Properties

Label 296.2.a.d.1.4
Level $296$
Weight $2$
Character 296.1
Self dual yes
Analytic conductor $2.364$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [296,2,Mod(1,296)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(296, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("296.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 296 = 2^{3} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 296.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,2,0,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.36357189983\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.48389.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 8x^{2} + 3x + 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.70606\) of defining polynomial
Character \(\chi\) \(=\) 296.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.70606 q^{3} +2.87345 q^{5} -4.19623 q^{7} +4.32278 q^{9} +3.32278 q^{11} -4.90229 q^{13} +7.77575 q^{15} +2.00000 q^{17} -7.15903 q^{19} -11.3553 q^{21} -5.15539 q^{23} +3.25674 q^{25} +3.57952 q^{27} +3.49017 q^{29} +9.26592 q^{31} +8.99164 q^{33} -12.0577 q^{35} +1.00000 q^{37} -13.2659 q^{39} +7.35162 q^{41} -1.74691 q^{43} +12.4213 q^{45} -10.9628 q^{47} +10.6084 q^{49} +5.41213 q^{51} -0.784105 q^{53} +9.54785 q^{55} -19.3728 q^{57} +0.513481 q^{59} +4.62036 q^{61} -18.1394 q^{63} -14.0865 q^{65} -6.28558 q^{67} -13.9508 q^{69} +5.27357 q^{71} -2.17104 q^{73} +8.81295 q^{75} -13.9431 q^{77} -7.97964 q^{79} -3.28193 q^{81} +11.1766 q^{83} +5.74691 q^{85} +9.44462 q^{87} -4.76657 q^{89} +20.5712 q^{91} +25.0742 q^{93} -20.5712 q^{95} -0.431789 q^{97} +14.3636 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} + 5 q^{5} - q^{7} + 8 q^{9} + 4 q^{11} + 5 q^{13} + 8 q^{17} + 2 q^{19} + q^{21} - 9 q^{23} + 7 q^{25} - q^{27} + 7 q^{29} - q^{31} + 3 q^{33} - 12 q^{35} + 4 q^{37} - 15 q^{39} + 2 q^{41}+ \cdots + 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.70606 1.56235 0.781173 0.624315i \(-0.214622\pi\)
0.781173 + 0.624315i \(0.214622\pi\)
\(4\) 0 0
\(5\) 2.87345 1.28505 0.642524 0.766266i \(-0.277887\pi\)
0.642524 + 0.766266i \(0.277887\pi\)
\(6\) 0 0
\(7\) −4.19623 −1.58603 −0.793013 0.609204i \(-0.791489\pi\)
−0.793013 + 0.609204i \(0.791489\pi\)
\(8\) 0 0
\(9\) 4.32278 1.44093
\(10\) 0 0
\(11\) 3.32278 1.00185 0.500927 0.865489i \(-0.332992\pi\)
0.500927 + 0.865489i \(0.332992\pi\)
