −0.0826402 0.0570165i
\(45\) 0 0
\(46\) 3.13951 + 9.66242i 0.462896 + 1.42465i
\(47\) 0.907572 8.63497i 0.132383 1.25954i −0.703525 0.710670i \(-0.748392\pi\)
0.835908 0.548869i \(-0.184942\pi\)
\(48\) 0 0
\(49\) −2.13897 2.37557i −0.305568 0.339367i
\(50\) −4.95812 5.50655i −0.701183 0.778743i
\(51\) 0 0
\(52\) −0.0232893 + 0.221583i −0.00322965 + 0.0307280i
\(53\) −0.467571 1.43904i −0.0642259 0.197667i 0.913794 0.406177i \(-0.133138\pi\)
−0.978020 + 0.208510i \(0.933138\pi\)
\(54\) 0 0
\(55\) 0.239811 0.00584740i 0.0323361 0.000788463i
\(56\) 2.60269 + 4.50800i 0.347800 + 0.602406i
\(57\) 0 0
\(58\) 4.37707 1.94880i 0.574737 0.255889i
\(59\) −0.554654 5.27718i −0.0722098 0.687030i −0.969417 0.245420i \(-0.921074\pi\)
0.897207 0.441610i \(-0.145593\pi\)
\(60\) 0 0
\(61\) −6.92183 + 1.47128i −0.886249 + 0.188378i −0.628477 0.777828i \(-0.716322\pi\)
−0.257772 + 0.966206i \(0.582988\pi\)
\(62\) −1.97717 + 1.43649i −0.251100 + 0.182435i
\(63\) 0 0
\(64\) 2.17659 + 6.69887i 0.272074 + 0.837359i
\(65\) −0.0401262 0.0695006i −0.00497704 0.00862049i
\(66\) 0 0
\(67\) −0.447660 + 0.775370i −0.0546904 + 0.0947265i −0.892074 0.451888i \(-0.850751\pi\)
0.837384 + 0.546615i \(0.184084\pi\)
\(68\) −0.0366685 0.00779413i −0.00444671 0.000945177i
\(69\) 0 0
\(70\) 0.191164 + 0.0851116i 0.0228485 + 0.0101728i
\(71\) 0.476791 1.46741i 0.0565847 0.174150i −0.918770 0.394794i \(-0.870816\pi\)
0.975354 + 0.220644i \(0.0708159\pi\)
\(72\) 0 0
\(73\) 9.31301 6.76630i 1.09001 0.791935i 0.110605 0.993864i \(-0.464721\pi\)
0.979400 + 0.201929i \(0.0647211\pi\)
\(74\) −1.48629 + 14.1411i −0.172777 + 1.64387i
\(75\) 0 0
\(76\) −0.521545 + 0.903343i −0.0598253 + 0.103620i
\(77\) 5.84306 2.77409i 0.665878 0.316137i
\(78\) 0 0
\(79\) −8.87869 + 9.86078i −0.998930 + 1.10942i −0.00493674 + 0.999988i \(0.501571\pi\)
−0.993994 + 0.109437i \(0.965095\pi\)
\(80\) 0.255196 + 0.185411i 0.0285318 + 0.0207295i
\(81\) 0 0
\(82\) −2.32122 + 7.14398i −0.256336 + 0.788921i
\(83\) −17.5744 + 3.73556i −1.92905 + 0.410031i −0.929942 + 0.367706i \(0.880143\pi\)
−0.999104 + 0.0423259i \(0.986523\pi\)
\(84\) 0 0
\(85\) 0.0123354 0.00549209i 0.00133797 0.000595701i
\(86\) 11.7906 + 2.50616i 1.27141 + 0.270247i
\(87\) 0 0
\(88\) 8.61161 2.05107i 0.918001 0.218644i
\(89\) 12.3990 1.31429 0.657145 0.753764i \(-0.271764\pi\)
0.657145 + 0.753764i \(0.271764\pi\)
\(90\) 0 0
\(91\) −1.75064 1.27192i −0.183517 0.133333i
\(92\) 1.25628 + 0.559331i 0.130976 + 0.0583142i
\(93\) 0 0
\(94\) −8.61882 9.57217i −0.888963 0.987294i
\(95\) −0.0392728 0.373656i −0.00402931 0.0383363i
\(96\) 0 0
\(97\) 6.99476 7.76847i 0.710211 0.788769i −0.274756 0.961514i \(-0.588597\pi\)
0.984967 + 0.172745i \(0.0552637\pi\)
\(98\) −4.74225 −0.479040
\(99\) 0 0
\(100\) −1.00296 −0.100296
\(101\) 2.31661 2.57286i 0.230511 0.256009i −0.616782 0.787134i \(-0.711564\pi\)
0.847293 + 0.531125i \(0.178231\pi\)
\(102\) 0 0
\(103\) 1.86938 + 17.7860i 0.184196 + 1.75251i 0.562474 + 0.826815i \(0.309850\pi\)
−0.378278 + 0.925692i \(0.623484\pi\)
\(104\) −1.98169 2.20089i −0.194321 0.215815i
\(105\) 0 0
\(106\) −2.05062 0.912997i −0.199174 0.0886781i
\(107\) −11.3281 8.23036i −1.09513 0.795659i −0.114872 0.993380i \(-0.536646\pi\)
−0.980258 + 0.197722i \(0.936646\pi\)
\(108\) 0 0
\(109\) −5.00844 −0.479722 −0.239861 0.970807i \(-0.577102\pi\)
−0.239861 + 0.970807i \(0.577102\pi\)
\(110\) 0.231605 0.270187i 0.0220826 0.0257613i
\(111\) 0 0
\(112\) 8.31959 + 1.76838i 0.786127 + 0.167097i
\(113\) 10.3139 4.59206i 0.970252 0.431984i 0.140478 0.990084i \(-0.455136\pi\)
0.829774 + 0.558100i \(0.188469\pi\)
\(114\) 0 0
\(115\) −0.484502 + 0.102984i −0.0451800 + 0.00960331i
\(116\) 0.200406 0.616787i 0.0186072 0.0572672i
\(117\) 0 0
\(118\) −6.36848 4.62697i −0.586266 0.425947i
\(119\) 0.243622 0.270570i 0.0223328 0.0248031i
\(120\) 0 0
\(121\) −1.68162 10.8707i −0.152875 0.988246i
\(122\) −5.24900 + 9.09154i −0.475222 + 0.823109i
\(123\) 0 0
\(124\) −0.0345777 + 0.328985i −0.00310517 + 0.0295437i
\(125\) 0.584833 0.424906i 0.0523091 0.0380048i
\(126\) 0 0
\(127\) 6.14382 18.9087i 0.545176 1.67788i −0.175394 0.984498i \(-0.556120\pi\)
0.720570 0.693382i \(-0.243880\pi\)
\(128\) 11.6137 + 5.17074i 1.02651 + 0.457033i
\(129\) 0 0
\(130\) −0.116454 0.0247530i −0.0102137 0.00217098i
\(131\) −4.33332 + 7.50552i −0.378604 + 0.655761i −0.990859 0.134899i \(-0.956929\pi\)
0.612256 + 0.790660i \(0.290262\pi\)
\(132\) 0 0
\(133\) −5.06535 8.77344i −0.439221 0.760753i
\(134\) 0.410441 + 1.26321i 0.0354567 + 0.109125i
\(135\) 0 0
\(136\) 0.403134 0.292894i 0.0345685 0.0251155i
\(137\) 7.16590 1.52316i 0.612225 0.130132i 0.108644 0.994081i \(-0.465349\pi\)
0.503580 + 0.863948i \(0.332016\pi\)
\(138\) 0 0
\(139\) 0.548446 + 5.21812i 0.0465186 + 0.442595i 0.992847 + 0.119390i \(0.0380938\pi\)
−0.946329 + 0.323205i \(0.895240\pi\)
\(140\) 0.0258751 0.0115203i 0.00218684 0.000973645i
\(141\) 0 0
\(142\) −1.14448 1.98229i −0.0960423 0.166350i
\(143\) −2.92360 + 2.23500i −0.244484 + 0.186900i
\(144\) 0 0
\(145\) 0.0721850 + 0.222162i 0.00599463 + 0.0184496i
\(146\) 1.78508 16.9839i 0.147734 1.40560i
\(147\) 0 0
\(148\) 1.28782 + 1.43027i 0.105858 + 0.117567i
\(149\) −1.44722 1.60730i −0.118561 0.131675i 0.680942 0.732337i \(-0.261570\pi\)
−0.799503 + 0.600662i \(0.794904\pi\)
\(150\) 0 0
\(151\) −0.729131 + 6.93722i −0.0593358 + 0.564543i 0.923955 + 0.382501i \(0.124937\pi\)
−0.983291 + 0.182042i \(0.941729\pi\)
\(152\) −4.28457 13.1866i −0.347525 1.06957i
\(153\) 0 0
\(154\) 2.74185 9.19548i 0.220945 0.740993i
\(155\) −0.0595754 0.103188i −0.00478521 0.00828823i
\(156\) 0 0
\(157\) 16.1215 7.17774i 1.28663 0.572846i 0.354532 0.935044i \(-0.384640\pi\)
0.932101 + 0.362198i \(0.117973\pi\)
\(158\) 2.05761 + 19.5768i 0.163695 + 1.55745i
\(159\) 0 0
\(160\) 0.0800672 0.0170188i 0.00632987 0.00134546i
\(161\) −10.8051 + 7.85039i −0.851564 + 0.618697i