\(12\) 0 0
\(13\) −4.90229 −1.35965 −0.679826 0.733374i \(-0.737945\pi\)
−0.679826 + 0.733374i \(0.737945\pi\)
\(14\) 0 0
\(15\) 7.77575 2.00769
\(16\) 0 0
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) −7.15903 −1.64240 −0.821198 0.570644i \(-0.806694\pi\)
−0.821198 + 0.570644i \(0.806694\pi\)
\(20\) 0 0
\(21\) −11.3553 −2.47792
\(22\) 0 0
\(23\) −5.15539 −1.07497 −0.537486 0.843273i \(-0.680626\pi\)
−0.537486 + 0.843273i \(0.680626\pi\)
\(24\) 0 0
\(25\) 3.25674 0.651348
\(26\) 0 0
\(27\) 3.57952 0.688878
\(28\) 0 0
\(29\) 3.49017 0.648108 0.324054 0.946039i \(-0.394954\pi\)
0.324054 + 0.946039i \(0.394954\pi\)
\(30\) 0 0
\(31\) 9.26592 1.66421 0.832104 0.554620i \(-0.187136\pi\)
0.832104 + 0.554620i \(0.187136\pi\)
\(32\) 0 0
\(33\) 8.99164 1.56524
\(34\) 0 0
\(35\) −12.0577 −2.03812
\(36\) 0 0
\(37\) 1.00000 0.164399
\(38\) 0 0
\(39\) −13.2659 −2.12425
\(40\) 0 0
\(41\) 7.35162 1.14813 0.574065 0.818810i \(-0.305366\pi\)
0.574065 + 0.818810i \(0.305366\pi\)
\(42\) 0 0
\(43\) −1.74691 −0.266401 −0.133201 0.991089i \(-0.542525\pi\)
−0.133201 + 0.991089i \(0.542525\pi\)
\(44\) 0 0
\(45\) 12.4213 1.85166
\(46\) 0 0
\(47\) −10.9628 −1.59909 −0.799545 0.600607i \(-0.794926\pi\)
−0.799545 + 0.600607i \(0.794926\pi\)
\(48\) 0 0
\(49\) 10.6084 1.51548
\(50\) 0 0
\(51\) 5.41213 0.757849
\(52\) 0 0
\(53\) −0.784105 −0.107705 −0.0538526 0.998549i \(-0.517150\pi\)
−0.0538526 + 0.998549i \(0.517150\pi\)
\(54\) 0 0
\(55\) 9.54785 1.28743
\(56\) 0 0
\(57\) −19.3728 −2.56599
\(58\) 0 0
\(59\) 0.513481 0.0668496 0.0334248 0.999441i \(-0.489359\pi\)
0.0334248 + 0.999441i \(0.489359\pi\)
\(60\) 0 0
\(61\) 4.62036 0.591577 0.295788 0.955253i \(-0.404418\pi\)
0.295788 + 0.955253i \(0.404418\pi\)
\(62\) 0 0
\(63\) −18.1394 −2.28535
\(64\) 0 0
\(65\) −14.0865 −1.74722
\(66\) 0 0
\(67\) −6.28558 −0.767906 −0.383953 0.923353i \(-0.625438\pi\)
−0.383953 + 0.923353i \(0.625438\pi\)
\(68\) 0 0
\(69\) −13.9508 −1.67948
\(70\) 0 0
\(71\) 5.27357 0.625858 0.312929 0.949777i \(-0.398690\pi\)
0.312929 + 0.949777i \(0.398690\pi\)
\(72\) 0 0
\(73\) −2.17104 −0.254101 −0.127051 0.991896i \(-0.540551\pi\)
−0.127051 + 0.991896i \(0.540551\pi\)
\(74\) 0 0
\(75\) 8.81295 1.01763
\(76\) 0 0
\(77\) −13.9431 −1.58897
\(78\) 0 0
\(79\) −7.97964 −0.897779 −0.448890 0.893587i \(-0.648180\pi\)
−0.448890 + 0.893587i \(0.648180\pi\)
\(80\) 0 0
\(81\) −3.28193 −0.364659
\(82\) 0 0
\(83\) 11.1766 1.22679 0.613394 0.789777i \(-0.289804\pi\)
0.613394 + 0.789777i \(0.289804\pi\)
\(84\) 0 0
\(85\) 5.74691 0.623340
\(86\) 0 0
\(87\) 9.44462 1.01257
\(88\) 0 0
\(89\) −4.76657 −0.505256 −0.252628 0.967564i \(-0.581295\pi\)
−0.252628 + 0.967564i \(0.581295\pi\)
\(90\) 0 0
\(91\) 20.5712 2.15644
\(92\) 0 0
\(93\) 25.0742 2.60007
\(94\) 0 0
\(95\) −20.5712 −2.11056
\(96\) 0 0
\(97\) −0.431789 −0.0438416 −0.0219208 0.999760i \(-0.506978\pi\)
−0.0219208 + 0.999760i \(0.506978\pi\)
\(98\) 0 0
\(99\) 14.3636 1.44360
\(100\) 0 0
\(101\) 4.11454 0.409412 0.204706 0.978824i \(-0.434376\pi\)
0.204706 + 0.978824i \(0.434376\pi\)
\(102\) 0 0
\(103\) 0.480992 0.0473935 0.0236968 0.999719i \(-0.492456\pi\)
0.0236968 + 0.999719i \(0.492456\pi\)
\(104\) 0 0
\(105\) −32.6288 −3.18425
\(106\) 0 0
\(107\) −1.49017 −0.144060 −0.0720300 0.997402i \(-0.522948\pi\)
−0.0720300 + 0.997402i \(0.522948\pi\)
\(108\) 0 0
\(109\) −16.3181 −1.56299 −0.781494 0.623913i \(-0.785542\pi\)
−0.781494 + 0.623913i \(0.785542\pi\)
\(110\) 0 0
\(111\) 2.70606 0.256848
\(112\) 0 0
\(113\) 12.8243 1.20640 0.603202 0.797588i \(-0.293891\pi\)
0.603202 + 0.797588i \(0.293891\pi\)
\(114\) 0 0
\(115\) −14.8138 −1.38139
\(116\) 0 0
\(117\) −21.1915 −1.95916
\(118\) 0 0
\(119\) −8.39246 −0.769336
\(120\) 0 0
\(121\) 0.0408460 0.00371327
\(122\) 0 0
\(123\) 19.8939 1.79378
\(124\) 0 0
\(125\) −5.00918 −0.448034
\(126\) 0 0
\(127\) 16.7674 1.48787 0.743933 0.668255i \(-0.232958\pi\)
0.743933 + 0.668255i \(0.232958\pi\)
\(128\) 0 0
\(129\) −4.72725 −0.416211
\(130\) 0 0
\(131\) −8.90594 −0.778116 −0.389058 0.921213i \(-0.627199\pi\)
−0.389058 + 0.921213i \(0.627199\pi\)
\(132\) 0 0
\(133\) 30.0410 2.60488
\(134\) 0 0
\(135\) 10.2856 0.885242
\(136\) 0 0
\(137\) 11.3236 0.967440 0.483720 0.875223i \(-0.339285\pi\)
0.483720 + 0.875223i \(0.339285\pi\)
\(138\) 0 0
\(139\) 20.9840 1.77984 0.889919 0.456118i \(-0.150761\pi\)
0.889919 + 0.456118i \(0.150761\pi\)
\(140\) 0 0
\(141\) −29.6660 −2.49833
\(142\) 0 0
\(143\) −16.2892 −1.36217
\(144\) 0 0
\(145\) 10.0288 0.832850
\(146\) 0 0
\(147\) 28.7069 2.36770
\(148\) 0 0
\(149\) −10.2539 −0.840033 −0.420017 0.907516i \(-0.637976\pi\)
−0.420017 + 0.907516i \(0.637976\pi\)
\(150\) 0 0
\(151\) 9.07734 0.738704 0.369352 0.929290i \(-0.379580\pi\)
0.369352 + 0.929290i \(0.379580\pi\)
\(152\) 0 0