\(162\) 0 0
\(163\) 1.14520 + 3.52457i 0.0896991 + 0.276065i 0.985836 0.167712i \(-0.0536380\pi\)
−0.896137 + 0.443778i \(0.853638\pi\)
\(164\) 0.508370 + 0.880522i 0.0396970 + 0.0687572i
\(165\) 0 0
\(166\) −13.3272 + 23.0833i −1.03439 + 1.79161i
\(167\) −1.98612 0.422162i −0.153690 0.0326679i 0.130424 0.991458i \(-0.458366\pi\)
−0.284114 + 0.958790i \(0.591699\pi\)
\(168\) 0 0
\(169\) −10.7514 4.78682i −0.827029 0.368217i
\(170\) 0.00619009 0.0190511i 0.000474758 0.00146116i
\(171\) 0 0
\(172\) 1.31997 0.959014i 0.100647 0.0731241i
\(173\) 0.899395 8.55717i 0.0683798 0.650590i −0.905628 0.424074i \(-0.860600\pi\)
0.974007 0.226516i \(-0.0727336\pi\)
\(174\) 0 0
\(175\) 4.87045 8.43586i 0.368171 0.637691i
\(176\) 6.92486 12.6994i 0.521981 0.957253i
\(177\) 0 0
\(178\) 12.3080 13.6694i 0.922524 1.02457i
\(179\) 2.03852 + 1.48107i 0.152366 + 0.110701i 0.661357 0.750072i \(-0.269981\pi\)
−0.508990 + 0.860772i \(0.669981\pi\)
\(180\) 0 0
\(181\) 4.40514 13.5576i 0.327432 1.00773i −0.642899 0.765951i \(-0.722269\pi\)
0.970331 0.241780i \(-0.0777314\pi\)
\(182\) −3.14003 + 0.667435i −0.232755 + 0.0494735i
\(183\) 0 0
\(184\) −16.6989 + 7.43485i −1.23106 + 0.548104i
\(185\) −0.678084 0.144131i −0.0498537 0.0105967i
\(186\) 0 0
\(187\) −0.322571 0.528522i −0.0235887 0.0386494i
\(188\) −1.74346 −0.127155
\(189\) 0 0
\(190\) −0.450926 0.327617i −0.0327136 0.0237678i
\(191\) 15.6220 + 6.95537i 1.13037 + 0.503273i 0.884737 0.466090i \(-0.154338\pi\)
0.245632 + 0.969363i \(0.421004\pi\)
\(192\) 0 0
\(193\) 11.1338 + 12.3654i 0.801430 + 0.890078i 0.995866 0.0908374i \(-0.0289543\pi\)
−0.194436 + 0.980915i \(0.562288\pi\)
\(194\) −1.62102 15.4229i −0.116382 1.10730i
\(195\) 0 0
\(196\) −0.429508 + 0.477017i −0.0306792 + 0.0340727i
\(197\) 20.1670 1.43684 0.718421 0.695609i \(-0.244865\pi\)
0.718421 + 0.695609i \(0.244865\pi\)
\(198\) 0 0
\(199\) 15.9840 1.13308 0.566539 0.824035i \(-0.308282\pi\)
0.566539 + 0.824035i \(0.308282\pi\)
\(200\) 8.92064 9.90737i 0.630784 0.700557i
\(201\) 0 0
\(202\) −0.536868 5.10795i −0.0377739 0.359394i
\(203\) 4.21460 + 4.68079i 0.295807 + 0.328527i
\(204\) 0 0
\(205\) −0.334561 0.148956i −0.0233668 0.0104036i
\(206\) 21.4641 + 15.5946i 1.49547 + 1.08652i
\(207\) 0 0
\(208\) −4.83916 −0.335535
\(209\) −16.7599 + 3.99177i −1.15930 + 0.276117i
\(210\) 0 0
\(211\) 9.59130 + 2.03869i 0.660292 + 0.140349i 0.525857 0.850573i \(-0.323745\pi\)
0.134435 + 0.990922i \(0.457078\pi\)
\(212\) −0.277563 + 0.123579i −0.0190631 + 0.00848745i
\(213\) 0 0
\(214\) −20.3186 + 4.31886i −1.38895 + 0.295231i
\(215\) −0.181604 + 0.558918i −0.0123853 + 0.0381179i
\(216\) 0 0
\(217\) −2.59918 1.88841i −0.176444 0.128194i
\(218\) −4.97169 + 5.52162i −0.336725 + 0.373971i
\(219\) 0 0
\(220\) −0.00620123 0.0477678i −0.000418087 0.00322050i
\(221\) −0.103573 + 0.179395i −0.00696711 + 0.0120674i
\(222\) 0 0
\(223\) −1.76733 + 16.8151i −0.118349 + 1.12602i 0.760638 + 0.649176i \(0.224886\pi\)
−0.878988 + 0.476844i \(0.841781\pi\)
\(224\) 1.78562 1.29733i 0.119307 0.0866815i
\(225\) 0 0
\(226\) 5.17567 15.9291i 0.344280 1.05959i
\(227\) −2.90868 1.29503i −0.193056 0.0859541i 0.307932 0.951408i \(-0.400363\pi\)
−0.500988 + 0.865454i \(0.667030\pi\)
\(228\) 0 0
\(229\) −4.71589 1.00239i −0.311635 0.0662400i 0.0494393 0.998777i \(-0.484257\pi\)
−0.361074 + 0.932537i \(0.617590\pi\)
\(230\) −0.367410 + 0.636373i −0.0242263 + 0.0419612i
\(231\) 0 0
\(232\) 4.31025 + 7.46557i 0.282982 + 0.490138i
\(233\) 6.50281 + 20.0136i 0.426013 + 1.31113i 0.902021 + 0.431693i \(0.142084\pi\)
−0.476007 + 0.879441i \(0.657916\pi\)
\(234\) 0 0
\(235\) 0.508049 0.369120i 0.0331415 0.0240787i
\(236\) −1.04222 + 0.221530i −0.0678425 + 0.0144204i
\(237\) 0 0
\(238\) −0.0564587 0.537169i −0.00365967 0.0348195i
\(239\) −13.0571 + 5.81341i −0.844595 + 0.376038i −0.782969 0.622061i \(-0.786295\pi\)
−0.0616265 + 0.998099i \(0.519629\pi\)
\(240\) 0 0
\(241\) −0.0808738 0.140078i −0.00520954 0.00902319i 0.863409 0.504505i \(-0.168325\pi\)
−0.868618 + 0.495482i \(0.834992\pi\)
\(242\) −13.6538 8.93700i −0.877701 0.574492i
\(243\) 0 0
\(244\) 0.439101 + 1.35142i 0.0281106 + 0.0865155i
\(245\) 0.0241675 0.229938i 0.00154400 0.0146902i
\(246\) 0 0
\(247\) 3.85676 + 4.28337i 0.245400 + 0.272544i
\(248\) −2.94222 3.26767i −0.186831 0.207497i
\(249\) 0 0
\(250\) 0.112098 1.06655i 0.00708973 0.0674542i
\(251\) 2.75542 + 8.48032i 0.173921 + 0.535273i 0.999583 0.0288924i \(-0.00919801\pi\)
−0.825662 + 0.564165i \(0.809198\pi\)
\(252\) 0 0
\(253\) 7.54337 + 21.4244i 0.474247 + 1.34694i
\(254\) −14.7474 25.5433i −0.925337 1.60273i
\(255\) 0 0
\(256\) 4.35969 1.94106i 0.272481 0.121316i
\(257\) 0.445260 + 4.23636i 0.0277745 + 0.264257i 0.999593 + 0.0285267i \(0.00908156\pi\)
−0.971818 + 0.235730i \(0.924252\pi\)
\(258\) 0 0
\(259\) −18.2837 + 3.88633i −1.13610 + 0.241485i
\(260\) −0.0130371 + 0.00947202i −0.000808528 + 0.000587430i
\(261\) 0 0
\(262\) 3.97304 + 12.2278i 0.245455 + 0.755434i
\(263\) 11.6890 + 20.2459i 0.720774 + 1.24842i 0.960690 + 0.277623i \(0.0895467\pi\)
−0.239916 + 0.970794i \(0.577120\pi\)
\(264\) 0 0
\(265\) 0.0547189 0.0947759i 0.00336136 0.00582204i
\(266\) −14.7006 3.12470i −0.901349 0.191588i
\(267\) 0 0
\(268\) 0.164238 + 0.0731236i 0.0100325 + 0.00446674i
\(269\) 4.69356 14.4453i 0.286172 0.880746i −0.699873 0.714267i \(-0.746760\pi\)
0.986045 0.166479i \(-0.0532398\pi\)
\(270\) 0 0
\(271\) −12.7047 + 9.23053i −0.771757 + 0.560715i −0.902494 0.430703i \(-0.858266\pi\)
0.130736 + 0.991417i \(0.458266\pi\)
\(272\) 0.0851082 0.809750i 0.00516044 0.0490983i
\(273\) 0 0
\(274\) 5.43409 9.41212i 0.328286 0.568607i
\(275\) −11.3815 12.0369i −0.686328 0.725853i
\(276\) 0 0
\(277\) 5.00368 5.55715i 0.300642 0.333897i −0.573829 0.818975i \(-0.694542\pi\)
0.874470 + 0.485079i \(0.161209\pi\)
\(278\) 6.29720 + 4.57519i 0.377681 + 0.274401i
\(279\) 0 0