\(153\) 8.64555 0.698952
\(154\) 0 0
\(155\) 26.6252 2.13859
\(156\) 0 0
\(157\) 13.1415 1.04881 0.524403 0.851470i \(-0.324289\pi\)
0.524403 + 0.851470i \(0.324289\pi\)
\(158\) 0 0
\(159\) −2.12184 −0.168273
\(160\) 0 0
\(161\) 21.6332 1.70493
\(162\) 0 0
\(163\) −4.05768 −0.317822 −0.158911 0.987293i \(-0.550798\pi\)
−0.158911 + 0.987293i \(0.550798\pi\)
\(164\) 0 0
\(165\) 25.8371 2.01141
\(166\) 0 0
\(167\) −15.1265 −1.17053 −0.585264 0.810843i \(-0.699009\pi\)
−0.585264 + 0.810843i \(0.699009\pi\)
\(168\) 0 0
\(169\) 11.0325 0.848653
\(170\) 0 0
\(171\) −30.9469 −2.36657
\(172\) 0 0
\(173\) 18.0401 1.37157 0.685783 0.727806i \(-0.259460\pi\)
0.685783 + 0.727806i \(0.259460\pi\)
\(174\) 0 0
\(175\) −13.6660 −1.03306
\(176\) 0 0
\(177\) 1.38951 0.104442
\(178\) 0 0
\(179\) 10.1394 0.757852 0.378926 0.925427i \(-0.376293\pi\)
0.378926 + 0.925427i \(0.376293\pi\)
\(180\) 0 0
\(181\) −5.51135 −0.409655 −0.204828 0.978798i \(-0.565663\pi\)
−0.204828 + 0.978798i \(0.565663\pi\)
\(182\) 0 0
\(183\) 12.5030 0.924248
\(184\) 0 0
\(185\) 2.87345 0.211261
\(186\) 0 0
\(187\) 6.64555 0.485971
\(188\) 0 0
\(189\) −15.0205 −1.09258
\(190\) 0 0
\(191\) 18.2929 1.32363 0.661813 0.749669i \(-0.269787\pi\)
0.661813 + 0.749669i \(0.269787\pi\)
\(192\) 0 0
\(193\) −21.9440 −1.57956 −0.789780 0.613390i \(-0.789806\pi\)
−0.789780 + 0.613390i \(0.789806\pi\)
\(194\) 0 0
\(195\) −38.1190 −2.72976
\(196\) 0 0
\(197\) 18.4326 1.31327 0.656635 0.754209i \(-0.271979\pi\)
0.656635 + 0.754209i \(0.271979\pi\)
\(198\) 0 0
\(199\) 16.8986 1.19791 0.598957 0.800782i \(-0.295582\pi\)
0.598957 + 0.800782i \(0.295582\pi\)
\(200\) 0 0
\(201\) −17.0092 −1.19973
\(202\) 0 0
\(203\) −14.6456 −1.02792
\(204\) 0 0
\(205\) 21.1245 1.47540
\(206\) 0 0
\(207\) −22.2856 −1.54895
\(208\) 0 0
\(209\) −23.7879 −1.64544
\(210\) 0 0
\(211\) 7.89394 0.543441 0.271721 0.962376i \(-0.412407\pi\)
0.271721 + 0.962376i \(0.412407\pi\)
\(212\) 0 0
\(213\) 14.2706 0.977807
\(214\) 0 0
\(215\) −5.01966 −0.342338
\(216\) 0 0
\(217\) −38.8819 −2.63948
\(218\) 0 0
\(219\) −5.87497 −0.396994
\(220\) 0 0
\(221\) −9.80459 −0.659528
\(222\) 0 0
\(223\) −4.76009 −0.318759 −0.159380 0.987217i \(-0.550949\pi\)
−0.159380 + 0.987217i \(0.550949\pi\)
\(224\) 0 0
\(225\) 14.0782 0.938544
\(226\) 0 0
\(227\) 2.41647 0.160387 0.0801935 0.996779i \(-0.474446\pi\)
0.0801935 + 0.996779i \(0.474446\pi\)
\(228\) 0 0
\(229\) 7.76444 0.513089 0.256544 0.966532i \(-0.417416\pi\)
0.256544 + 0.966532i \(0.417416\pi\)
\(230\) 0 0
\(231\) −37.7310 −2.48252
\(232\) 0 0
\(233\) −13.3524 −0.874747 −0.437374 0.899280i \(-0.644091\pi\)
−0.437374 + 0.899280i \(0.644091\pi\)
\(234\) 0 0
\(235\) −31.5011 −2.05491
\(236\) 0 0
\(237\) −21.5934 −1.40264
\(238\) 0 0
\(239\) 0.203888 0.0131885 0.00659423 0.999978i \(-0.497901\pi\)
0.00659423 + 0.999978i \(0.497901\pi\)
\(240\) 0 0
\(241\) −17.0453 −1.09799 −0.548993 0.835827i \(-0.684989\pi\)
−0.548993 + 0.835827i \(0.684989\pi\)
\(242\) 0 0
\(243\) −19.6197 −1.25860
\(244\) 0 0
\(245\) 30.4826 1.94746
\(246\) 0 0
\(247\) 35.0957 2.23309
\(248\) 0 0
\(249\) 30.2445 1.91667
\(250\) 0 0
\(251\) −5.96067 −0.376234 −0.188117 0.982147i \(-0.560238\pi\)
−0.188117 + 0.982147i \(0.560238\pi\)
\(252\) 0 0
\(253\) −17.1302 −1.07697
\(254\) 0 0
\(255\) 15.5515 0.973873
\(256\) 0 0
\(257\) −3.92561 −0.244873 −0.122436 0.992476i \(-0.539071\pi\)
−0.122436 + 0.992476i \(0.539071\pi\)
\(258\) 0 0
\(259\) −4.19623 −0.260741
\(260\) 0 0
\(261\) 15.0872 0.933875
\(262\) 0 0
\(263\) 30.9644 1.90935 0.954675 0.297651i \(-0.0962032\pi\)
0.954675 + 0.297651i \(0.0962032\pi\)
\(264\) 0 0
\(265\) −2.25309 −0.138406
\(266\) 0 0
\(267\) −12.8986 −0.789384
\(268\) 0 0
\(269\) −17.5515 −1.07013 −0.535067 0.844810i \(-0.679714\pi\)
−0.535067 + 0.844810i \(0.679714\pi\)
\(270\) 0 0
\(271\) −8.58139 −0.521283 −0.260641 0.965436i \(-0.583934\pi\)
−0.260641 + 0.965436i \(0.583934\pi\)
\(272\) 0 0
\(273\) 55.6669 3.36911
\(274\) 0 0
\(275\) 10.8214 0.652556
\(276\) 0 0
\(277\) 2.87345 0.172649 0.0863246 0.996267i \(-0.472488\pi\)
0.0863246 + 0.996267i \(0.472488\pi\)
\(278\) 0 0
\(279\) 40.0545 2.39800
\(280\) 0 0
\(281\) −13.1590 −0.785002 −0.392501 0.919752i \(-0.628390\pi\)
−0.392501 + 0.919752i \(0.628390\pi\)
\(282\) 0 0
\(283\) 28.6865 1.70524 0.852618 0.522534i \(-0.175013\pi\)
0.852618 + 0.522534i \(0.175013\pi\)
\(284\) 0 0
\(285\) −55.6669 −3.29742
\(286\) 0 0
\(287\) −30.8491 −1.82096
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) −1.16845 −0.0684957
\(292\) 0 0
\(293\) −7.13502 −0.416832 −0.208416 0.978040i \(-0.566831\pi\)
−0.208416 + 0.978040i \(0.566831\pi\)
\(294\) 0 0
\(295\) 1.47546 0.0859049
\(296\) 0 0
\(297\) 11.8939 0.690156
\(298\) 0 0
\(299\) 25.2732 1.46159
\(300\) 0 0
\(301\) 7.33043 0.422519