\(280\) −0.116342 + 0.358064i −0.00695277 + 0.0213984i
\(281\) −12.5286 + 2.66303i −0.747391 + 0.158863i −0.565836 0.824518i \(-0.691446\pi\)
−0.181555 + 0.983381i \(0.558113\pi\)
\(282\) 0 0
\(283\) −5.99350 + 2.66848i −0.356277 + 0.158625i −0.577067 0.816697i \(-0.695803\pi\)
0.220790 + 0.975321i \(0.429136\pi\)
\(284\) −0.303052 0.0644156i −0.0179828 0.00382236i
\(285\) 0 0
\(286\) −0.438141 + 5.44176i −0.0259078 + 0.321778i
\(287\) −9.87477 −0.582889
\(288\) 0 0
\(289\) 13.7251 + 9.97186i 0.807358 + 0.586580i
\(290\) 0.316581 + 0.140951i 0.0185903 + 0.00827692i
\(291\) 0 0
\(292\) −1.54671 1.71780i −0.0905145 0.100526i
\(293\) −1.22958 11.6987i −0.0718331 0.683446i −0.969886 0.243559i \(-0.921685\pi\)
0.898053 0.439887i \(-0.144982\pi\)
\(294\) 0 0
\(295\) 0.256803 0.285209i 0.0149517 0.0166055i
\(296\) −25.5827 −1.48697
\(297\) 0 0
\(298\) −3.20859 −0.185869
\(299\) 5.08459 5.64701i 0.294050 0.326575i
\(300\) 0 0
\(301\) 1.65637 + 15.7593i 0.0954717 + 0.908353i
\(302\) 6.92424 + 7.69015i 0.398445 + 0.442518i
\(303\) 0 0
\(304\) −20.6966 9.21474i −1.18703 0.528502i
\(305\) −0.414072 0.300841i −0.0237097 0.0172261i
\(306\) 0 0
\(307\) −23.8127 −1.35906 −0.679530 0.733647i \(-0.737816\pi\)
−0.679530 + 0.733647i \(0.737816\pi\)
\(308\) −0.676631 1.10864i −0.0385546 0.0631706i
\(309\) 0 0
\(310\) −0.172899 0.0367507i −0.00981998 0.00208730i
\(311\) −21.5120 + 9.57774i −1.21983 + 0.543104i −0.912726 0.408572i \(-0.866027\pi\)
−0.307105 + 0.951676i \(0.599360\pi\)
\(312\) 0 0
\(313\) 11.2007 2.38078i 0.633100 0.134569i 0.119827 0.992795i \(-0.461766\pi\)
0.513273 + 0.858225i \(0.328433\pi\)
\(314\) 8.08998 24.8984i 0.456544 1.40510i
\(315\) 0 0
\(316\) 2.15557 + 1.56611i 0.121260 + 0.0881007i
\(317\) −9.84727 + 10.9365i −0.553078 + 0.614255i −0.953249 0.302185i \(-0.902284\pi\)
0.400171 + 0.916440i \(0.368951\pi\)
\(318\) 0 0
\(319\) 9.67652 4.59409i 0.541781 0.257219i
\(320\) −0.254722 + 0.441192i −0.0142394 + 0.0246634i
\(321\) 0 0
\(322\) −2.07108 + 19.7050i −0.115417 + 1.09812i
\(323\) −0.784578 + 0.570029i −0.0436551 + 0.0317173i
\(324\) 0 0
\(325\) −1.71259 + 5.27081i −0.0949975 + 0.292372i
\(326\) 5.02250 + 2.23616i 0.278171 + 0.123850i
\(327\) 0 0
\(328\) −13.2196 2.80991i −0.729929 0.155151i
\(329\) 8.46642 14.6643i 0.466769 0.808468i
\(330\) 0 0
\(331\) −6.73090 11.6583i −0.369964 0.640796i 0.619596 0.784921i \(-0.287297\pi\)
−0.989559 + 0.144125i \(0.953963\pi\)
\(332\) 1.11487 + 3.43123i 0.0611867 + 0.188313i
\(333\) 0 0
\(334\) −2.43696 + 1.77055i −0.133344 + 0.0968804i
\(335\) −0.0633409 + 0.0134635i −0.00346068 + 0.000735591i
\(336\) 0 0
\(337\) −0.305702 2.90856i −0.0166526 0.158439i 0.983035 0.183416i \(-0.0587155\pi\)
−0.999688 + 0.0249766i \(0.992049\pi\)
\(338\) −15.9498 + 7.10130i −0.867553 + 0.386260i
\(339\) 0 0
\(340\) −0.00135569 0.00234812i −7.35226e−5 0.000127345i
\(341\) −4.34067 + 3.31831i −0.235061 + 0.179697i
\(342\) 0 0
\(343\) −6.14502 18.9124i −0.331800 1.02117i
\(344\) −2.26696 + 21.5687i −0.122226 + 1.16291i
\(345\) 0 0
\(346\) −8.54117 9.48593i −0.459176 0.509967i
\(347\) 18.0136 + 20.0061i 0.967019 + 1.07398i 0.997225 + 0.0744402i \(0.0237170\pi\)
−0.0302060 + 0.999544i \(0.509616\pi\)
\(348\) 0 0
\(349\) 0.158979 1.51258i 0.00850993 0.0809665i −0.989443 0.144925i \(-0.953706\pi\)
0.997953 + 0.0639586i \(0.0203725\pi\)
\(350\) −4.46552 13.7434i −0.238692 0.734618i
\(351\) 0 0
\(352\) −1.24659 3.54053i −0.0664436 0.188711i
\(353\) 0.161316 + 0.279408i 0.00858599 + 0.0148714i 0.870286 0.492546i \(-0.163934\pi\)
−0.861700 + 0.507417i \(0.830600\pi\)
\(354\) 0 0
\(355\) 0.101948 0.0453901i 0.00541083 0.00240906i
\(356\) −0.260248 2.47609i −0.0137931 0.131233i
\(357\) 0 0
\(358\) 3.65639 0.777190i 0.193246 0.0410758i
\(359\) −8.95215 + 6.50411i −0.472476 + 0.343274i −0.798406 0.602120i \(-0.794323\pi\)
0.325929 + 0.945394i \(0.394323\pi\)
\(360\) 0 0
\(361\) 2.46729 + 7.59354i 0.129857 + 0.399660i
\(362\) −10.5740 18.3147i −0.555756 0.962597i
\(363\) 0 0
\(364\) −0.217258 + 0.376302i −0.0113874 + 0.0197236i
\(365\) 0.814402 + 0.173106i 0.0426277 + 0.00906080i
\(366\) 0 0
\(367\) 13.2047 + 5.87909i 0.689278 + 0.306886i 0.721322 0.692600i \(-0.243535\pi\)
−0.0320440 + 0.999486i \(0.510202\pi\)
\(368\) −9.22966 + 28.4060i −0.481129 + 1.48076i
\(369\) 0 0
\(370\) −0.832007 + 0.604489i −0.0432540 + 0.0314259i
\(371\) 0.308449 2.93470i 0.0160139 0.152362i
\(372\) 0 0
\(373\) −4.61875 + 7.99991i −0.239150 + 0.414219i −0.960471 0.278382i \(-0.910202\pi\)
0.721321 + 0.692601i \(0.243535\pi\)
\(374\) −0.902879 0.169022i −0.0466868 0.00873990i
\(375\) 0 0
\(376\) 15.5070 17.2222i 0.799711 0.888169i
\(377\) −2.89919 2.10638i −0.149316 0.108484i
\(378\) 0 0
\(379\) 1.54865 4.76624i 0.0795486 0.244825i −0.903371 0.428859i \(-0.858916\pi\)
0.982920 + 0.184034i \(0.0589156\pi\)
\(380\) −0.0737952 + 0.0156857i −0.00378561 + 0.000804657i
\(381\) 0 0
\(382\) 23.1754 10.3184i 1.18576 0.527933i
\(383\) 34.1937 + 7.26810i 1.74722 + 0.371383i 0.967129 0.254286i \(-0.0818404\pi\)
0.780089 + 0.625668i \(0.215174\pi\)
\(384\) 0 0
\(385\) 0.431889 + 0.179806i 0.0220111 + 0.00916378i
\(386\) 24.6845 1.25641
\(387\) 0 0
\(388\) −1.69819 1.23381i −0.0862125 0.0626370i
\(389\) 20.0211 + 8.91398i 1.01511 + 0.451957i 0.845740 0.533596i \(-0.179160\pi\)
0.169372 + 0.985552i \(0.445826\pi\)
\(390\) 0 0
\(391\) 0.855505 + 0.950135i 0.0432648 + 0.0480504i
\(392\) −0.891864 8.48552i −0.0450459 0.428583i
\(393\) 0 0
\(394\) 20.0190 22.2334i 1.00854 1.12010i
\(395\) −0.959709 −0.0482882
\(396\) 0 0
\(397\) −15.3168 −0.768726 −0.384363 0.923182i \(-0.625579\pi\)
−0.384363 + 0.923182i \(0.625579\pi\)
\(398\) 15.8667 17.6218i 0.795328 0.883301i
\(399\) 0 0
\(400\) −2.27701 21.6643i −0.113850 1.08321i
\(401\) −0.144305 0.160267i −0.00720624 0.00800334i 0.739531 0.673123i \(-0.235047\pi\)
−0.746737 + 0.665119i \(0.768381\pi\)
\(402\) 0 0
\(403\) 1.66986 + 0.743472i 0.0831819 + 0.0370350i
\(404\) −0.562427 0.408627i −0.0279818 0.0203299i
\(405\) 0 0
\(406\) 9.34407 0.463739
\(407\) −2.55120 + 31.6862i −0.126458 + 1.57063i
\(408\) 0 0
\(409\) −22.2047 4.71975i −1.09795 0.233377i −0.376897 0.926255i \(-0.623009\pi\)
−0.721054 + 0.692879i \(0.756342\pi\)
\(410\) −0.496325 + 0.220978i −0.0245117 + 0.0109133i
\(411\) 0 0
\(412\) 3.51265 0.746636i 0.173056 0.0367841i
\(413\) 3.19782 9.84186i 0.157354 0.484286i
\(414\) 0 0
\(415\) −1.05132 0.763832i −0.0516075 0.0374950i
\(416\) −0.840263 + 0.933207i −0.0411973 + 0.0457542i
\(417\) 0 0
\(418\) −12.2361 + 22.4396i −0.598487 + 1.09756i
\(419\) 8.54073 14.7930i 0.417242 0.722684i −0.578419 0.815740i \(-0.696330\pi\)
0.995661 + 0.0930557i \(0.0296635\pi\)
\(420\) 0 0
\(421\) 0.626911 5.96466i 0.0305538 0.290700i −0.968566 0.248756i \(-0.919978\pi\)
0.999120 0.0419437i \(-0.0133550\pi\)
\(422\) 11.7685 8.55031i 0.572881 0.416223i
\(423\) 0 0
\(424\) 1.24801 3.84098i 0.0606087 0.186534i
\(425\) −0.851860 0.379272i −0.0413213 0.0183974i
\(426\) 0 0
\(427\) −13.4991 2.86932i −0.653266 0.138856i
\(428\) −1.40584 + 2.43499i −0.0679539 + 0.117700i
\(429\) 0 0
\(430\) 0.435915 + 0.755028i 0.0210217 + 0.0364107i
\(431\) 1.23449 + 3.79938i 0.0594635 + 0.183010i 0.976376 0.216078i \(-0.0693267\pi\)
−0.916912 + 0.399088i \(0.869327\pi\)
\(432\) 0 0
\(433\) 21.9374 15.9385i 1.05425 0.765954i 0.0812301 0.996695i \(-0.474115\pi\)
0.973015 + 0.230741i \(0.0741151\pi\)
\(434\) −4.66201 + 0.990941i −0.223784 + 0.0475667i
\(435\) 0 0
\(436\) 0.105124 + 1.00019i 0.00503455 + 0.0479005i
\(437\) 32.4994 14.4697i 1.55466 0.692177i
\(438\) 0 0
\(439\) 12.7238 + 22.0383i 0.607275 + 1.05183i 0.991688 + 0.128669i \(0.0410706\pi\)
−0.384413 + 0.923161i \(0.625596\pi\)
\(440\) 0.527015 + 0.363607i 0.0251244 + 0.0173343i
\(441\) 0 0
\(442\) 0.0949623 + 0.292264i 0.00451690 + 0.0139016i
\(443\) 1.05830 10.0690i 0.0502812 0.478394i −0.940188 0.340657i \(-0.889351\pi\)
0.990469 0.137737i \(-0.0439828\pi\)
\(444\) 0 0
\(445\) 0.600066 + 0.666441i 0.0284459 + 0.0315923i
\(446\) 16.7836 + 18.6401i 0.794727 + 0.882634i
\(447\) 0 0
\(448\) −1.43586 + 13.6613i −0.0678382 + 0.645437i
\(449\) −5.04599 15.5299i −0.238135 0.732904i −0.996690 0.0812949i \(-0.974094\pi\)
0.758555 0.651609i \(-0.225906\pi\)
\(450\) 0 0
\(451\) −4.79860 + 16.0933i −0.225957 + 0.757803i
\(452\) −1.13352 1.96332i −0.0533164 0.0923467i
\(453\) 0 0
\(454\) −4.31506 + 1.92119i −0.202516 + 0.0901659i
\(455\) −0.0163597 0.155652i −0.000766955 0.00729709i
\(456\) 0 0
\(457\) 22.9933 4.88738i 1.07558 0.228622i 0.364124 0.931350i \(-0.381368\pi\)
0.711458 + 0.702728i \(0.248035\pi\)
\(458\) −5.78639 + 4.20406i −0.270380 + 0.196443i
\(459\) 0 0
\(460\) 0.0307354 + 0.0945940i 0.00143305 + 0.00441047i
\(461\) −3.89658 6.74907i −0.181482 0.314336i 0.760904 0.648865i \(-0.224756\pi\)
−0.942385 + 0.334529i \(0.891423\pi\)
\(462\) 0 0
\(463\) 14.9024 25.8118i 0.692575 1.19957i −0.278417 0.960460i \(-0.589810\pi\)
0.970991 0.239114i \(-0.0768571\pi\)
\(464\) 13.7778 + 2.92857i 0.639620 + 0.135955i
\(465\) 0 0
\(466\) 28.5193 + 12.6976i 1.32113 + 0.588206i
\(467\) 11.1849 34.4236i 0.517575 1.59293i −0.260972 0.965346i \(-0.584043\pi\)
0.778547 0.627586i \(-0.215957\pi\)
\(468\) 0 0
\(469\) −1.41260 + 1.02631i −0.0652278 + 0.0473908i
\(470\) 0.0973808 0.926516i 0.00449184 0.0427370i
\(471\) 0 0
\(472\) 7.08153 12.2656i 0.325954 0.564569i
\(473\) 26.4885 + 4.95872i 1.21794 + 0.228002i
\(474\) 0 0
\(475\) −17.3613 + 19.2817i −0.796591 + 0.884704i
\(476\) −0.0591466 0.0429725i −0.00271098 0.00196964i
\(477\) 0 0
\(478\) −6.55224 + 20.1657i −0.299693 + 0.922359i
\(479\) 7.31949 1.55581i 0.334436 0.0710865i −0.0376331 0.999292i \(-0.511982\pi\)
0.372069 + 0.928205i \(0.378648\pi\)
\(480\) 0 0
\(481\) 9.71546 4.32560i 0.442987 0.197231i
\(482\) −0.234711 0.0498893i −0.0106908 0.00227239i
\(483\) 0 0
\(484\) −2.13559 + 0.563992i −0.0970725 + 0.0256360i
\(485\) 0.756073 0.0343315
\(486\) 0 0
\(487\) −6.39891 4.64908i −0.289962 0.210670i 0.433289 0.901255i \(-0.357353\pi\)
−0.723251 + 0.690585i \(0.757353\pi\)
\(488\) −17.2550 7.68244i −0.781099 0.347768i
\(489\) 0 0
\(490\) −0.229508 0.254894i −0.0103681 0.0115150i
\(491\) −2.15259 20.4806i −0.0971452 0.924275i −0.929199 0.369580i \(-0.879502\pi\)
0.832054 0.554695i \(-0.187165\pi\)
\(492\) 0 0
\(493\) 0.403456 0.448083i 0.0181707 0.0201806i
\(494\) 8.55071 0.384715
\(495\) 0 0
\(496\) −7.18471 −0.322603
\(497\) 2.01345 2.23616i 0.0903155 0.100306i
\(498\) 0 0
\(499\) −1.52156 14.4767i −0.0681143 0.648065i −0.974311 0.225208i \(-0.927694\pi\)
0.906196 0.422857i \(-0.138973\pi\)
\(500\) −0.0971296 0.107873i −0.00434377 0.00482424i
\(501\) 0 0
\(502\) 12.0844 + 5.38034i 0.539355 + 0.240136i
\(503\) −25.7196 18.6864i −1.14678 0.833183i −0.158729 0.987322i \(-0.550740\pi\)
−0.988049 + 0.154139i \(0.950740\pi\)
\(504\) 0 0
\(505\) 0.250406 0.0111429
\(506\) 31.1076 + 12.9509i 1.38290 + 0.575737i
\(507\) 0 0
\(508\) −3.90505 0.830045i −0.173259 0.0368273i
\(509\) −32.0323 + 14.2617i −1.41981 + 0.632139i −0.965901 0.258910i \(-0.916637\pi\)
−0.453906 + 0.891049i \(0.649970\pi\)
\(510\) 0 0
\(511\) 21.9594 4.66761i 0.971426 0.206483i
\(512\) −5.66916 + 17.4479i −0.250544 + 0.771095i
\(513\) 0 0
\(514\) 5.11242 + 3.71439i 0.225499 + 0.163835i
\(515\) −0.865519 + 0.961257i −0.0381393 + 0.0423580i
\(516\) 0 0
\(517\) −19.7847 20.9241i −0.870129 0.920239i
\(518\) −13.8650 + 24.0150i −0.609195 + 1.05516i
\(519\) 0 0
\(520\) 0.0223904 0.213031i 0.000981884 0.00934201i
\(521\) −23.9643 + 17.4111i −1.04990 + 0.762794i −0.972193 0.234183i \(-0.924759\pi\)
−0.0777032 + 0.996977i \(0.524759\pi\)
\(522\) 0 0
\(523\) −3.46900 + 10.6765i −0.151689 + 0.466850i −0.997810 0.0661400i \(-0.978932\pi\)
0.846122 + 0.532990i \(0.178932\pi\)
\(524\) 1.58981 + 0.707831i 0.0694514 + 0.0309217i
\(525\) 0 0