\(302\) 0 0
\(303\) 11.1342 0.639643
\(304\) 0 0
\(305\) 13.2764 0.760205
\(306\) 0 0
\(307\) −16.6667 −0.951221 −0.475610 0.879656i \(-0.657773\pi\)
−0.475610 + 0.879656i \(0.657773\pi\)
\(308\) 0 0
\(309\) 1.30159 0.0740451
\(310\) 0 0
\(311\) −5.82495 −0.330303 −0.165151 0.986268i \(-0.552811\pi\)
−0.165151 + 0.986268i \(0.552811\pi\)
\(312\) 0 0
\(313\) −32.2547 −1.82315 −0.911573 0.411139i \(-0.865131\pi\)
−0.911573 + 0.411139i \(0.865131\pi\)
\(314\) 0 0
\(315\) −52.1227 −2.93678
\(316\) 0 0
\(317\) 7.90299 0.443876 0.221938 0.975061i \(-0.428762\pi\)
0.221938 + 0.975061i \(0.428762\pi\)
\(318\) 0 0
\(319\) 11.5971 0.649310
\(320\) 0 0
\(321\) −4.03249 −0.225072
\(322\) 0 0
\(323\) −14.3181 −0.796679
\(324\) 0 0
\(325\) −15.9655 −0.885607
\(326\) 0 0
\(327\) −44.1577 −2.44193
\(328\) 0 0
\(329\) 46.0025 2.53620
\(330\) 0 0
\(331\) 17.1774 0.944155 0.472077 0.881557i \(-0.343504\pi\)
0.472077 + 0.881557i \(0.343504\pi\)
\(332\) 0 0
\(333\) 4.32278 0.236887
\(334\) 0 0
\(335\) −18.0613 −0.986796
\(336\) 0 0
\(337\) −3.96833 −0.216169 −0.108084 0.994142i \(-0.534472\pi\)
−0.108084 + 0.994142i \(0.534472\pi\)
\(338\) 0 0
\(339\) 34.7032 1.88482
\(340\) 0 0
\(341\) 30.7886 1.66729
\(342\) 0 0
\(343\) −15.1415 −0.817564
\(344\) 0 0
\(345\) −40.0870 −2.15821
\(346\) 0 0
\(347\) −14.6456 −0.786215 −0.393107 0.919493i \(-0.628600\pi\)
−0.393107 + 0.919493i \(0.628600\pi\)
\(348\) 0 0
\(349\) 20.5895 1.10213 0.551066 0.834462i \(-0.314221\pi\)
0.551066 + 0.834462i \(0.314221\pi\)
\(350\) 0 0
\(351\) −17.5478 −0.936635
\(352\) 0 0
\(353\) 32.1620 1.71181 0.855905 0.517133i \(-0.173001\pi\)
0.855905 + 0.517133i \(0.173001\pi\)
\(354\) 0 0
\(355\) 15.1534 0.804258
\(356\) 0 0
\(357\) −22.7105 −1.20197
\(358\) 0 0
\(359\) −5.55068 −0.292954 −0.146477 0.989214i \(-0.546793\pi\)
−0.146477 + 0.989214i \(0.546793\pi\)
\(360\) 0 0
\(361\) 32.2518 1.69746
\(362\) 0 0
\(363\) 0.110532 0.00580141
\(364\) 0 0
\(365\) −6.23839 −0.326532
\(366\) 0 0
\(367\) 30.5895 1.59676 0.798380 0.602154i \(-0.205691\pi\)
0.798380 + 0.602154i \(0.205691\pi\)
\(368\) 0 0
\(369\) 31.7794 1.65437
\(370\) 0 0
\(371\) 3.29029 0.170823
\(372\) 0 0
\(373\) −11.4523 −0.592976 −0.296488 0.955037i \(-0.595816\pi\)
−0.296488 + 0.955037i \(0.595816\pi\)
\(374\) 0 0
\(375\) −13.5551 −0.699985
\(376\) 0 0
\(377\) −17.1098 −0.881201
\(378\) 0 0