\(526\) 33.9236 + 7.21068i 1.47914 + 0.314401i
\(527\) −0.153776 + 0.266347i −0.00669857 + 0.0116023i
\(528\) 0 0
\(529\) −11.9503 20.6985i −0.519578 0.899936i
\(530\) −0.0501696 0.154406i −0.00217923 0.00670697i
\(531\) 0 0
\(532\) −1.64575 + 1.19570i −0.0713522 + 0.0518404i
\(533\) 5.49546 1.16810i 0.238035 0.0505958i
\(534\) 0 0
\(535\) −0.105861 1.00720i −0.00457677 0.0435451i
\(536\) −2.18312 + 0.971988i −0.0942965 + 0.0419835i
\(537\) 0 0
\(538\) −11.2663 19.5138i −0.485724 0.841299i
\(539\) −10.5989 + 0.258437i −0.456528 + 0.0111317i
\(540\) 0 0
\(541\) 1.79412 + 5.52174i 0.0771354 + 0.237398i 0.982188 0.187902i \(-0.0601686\pi\)
−0.905052 + 0.425300i \(0.860169\pi\)
\(542\) −2.43519 + 23.1693i −0.104600 + 0.995206i
\(543\) 0 0
\(544\) −0.141378 0.157016i −0.00606153 0.00673202i
\(545\) −0.242390 0.269202i −0.0103829 0.0115313i
\(546\) 0 0
\(547\) 2.25951 21.4978i 0.0966095 0.919178i −0.833654 0.552286i \(-0.813755\pi\)
0.930264 0.366891i \(-0.119578\pi\)
\(548\) −0.454585 1.39907i −0.0194189 0.0597653i
\(549\) 0 0
\(550\) −24.5682 + 0.599055i −1.04759 + 0.0255438i
\(551\) −8.38858 14.5294i −0.357365 0.618975i
\(552\) 0 0
\(553\) −23.6402 + 10.5253i −1.00528 + 0.447581i
\(554\) −1.15959 11.0327i −0.0492661 0.468736i
\(555\) 0 0
\(556\) 1.03055 0.219051i 0.0437052 0.00928982i
\(557\) −5.71836 + 4.15463i −0.242295 + 0.176037i −0.702305 0.711876i \(-0.747846\pi\)
0.460010 + 0.887914i \(0.347846\pi\)
\(558\) 0 0
\(559\) −2.78598 8.57437i −0.117835 0.362657i
\(560\) 0.307588 + 0.532758i 0.0129980 + 0.0225131i
\(561\) 0 0
\(562\) −9.50073 + 16.4557i −0.400764 + 0.694144i
\(563\) −22.3938 4.75994i −0.943785 0.200608i −0.289776 0.957094i \(-0.593581\pi\)
−0.654009 + 0.756487i \(0.726914\pi\)
\(564\) 0 0
\(565\) 0.745978 + 0.332131i 0.0313835 + 0.0139728i
\(566\) −3.00762 + 9.25651i −0.126420 + 0.389080i
\(567\) 0 0
\(568\) 3.33176 2.42066i 0.139797 0.101569i
\(569\) 1.91977 18.2654i 0.0804808 0.765724i −0.877632 0.479334i \(-0.840878\pi\)
0.958113 0.286390i \(-0.0924551\pi\)
\(570\) 0 0
\(571\) −4.04504 + 7.00621i −0.169280 + 0.293201i −0.938167 0.346184i \(-0.887477\pi\)
0.768887 + 0.639384i \(0.220811\pi\)
\(572\) 0.507697 + 0.536935i 0.0212279 + 0.0224504i
\(573\) 0 0
\(574\) −9.80231 + 10.8866i −0.409140 + 0.454396i
\(575\) 27.6734 + 20.1059i 1.15406 + 0.838473i
\(576\) 0 0
\(577\) −0.856306 + 2.63544i −0.0356485 + 0.109715i −0.967297 0.253645i \(-0.918370\pi\)
0.931649 + 0.363360i \(0.118370\pi\)
\(578\) 24.6180 5.23271i 1.02397 0.217652i
\(579\) 0 0
\(580\) 0.0428510 0.0190785i 0.00177929 0.000792191i
\(581\) −34.2740 7.28517i −1.42193 0.302240i
\(582\) 0 0
\(583\) −4.63289 1.92879i −0.191875 0.0798824i
\(584\) 30.7257 1.27144
\(585\) 0 0
\(586\) −14.1180 10.2573i −0.583207 0.423725i
\(587\) −33.1947 14.7792i −1.37009 0.610004i −0.415957 0.909384i \(-0.636553\pi\)
−0.954134 + 0.299380i \(0.903220\pi\)
\(588\) 0 0
\(589\) 5.72614 + 6.35952i 0.235941 + 0.262039i
\(590\) −0.0595133 0.566232i −0.00245013 0.0233114i
\(591\) 0 0
\(592\) −27.9706 + 31.0645i −1.14959 + 1.27674i
\(593\) −7.21741 −0.296384 −0.148192 0.988959i \(-0.547345\pi\)
−0.148192 + 0.988959i \(0.547345\pi\)
\(594\) 0 0
\(595\) 0.0263335 0.00107957
\(596\) −0.290603 + 0.322748i −0.0119036 + 0.0132203i
\(597\) 0 0
\(598\) −1.17834 11.2111i −0.0481859 0.458458i
\(599\) −10.6433 11.8206i −0.434875 0.482978i 0.485376 0.874305i \(-0.338683\pi\)
−0.920251 + 0.391328i \(0.872016\pi\)
\(600\) 0 0
\(601\) 9.72914 + 4.33169i 0.396860 + 0.176693i 0.595456 0.803388i \(-0.296971\pi\)
−0.198596 + 0.980081i \(0.563638\pi\)
\(602\) 19.0183 + 13.8176i 0.775128 + 0.563163i
\(603\) 0 0
\(604\) 1.40067 0.0569926
\(605\) 0.502911 0.616489i 0.0204463 0.0250638i
\(606\) 0 0
\(607\) −16.5479 3.51737i −0.671659 0.142766i −0.140556 0.990073i \(-0.544889\pi\)
−0.531103 + 0.847307i \(0.678222\pi\)
\(608\) −5.37074 + 2.39121i −0.217812 + 0.0969763i
\(609\) 0 0
\(610\) −0.742699 + 0.157866i −0.0300710 + 0.00639179i
\(611\) −2.97704 + 9.16239i −0.120438 + 0.370671i
\(612\) 0 0
\(613\) 15.9766 + 11.6077i 0.645290 + 0.468830i 0.861663 0.507480i \(-0.169423\pi\)
−0.216374 + 0.976311i \(0.569423\pi\)
\(614\) −23.6379 + 26.2526i −0.953949 + 1.05947i
\(615\) 0 0
\(616\) 16.9695 + 3.17675i 0.683722 + 0.127995i
\(617\) −14.2059 + 24.6053i −0.571908 + 0.990573i 0.424462 + 0.905446i \(0.360463\pi\)
−0.996370 + 0.0851276i \(0.972870\pi\)
\(618\) 0 0
\(619\) 3.51868 33.4780i 0.141428 1.34559i −0.661691 0.749776i \(-0.730161\pi\)
0.803119 0.595819i \(-0.203172\pi\)
\(620\) −0.0193562 + 0.0140631i −0.000777365 + 0.000564788i
\(621\) 0 0
\(622\) −10.7950 + 33.2236i −0.432840 + 1.33214i
\(623\) 22.0902 + 9.83520i 0.885026 + 0.394039i
\(624\) 0 0
\(625\) −24.3770 5.18148i −0.975079 0.207259i
\(626\) 8.49376 14.7116i 0.339479 0.587995i
\(627\) 0 0
\(628\) −1.77178 3.06882i −0.0707019 0.122459i
\(629\) 0.552945 + 1.70179i 0.0220474 + 0.0678548i
\(630\) 0 0
\(631\) 10.5417 7.65896i 0.419657 0.304898i −0.357843 0.933782i \(-0.616488\pi\)
0.777500 + 0.628883i \(0.216488\pi\)
\(632\) −34.6427 + 7.36354i −1.37801 + 0.292906i
\(633\) 0 0
\(634\) 2.28208 + 21.7125i 0.0906328 + 0.862313i
\(635\) 1.31368 0.584886i 0.0521317 0.0232105i
\(636\) 0 0
\(637\) 1.77346 + 3.07172i 0.0702669 + 0.121706i
\(638\) 4.54071 15.2284i 0.179768 0.602897i
\(639\) 0 0
\(640\) 0.284134 + 0.874476i 0.0112314 + 0.0345667i
\(641\) 0.451688 4.29753i 0.0178406 0.169742i −0.981974 0.189018i \(-0.939469\pi\)
0.999814 + 0.0192761i \(0.00613614\pi\)
\(642\) 0 0
\(643\) 13.9683 + 15.5133i 0.550854 + 0.611786i 0.952697 0.303923i \(-0.0982966\pi\)
−0.401842 + 0.915709i \(0.631630\pi\)
\(644\) 1.79453 + 1.99302i 0.0707142 + 0.0785361i
\(645\) 0 0
\(646\) −0.150385 + 1.43081i −0.00591680 + 0.0562946i
\(647\) −1.77013 5.44789i −0.0695909 0.214179i 0.910213 0.414141i \(-0.135918\pi\)
−0.979804 + 0.199962i \(0.935918\pi\)
\(648\) 0 0
\(649\) −14.4857 9.99420i −0.568613 0.392307i