\(379\) −7.99717 −0.410787 −0.205394 0.978679i \(-0.565847\pi\)
−0.205394 + 0.978679i \(0.565847\pi\)
\(380\) 0 0
\(381\) 45.3736 2.32456
\(382\) 0 0
\(383\) −28.1154 −1.43663 −0.718314 0.695719i \(-0.755086\pi\)
−0.718314 + 0.695719i \(0.755086\pi\)
\(384\) 0 0
\(385\) −40.0650 −2.04190
\(386\) 0 0
\(387\) −7.55150 −0.383864
\(388\) 0 0
\(389\) −16.1541 −0.819044 −0.409522 0.912300i \(-0.634305\pi\)
−0.409522 + 0.912300i \(0.634305\pi\)
\(390\) 0 0
\(391\) −10.3108 −0.521438
\(392\) 0 0
\(393\) −24.1000 −1.21569
\(394\) 0 0
\(395\) −22.9291 −1.15369
\(396\) 0 0
\(397\) −11.3720 −0.570743 −0.285372 0.958417i \(-0.592117\pi\)
−0.285372 + 0.958417i \(0.592117\pi\)
\(398\) 0 0
\(399\) 81.2927 4.06973
\(400\) 0 0
\(401\) −26.9636 −1.34650 −0.673250 0.739415i \(-0.735102\pi\)
−0.673250 + 0.739415i \(0.735102\pi\)
\(402\) 0 0
\(403\) −45.4243 −2.26274
\(404\) 0 0
\(405\) −9.43048 −0.468604
\(406\) 0 0
\(407\) 3.32278 0.164704
\(408\) 0 0
\(409\) 20.9453 1.03568 0.517838 0.855478i \(-0.326737\pi\)
0.517838 + 0.855478i \(0.326737\pi\)
\(410\) 0 0
\(411\) 30.6424 1.51148
\(412\) 0 0
\(413\) −2.15469 −0.106025
\(414\) 0 0
\(415\) 32.1154 1.57648
\(416\) 0 0
\(417\) 56.7840 2.78072
\(418\) 0 0
\(419\) −29.0314 −1.41828 −0.709139 0.705069i \(-0.750916\pi\)
−0.709139 + 0.705069i \(0.750916\pi\)
\(420\) 0 0
\(421\) −1.64485 −0.0801653 −0.0400826 0.999196i \(-0.512762\pi\)
−0.0400826 + 0.999196i \(0.512762\pi\)
\(422\) 0 0
\(423\) −47.3898 −2.30417
\(424\) 0 0
\(425\) 6.51348 0.315950
\(426\) 0 0
\(427\) −19.3881 −0.938257
\(428\) 0 0
\(429\) −44.0797 −2.12819
\(430\) 0 0
\(431\) 14.8243 0.714059 0.357030 0.934093i \(-0.383790\pi\)
0.357030 + 0.934093i \(0.383790\pi\)
\(432\) 0 0
\(433\) 19.7514 0.949191 0.474595 0.880204i \(-0.342594\pi\)
0.474595 + 0.880204i \(0.342594\pi\)
\(434\) 0 0
\(435\) 27.1387 1.30120
\(436\) 0 0
\(437\) 36.9076 1.76553
\(438\) 0 0
\(439\) 5.27640 0.251829 0.125915 0.992041i \(-0.459813\pi\)
0.125915 + 0.992041i \(0.459813\pi\)
\(440\) 0 0
\(441\) 45.8576 2.18369
\(442\) 0 0
\(443\) 6.35915 0.302132 0.151066 0.988524i \(-0.451729\pi\)
0.151066 + 0.988524i \(0.451729\pi\)
\(444\) 0 0
\(445\) −13.6965 −0.649278
\(446\) 0 0
\(447\) −27.7477 −1.31242
\(448\) 0 0
\(449\) −1.49382 −0.0704976 −0.0352488 0.999379i \(-0.511222\pi\)
−0.0352488 + 0.999379i \(0.511222\pi\)
\(450\) 0 0
\(451\) 24.4278 1.15026
\(452\) 0 0
\(453\) 24.5639 1.15411