\(650\) 4.11085 + 7.12020i 0.161241 + 0.279277i
\(651\) 0 0
\(652\) 0.679823 0.302677i 0.0266239 0.0118537i
\(653\) −1.07341 10.2128i −0.0420058 0.399658i −0.995242 0.0974325i \(-0.968937\pi\)
0.953236 0.302226i \(-0.0977297\pi\)
\(654\) 0 0
\(655\) −0.613136 + 0.130326i −0.0239572 + 0.00509226i
\(656\) −17.8655 + 12.9800i −0.697531 + 0.506786i
\(657\) 0 0
\(658\) −7.76252 23.8906i −0.302614 0.931352i
\(659\) −7.65543 13.2596i −0.298213 0.516520i 0.677514 0.735510i \(-0.263057\pi\)
−0.975727 + 0.218990i \(0.929724\pi\)
\(660\) 0 0
\(661\) 12.8232 22.2105i 0.498766 0.863889i −0.501233 0.865313i \(-0.667120\pi\)
0.999999 + 0.00142377i \(0.000453199\pi\)
\(662\) −19.5343 4.15214i −0.759222 0.161378i
\(663\) 0 0
\(664\) −43.8104 19.5056i −1.70017 0.756966i
\(665\) 0.226424 0.696863i 0.00878036 0.0270232i
\(666\) 0 0
\(667\) −17.8941 + 13.0008i −0.692861 + 0.503393i
\(668\) −0.0426187 + 0.405490i −0.00164897 + 0.0156889i
\(669\) 0 0
\(670\) −0.0480331 + 0.0831957i −0.00185568 + 0.00321413i
\(671\) −11.2360 + 20.6056i −0.433763 + 0.795471i
\(672\) 0 0
\(673\) −13.3196 + 14.7930i −0.513434 + 0.570226i −0.942993 0.332812i \(-0.892002\pi\)
0.429559 + 0.903039i \(0.358669\pi\)
\(674\) −3.51004 2.55019i −0.135202 0.0982297i
\(675\) 0 0
\(676\) −0.730268 + 2.24753i −0.0280872 + 0.0864436i
\(677\) −2.34408 + 0.498250i −0.0900903 + 0.0191493i −0.252736 0.967535i \(-0.581330\pi\)
0.162646 + 0.986684i \(0.447997\pi\)
\(678\) 0 0
\(679\) 18.6241 8.29199i 0.714728 0.318217i
\(680\) 0.0352532 + 0.00749330i 0.00135190 + 0.000287355i
\(681\) 0 0
\(682\) −0.650508 + 8.07939i −0.0249093 + 0.309376i
\(683\) 1.75102 0.0670009 0.0335005 0.999439i \(-0.489334\pi\)
0.0335005 + 0.999439i \(0.489334\pi\)
\(684\) 0 0
\(685\) 0.428673 + 0.311449i 0.0163788 + 0.0118999i
\(686\) −26.9502 11.9990i −1.02896 0.458123i
\(687\) 0 0
\(688\) 23.7118 + 26.3347i 0.904005 + 1.00400i
\(689\) 0.175492 + 1.66969i 0.00668570 + 0.0636102i
\(690\) 0 0
\(691\) −17.3828 + 19.3056i −0.661274 + 0.734419i −0.976718 0.214525i \(-0.931180\pi\)
0.315445 + 0.948944i \(0.397846\pi\)
\(692\) −1.72775 −0.0656794
\(693\) 0 0
\(694\) 39.9374 1.51600
\(695\) −0.253929 + 0.282017i −0.00963208 + 0.0106975i
\(696\) 0 0
\(697\) 0.0988099 + 0.940114i 0.00374269 + 0.0356094i
\(698\) −1.50975 1.67675i −0.0571449 0.0634658i
\(699\) 0 0
\(700\) −1.78688 0.795570i −0.0675377 0.0300697i
\(701\) 11.8682 + 8.62278i 0.448257 + 0.325678i 0.788907 0.614512i \(-0.210647\pi\)
−0.340650 + 0.940190i \(0.610647\pi\)
\(702\) 0 0
\(703\) 49.7890 1.87783
\(704\) 21.5666 + 8.97873i 0.812822 + 0.338399i
\(705\) 0 0
\(706\) 0.468169 + 0.0995124i 0.0176198 + 0.00374520i
\(707\) 6.16816 2.74624i 0.231978 0.103283i
\(708\) 0 0
\(709\) −0.378481 + 0.0804487i −0.0142142 + 0.00302132i −0.215013 0.976611i \(-0.568979\pi\)
0.200799 + 0.979632i \(0.435646\pi\)
\(710\) 0.0511588 0.157451i 0.00191996 0.00590902i
\(711\) 0 0
\(712\) 26.7740 + 19.4525i 1.00340 + 0.729012i
\(713\) 7.54910 8.38412i 0.282716 0.313988i
\(714\) 0 0
\(715\) −0.261622 0.0489765i −0.00978412 0.00183162i
\(716\) 0.252985 0.438182i 0.00945448 0.0163756i
\(717\) 0 0
\(718\) −1.71591 + 16.3258i −0.0640372 + 0.609273i
\(719\) 19.2508 13.9865i 0.717935 0.521610i −0.167789 0.985823i \(-0.553663\pi\)
0.885724 + 0.464213i \(0.153663\pi\)
\(720\) 0 0
\(721\) −10.7778 + 33.1706i −0.401386 + 1.23534i
\(722\) 10.8208 + 4.81772i 0.402708 + 0.179297i
\(723\) 0 0
\(724\) −2.79994 0.595145i −0.104059 0.0221184i
\(725\) 8.06581 13.9704i 0.299557 0.518847i
\(726\) 0 0
\(727\) 21.9528 + 38.0233i 0.814184 + 1.41021i 0.909913 + 0.414800i \(0.136148\pi\)
−0.0957289 + 0.995407i \(0.530518\pi\)
\(728\) −1.78481 5.49307i −0.0661494 0.203587i
\(729\) 0 0
\(730\) 0.999269 0.726011i 0.0369846 0.0268709i
\(731\) 1.48377 0.315385i 0.0548793 0.0116649i
\(732\) 0 0
\(733\) −1.71792 16.3449i −0.0634527 0.603712i −0.979332 0.202258i \(-0.935172\pi\)
0.915880 0.401453i \(-0.131495\pi\)
\(734\) 19.5892 8.72169i 0.723052 0.321923i
\(735\) 0 0
\(736\) 3.87532 + 6.71225i 0.142846 + 0.247417i
\(737\) 0.986175 + 2.80090i 0.0363262 + 0.103172i
\(738\) 0 0
\(739\) −1.22843 3.78073i −0.0451887 0.139076i 0.925917 0.377728i \(-0.123295\pi\)
−0.971105 + 0.238652i \(0.923295\pi\)
\(740\) −0.0145506 + 0.138439i −0.000534889 + 0.00508913i
\(741\) 0 0
\(742\) −2.92921 3.25322i −0.107535 0.119429i
\(743\) 10.5941 + 11.7659i 0.388658 + 0.431649i 0.905444 0.424466i \(-0.139538\pi\)
−0.516786 + 0.856115i \(0.672872\pi\)
\(744\) 0 0
\(745\) 0.0163516 0.155575i 0.000599076 0.00569983i
\(746\) 4.23474 + 13.0332i 0.155045 + 0.477179i
\(747\) 0 0
\(748\) −0.0987759 + 0.0755111i −0.00361160 + 0.00276096i
\(749\) −13.6538 23.6491i −0.498899 0.864118i
\(750\) 0 0
\(751\) −35.3346 + 15.7320i −1.28938 + 0.574068i −0.932866 0.360224i \(-0.882700\pi\)
−0.356511 + 0.934291i \(0.616034\pi\)
\(752\) −3.95818 37.6595i −0.144340 1.37330i
\(753\) 0 0
\(754\) −5.20012 + 1.10532i −0.189377 + 0.0402534i
\(755\) −0.408160 + 0.296546i −0.0148545 + 0.0107924i
\(756\) 0 0
\(757\) −3.47082 10.6821i −0.126149 0.388247i 0.867960 0.496635i \(-0.165431\pi\)
−0.994109 + 0.108388i \(0.965431\pi\)
\(758\) −3.71732 6.43859i −0.135019 0.233860i
\(759\) 0 0
\(760\) 0.501415 0.868476i 0.0181882 0.0315029i
\(761\) −36.0942 7.67206i −1.30841 0.278112i −0.499641 0.866233i \(-0.666535\pi\)
−0.808773 + 0.588121i \(0.799868\pi\)
\(762\) 0 0
\(763\) −8.92311 3.97283i −0.323038 0.143826i
\(764\) 1.06110 3.26572i 0.0383892 0.118150i
\(765\) 0 0
\(766\) 41.9556 30.4825i 1.51592 1.10138i
\(767\) −0.615429 + 5.85542i −0.0222219 + 0.211427i
\(768\) 0 0
\(769\) −24.4141 + 42.2864i −0.880393 + 1.52489i −0.0294888 + 0.999565i \(0.509388\pi\)
−0.850904 + 0.525321i \(0.823945\pi\)
\(770\) 0.626949 0.297654i 0.0225937 0.0107267i
\(771\) 0 0
\(772\) 2.23568 2.48298i 0.0804640 0.0893643i
\(773\) −6.32496 4.59536i −0.227493 0.165283i 0.468200 0.883623i \(-0.344903\pi\)
−0.695693 + 0.718339i \(0.744903\pi\)
\(774\) 0 0
\(775\) −2.54269 + 7.82558i −0.0913360 + 0.281103i
\(776\) 27.2920 5.80110i 0.979727 0.208247i
\(777\) 0 0
\(778\) 29.7015 13.2240i 1.06485 0.474102i
\(779\) 25.7279 + 5.46863i 0.921796 + 0.195934i
\(780\) 0 0
\(781\) −2.66593 4.36804i −0.0953944 0.156301i
\(782\) 1.89672 0.0678264
\(783\) 0 0
\(784\) −11.2789 8.19459i −0.402817 0.292664i
\(785\) 1.16602 + 0.519146i 0.0416171 + 0.0185291i
\(786\) 0 0
\(787\) 0.616721 + 0.684938i 0.0219837 + 0.0244154i 0.754036 0.656833i \(-0.228104\pi\)
−0.732053 + 0.681248i \(0.761438\pi\)
\(788\) −0.423295 4.02738i −0.0150792 0.143469i
\(789\) 0 0
\(790\) −0.952667 + 1.05804i −0.0338944 + 0.0376435i
\(791\) 22.0180 0.782869
\(792\) 0 0
\(793\) 7.85186 0.278828
\(794\) −15.2044 + 16.8861i −0.539582 + 0.599267i
\(795\) 0 0
\(796\) −0.335496 3.19203i −0.0118913 0.113138i
\(797\) 24.5323 + 27.2459i 0.868980 + 0.965100i 0.999653 0.0263254i \(-0.00838059\pi\)
−0.130673 + 0.991425i \(0.541714\pi\)
\(798\) 0 0
\(799\) −1.48081 0.659299i −0.0523873 0.0233243i
\(800\) −4.57321 3.32263i −0.161688 0.117473i
\(801\) 0 0
\(802\) −0.319934 −0.0112973
\(803\) 3.06408 38.0562i 0.108129 1.34297i
\(804\) 0 0
\(805\) −0.944885 0.200841i −0.0333028 0.00707873i
\(806\) 2.47726 1.10295i 0.0872578 0.0388497i
\(807\) 0 0
\(808\) 9.03891 1.92128i 0.317988 0.0675904i
\(809\) 14.1795 43.6399i 0.498523 1.53430i −0.312869 0.949796i \(-0.601290\pi\)
0.811393 0.584501i \(-0.198710\pi\)
\(810\) 0 0
\(811\) −35.8258 26.0290i −1.25801 0.914001i −0.259356 0.965782i \(-0.583510\pi\)
−0.998658 + 0.0517807i \(0.983510\pi\)
\(812\) 0.846297 0.939908i 0.0296992 0.0329843i
\(813\) 0 0
\(814\) 32.4004 + 34.2663i 1.13563 + 1.20103i
\(815\) −0.134021 + 0.232130i −0.00469454 + 0.00813117i
\(816\) 0 0
\(817\) 4.41195 41.9769i 0.154355 1.46858i
\(818\) −27.2451 + 19.7947i −0.952602 + 0.692106i
\(819\) 0 0
\(820\) −0.0227245 + 0.0699387i −0.000793573 + 0.00244237i
\(821\) 43.9837 + 19.5828i 1.53504 + 0.683445i 0.988113 0.153732i \(-0.0491294\pi\)
0.546931 + 0.837178i \(0.315796\pi\)
\(822\) 0 0
\(823\) 36.7464 + 7.81069i 1.28090 + 0.272263i 0.797597 0.603190i \(-0.206104\pi\)
0.483302 + 0.875454i \(0.339437\pi\)
\(824\) −23.8673 + 41.3394i −0.831457 + 1.44013i
\(825\) 0 0
\(826\) −7.67594 13.2951i −0.267080 0.462596i
\(827\) 16.6450 + 51.2279i 0.578802 + 1.78137i 0.622853 + 0.782339i \(0.285974\pi\)
−0.0440508 + 0.999029i \(0.514026\pi\)
\(828\) 0 0
\(829\) −13.1554 + 9.55794i −0.456905 + 0.331961i −0.792316 0.610111i \(-0.791125\pi\)
0.335411 + 0.942072i \(0.391125\pi\)
\(830\) −1.88571 + 0.400819i −0.0654538 + 0.0139126i
\(831\) 0 0
\(832\) −0.816932 7.77259i −0.0283220 0.269466i
\(833\) −0.545189 + 0.242734i −0.0188897 + 0.00841023i
\(834\) 0 0
\(835\) −0.0734297 0.127184i −0.00254114 0.00440138i
\(836\) 1.14894 + 3.26318i 0.0397370 + 0.112859i
\(837\) 0 0
\(838\) −7.83065 24.1003i −0.270505 0.832529i
\(839\) 2.53174 24.0879i 0.0874054 0.831607i −0.859725 0.510758i \(-0.829365\pi\)
0.947130 0.320849i \(-0.103968\pi\)
\(840\) 0 0
\(841\) −12.4251 13.7995i −0.428452 0.475844i
\(842\) −5.95350 6.61203i −0.205171 0.227866i
\(843\) 0 0
\(844\) 0.205813 1.95818i 0.00708439 0.0674034i
\(845\) −0.263038 0.809547i −0.00904877 0.0278493i
\(846\) 0 0
\(847\) 5.62691 20.7013i 0.193343 0.711305i
\(848\) −3.29951 5.71492i −0.113306 0.196251i
\(849\) 0 0
\(850\) −1.26374 + 0.562654i −0.0433460 + 0.0192989i
\(851\) −6.86121 65.2801i −0.235199 2.23777i
\(852\) 0 0
\(853\) −1.61191 + 0.342621i −0.0551906 + 0.0117311i −0.235424 0.971893i \(-0.575648\pi\)
0.180234 + 0.983624i \(0.442315\pi\)
\(854\) −16.5633 + 12.0340i −0.566786 + 0.411794i
\(855\) 0 0
\(856\) −11.5492 35.5448i −0.394744 1.21490i
\(857\) 23.3721 + 40.4817i 0.798376 + 1.38283i 0.920673 + 0.390334i \(0.127641\pi\)
−0.122297 + 0.992494i \(0.539026\pi\)
\(858\) 0 0
\(859\) 12.7932 22.1585i 0.436498 0.756037i −0.560918 0.827871i \(-0.689552\pi\)
0.997417 + 0.0718338i \(0.0228851\pi\)
\(860\) 0.115428 + 0.0245350i 0.00393607 + 0.000836638i
\(861\) 0 0
\(862\) 5.41411 + 2.41052i 0.184405 + 0.0821026i
\(863\) 0.836222 2.57363i 0.0284653 0.0876073i −0.935815 0.352493i \(-0.885334\pi\)
0.964280 + 0.264885i \(0.0853341\pi\)
\(864\) 0 0
\(865\) 0.503472 0.365794i 0.0171186 0.0124374i
\(866\) 4.20487 40.0067i 0.142887 1.35948i
\(867\) 0 0
\(868\) −0.322563 + 0.558695i −0.0109485 + 0.0189634i
\(869\) 5.66562 + 43.6420i 0.192193 + 1.48046i
\(870\) 0 0
\(871\) 0.664730 0.738257i 0.0225235 0.0250149i
\(872\) −10.8151 7.85762i −0.366245 0.266093i
\(873\) 0 0
\(874\) 16.3086 50.1928i 0.551648 1.69780i
\(875\) 1.37899 0.293114i 0.0466185 0.00990907i
\(876\) 0 0
\(877\) −25.5977 + 11.3968i −0.864371 + 0.384843i −0.790527 0.612427i \(-0.790193\pi\)
−0.0738442 + 0.997270i \(0.523527\pi\)
\(878\) 36.9268 + 7.84904i 1.24622 + 0.264892i
\(879\) 0 0
\(880\) 1.01773 0.242396i 0.0343075 0.00817117i
\(881\) −30.6218 −1.03167 −0.515837 0.856687i \(-0.672519\pi\)
−0.515837 + 0.856687i \(0.672519\pi\)
\(882\) 0 0
\(883\) −21.8315 15.8615i −0.734688 0.533782i 0.156355 0.987701i \(-0.450026\pi\)
−0.891043 + 0.453919i \(0.850026\pi\)
\(884\) 0.0379992 + 0.0169184i 0.00127805 + 0.000569026i
\(885\) 0 0
\(886\) −10.0502 11.1619i −0.337643 0.374990i
\(887\) 3.95536 + 37.6327i 0.132808 + 1.26358i 0.834462 + 0.551065i \(0.185778\pi\)
−0.701654 + 0.712518i \(0.747555\pi\)
\(888\) 0 0
\(889\) 25.9448 28.8146i 0.870162 0.966412i
\(890\) 1.33039 0.0445947
\(891\) 0 0
\(892\) 3.39508 0.113676
\(893\) −30.1796 + 33.5178i −1.00992 + 1.12163i
\(894\) 0 0
\(895\) 0.0190500 + 0.181248i 0.000636771 + 0.00605847i
\(896\) 16.5895 + 18.4245i 0.554217 + 0.615520i
\(897\) 0 0
\(898\) −22.1301 9.85298i −0.738493 0.328798i
\(899\) −4.30443 3.12735i −0.143561 0.104303i
\(900\) 0 0
\(901\) −0.282480 −0.00941078
\(902\) 12.9788 + 21.2654i 0.432148 + 0.708062i
\(903\) 0 0
\(904\) 29.4759 + 6.26531i 0.980355 + 0.208381i
\(905\) 0.941911 0.419366i 0.0313102 0.0139402i
\(906\) 0 0
\(907\) −26.7712 + 5.69039i −0.888922 + 0.188946i −0.629669 0.776863i \(-0.716810\pi\)
−0.259253 + 0.965810i \(0.583476\pi\)
\(908\) −0.197567 + 0.608049i −0.00655650 + 0.0201788i
\(909\) 0 0
\(910\) −0.187841 0.136474i −0.00622685 0.00452407i
\(911\) −12.7296 + 14.1376i −0.421750 + 0.468401i −0.916151 0.400833i \(-0.868721\pi\)
0.494401 + 0.869234i \(0.335387\pi\)
\(912\) 0 0
\(913\) −28.5282 + 52.3174i −0.944146 + 1.73145i
\(914\) 17.4364 30.2008i 0.576746 0.998953i
\(915\) 0 0
\(916\) −0.101195 + 0.962808i −0.00334358 + 0.0318121i
\(917\) −13.6739 + 9.93465i −0.451551 + 0.328071i
\(918\) 0 0
\(919\) −0.367135 + 1.12992i −0.0121107 + 0.0372728i −0.956929 0.290321i \(-0.906238\pi\)
0.944819 + 0.327594i \(0.106238\pi\)
\(920\) −1.20779 0.537742i −0.0398196 0.0177288i
\(921\) 0 0
\(922\) −11.3086 2.40371i −0.372428 0.0791621i
\(923\) −0.855997 + 1.48263i −0.0281755 + 0.0488014i
\(924\) 0 0
\(925\) 23.9366 + 41.4594i 0.787031 + 1.36318i
\(926\) −13.6634 42.0517i −0.449008 1.38191i
\(927\) 0 0
\(928\) 2.95712 2.14847i 0.0970722 0.0705271i
\(929\) 10.2650 2.18189i 0.336783 0.0715854i −0.0364162 0.999337i \(-0.511594\pi\)
0.373199 + 0.927751i \(0.378261\pi\)
\(930\) 0 0
\(931\) 1.73574 + 16.5145i 0.0568866 + 0.541240i
\(932\) 3.86025 1.71869i 0.126447 0.0562976i
\(933\) 0 0
\(934\) −26.8479 46.5019i −0.878489 1.52159i
\(935\) 0.0127966 0.0429166i 0.000418494 0.00140352i
\(936\) 0 0
\(937\) 2.89184 + 8.90017i 0.0944723 + 0.290756i 0.987116 0.160007i \(-0.0511518\pi\)
−0.892643 + 0.450763i \(0.851152\pi\)
\(938\) −0.270761 + 2.57612i −0.00884067 + 0.0841133i
\(939\) 0 0
\(940\) −0.0843772 0.0937104i −0.00275208 0.00305650i
\(941\) 10.9981 + 12.2146i 0.358528 + 0.398186i 0.895243 0.445578i \(-0.147002\pi\)
−0.536715 + 0.843763i \(0.680335\pi\)
\(942\) 0 0
\(943\) 3.62466 34.4863i 0.118035 1.12303i
\(944\) −7.15128 22.0094i −0.232754 0.716345i
\(945\) 0 0
\(946\) 31.7609 24.2802i 1.03264 0.789418i
\(947\) −1.37786 2.38652i −0.0447744 0.0775515i 0.842770 0.538274i \(-0.180924\pi\)
−0.887544 + 0.460723i \(0.847590\pi\)
\(948\) 0 0
\(949\) −11.6686 + 5.19519i −0.378779 + 0.168643i
\(950\) 4.02343 + 38.2803i 0.130537 + 1.24198i
\(951\) 0 0
\(952\) 0.950561 0.202048i 0.0308079 0.00654841i
\(953\) 42.5222 30.8942i 1.37743 1.00076i 0.380313 0.924858i \(-0.375816\pi\)
0.997115 0.0759025i \(-0.0241838\pi\)
\(954\) 0 0
\(955\) 0.382200 + 1.17629i 0.0123677 + 0.0380639i
\(956\) 1.43501 + 2.48550i 0.0464114 + 0.0803869i
\(957\) 0 0
\(958\) 5.55056 9.61385i 0.179330 0.310609i
\(959\) 13.9751 + 2.97050i 0.451279 + 0.0959223i
\(960\) 0 0
\(961\) −25.8407 11.5050i −0.833570 0.371129i
\(962\) 4.87535 15.0048i 0.157188 0.483774i
\(963\) 0 0
\(964\) −0.0262761 + 0.0190907i −0.000846297 + 0.000614871i
\(965\) −0.125797 + 1.19688i −0.00404954 + 0.0385288i
\(966\) 0 0
\(967\) 19.5173 33.8050i 0.627636 1.08710i −0.360389 0.932802i \(-0.617356\pi\)
0.988025 0.154295i \(-0.0493105\pi\)
\(968\) 13.4235 26.1121i 0.431448 0.839276i
\(969\) 0 0
\(970\) 0.750525 0.833543i 0.0240979 0.0267634i
\(971\) 4.37355 + 3.17757i 0.140354 + 0.101973i 0.655747 0.754981i \(-0.272354\pi\)
−0.515393 + 0.856954i \(0.672354\pi\)
\(972\) 0 0
\(973\) −3.16203 + 9.73171i −0.101370 + 0.311984i
\(974\) −11.4774 + 2.43959i −0.367759 + 0.0781697i
\(975\) 0 0
\(976\) −28.1943 + 12.5529i −0.902476 + 0.401808i
\(977\) −28.4847 6.05462i −0.911307 0.193704i −0.271678 0.962388i \(-0.587579\pi\)
−0.639629 + 0.768684i \(0.720912\pi\)
\(978\) 0 0
\(979\) 26.7634 31.2219i 0.855362 0.997855i
\(980\) −0.0464261 −0.00148303
\(981\) 0 0
\(982\) −24.7159 17.9571i −0.788715 0.573035i
\(983\) 12.9821 + 5.78001i 0.414065 + 0.184354i 0.603187 0.797600i \(-0.293897\pi\)
−0.189122 + 0.981954i \(0.560564\pi\)
\(984\) 0 0
\(985\) 0.976011 + 1.08397i 0.0310983 + 0.0345382i
\(986\) −0.0934997 0.889590i −0.00297764 0.0283303i
\(987\) 0 0
\(988\) 0.774442 0.860105i 0.0246383 0.0273636i
\(989\) −55.6454 −1.76942
\(990\) 0 0
\(991\) −23.9992 −0.762358 −0.381179 0.924501i \(-0.624482\pi\)
−0.381179 + 0.924501i \(0.624482\pi\)
\(992\) −1.24754 + 1.38553i −0.0396094 + 0.0439907i
\(993\) 0 0
\(994\) −0.466610 4.43950i −0.0148000 0.140812i
\(995\) 0.773569 + 0.859135i 0.0245238 + 0.0272364i
\(996\) 0 0
\(997\) 46.9500 + 20.9035i 1.48692 + 0.662021i 0.979823 0.199867i \(-0.0640509\pi\)
0.507100 + 0.861887i \(0.330718\pi\)
\(998\) −17.4704 12.6930i −0.553015 0.401789i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.n.b.280.7 72
3.2 odd 2 99.2.m.b.49.3 yes 72
9.2 odd 6 99.2.m.b.16.7 72
9.4 even 3 891.2.f.e.82.7 36
9.5 odd 6 891.2.f.f.82.3 36
9.7 even 3 inner 297.2.n.b.181.3 72
11.9 even 5 inner 297.2.n.b.64.3 72
33.8 even 10 1089.2.e.o.364.5 36
33.14 odd 10 1089.2.e.p.364.14 36
33.20 odd 10 99.2.m.b.31.7 yes 72
99.14 odd 30 9801.2.a.cm.1.5 18
99.20 odd 30 99.2.m.b.97.3 yes 72
99.31 even 15 891.2.f.e.163.7 36
99.41 even 30 9801.2.a.co.1.14 18
99.47 odd 30 1089.2.e.p.727.14 36
99.58 even 15 9801.2.a.cp.1.14 18
99.74 even 30 1089.2.e.o.727.5 36
99.85 odd 30 9801.2.a.cn.1.5 18
99.86 odd 30 891.2.f.f.163.3 36
99.97 even 15 inner 297.2.n.b.262.7 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.m.b.16.7 72 9.2 odd 6
99.2.m.b.31.7 yes 72 33.20 odd 10
99.2.m.b.49.3 yes 72 3.2 odd 2
99.2.m.b.97.3 yes 72 99.20 odd 30
297.2.n.b.64.3 72 11.9 even 5 inner
297.2.n.b.181.3 72 9.7 even 3 inner
297.2.n.b.262.7 72 99.97 even 15 inner
297.2.n.b.280.7 72 1.1 even 1 trivial
891.2.f.e.82.7 36 9.4 even 3
891.2.f.e.163.7 36 99.31 even 15
891.2.f.f.82.3 36 9.5 odd 6
891.2.f.f.163.3 36 99.86 odd 30
1089.2.e.o.364.5 36 33.8 even 10
1089.2.e.o.727.5 36 99.74 even 30
1089.2.e.p.364.14 36 33.14 odd 10
1089.2.e.p.727.14 36 99.47 odd 30
9801.2.a.cm.1.5 18 99.14 odd 30
9801.2.a.cn.1.5 18 99.85 odd 30
9801.2.a.co.1.14 18 99.41 even 30
9801.2.a.cp.1.14 18 99.58 even 15