\(454\) 0 0
\(455\) 59.1103 2.77113
\(456\) 0 0
\(457\) −29.0030 −1.35670 −0.678350 0.734739i \(-0.737305\pi\)
−0.678350 + 0.734739i \(0.737305\pi\)
\(458\) 0 0
\(459\) 7.15903 0.334155
\(460\) 0 0
\(461\) 12.6959 0.591309 0.295654 0.955295i \(-0.404462\pi\)
0.295654 + 0.955295i \(0.404462\pi\)
\(462\) 0 0
\(463\) −26.4465 −1.22907 −0.614536 0.788888i \(-0.710657\pi\)
−0.614536 + 0.788888i \(0.710657\pi\)
\(464\) 0 0
\(465\) 72.0494 3.34121
\(466\) 0 0
\(467\) 18.4318 0.852921 0.426461 0.904506i \(-0.359760\pi\)
0.426461 + 0.904506i \(0.359760\pi\)
\(468\) 0 0
\(469\) 26.3757 1.21792
\(470\) 0 0
\(471\) 35.5617 1.63860
\(472\) 0 0
\(473\) −5.80459 −0.266895
\(474\) 0 0
\(475\) −23.3151 −1.06977
\(476\) 0 0
\(477\) −3.38951 −0.155195
\(478\) 0 0
\(479\) −15.1234 −0.691004 −0.345502 0.938418i \(-0.612291\pi\)
−0.345502 + 0.938418i \(0.612291\pi\)
\(480\) 0 0
\(481\) −4.90229 −0.223525
\(482\) 0 0
\(483\) 58.5408 2.66370
\(484\) 0 0
\(485\) −1.24073 −0.0563385
\(486\) 0 0
\(487\) −18.7105 −0.847855 −0.423928 0.905696i \(-0.639349\pi\)
−0.423928 + 0.905696i \(0.639349\pi\)
\(488\) 0 0
\(489\) −10.9803 −0.496548
\(490\) 0 0
\(491\) −22.5098 −1.01585 −0.507927 0.861400i \(-0.669588\pi\)
−0.507927 + 0.861400i \(0.669588\pi\)
\(492\) 0 0
\(493\) 6.98034 0.314379
\(494\) 0 0
\(495\) 41.2732 1.85509
\(496\) 0 0
\(497\) −22.1291 −0.992627
\(498\) 0 0
\(499\) 0.513481 0.0229866 0.0114933 0.999934i \(-0.496341\pi\)
0.0114933 + 0.999934i \(0.496341\pi\)
\(500\) 0 0
\(501\) −40.9334 −1.82877
\(502\) 0 0
\(503\) −17.5430 −0.782205 −0.391102 0.920347i \(-0.627906\pi\)
−0.391102 + 0.920347i \(0.627906\pi\)
\(504\) 0 0
\(505\) 11.8229 0.526114
\(506\) 0 0
\(507\) 29.8546 1.32589
\(508\) 0 0
\(509\) 5.82638 0.258250 0.129125 0.991628i \(-0.458783\pi\)
0.129125 + 0.991628i \(0.458783\pi\)
\(510\) 0 0
\(511\) 9.11019 0.403011
\(512\) 0 0
\(513\) −25.6259 −1.13141
\(514\) 0 0
\(515\) 1.38211 0.0609030
\(516\) 0 0
\(517\) −36.4269 −1.60206
\(518\) 0 0
\(519\) 48.8178 2.14286
\(520\) 0 0
\(521\) −12.5070 −0.547942 −0.273971 0.961738i \(-0.588337\pi\)
−0.273971 + 0.961738i \(0.588337\pi\)
\(522\) 0 0
\(523\) −28.1227 −1.22972 −0.614859 0.788637i \(-0.710787\pi\)
−0.614859 + 0.788637i \(0.710787\pi\)
\(524\) 0 0
\(525\) −36.9812 −1.61399
\(526\) 0 0
\(527\) 18.5318 0.807259
\(528\) 0 0
\(529\) 3.57800 0.155565
\(530\) 0 0
\(531\) 2.21966 0.0963252
\(532\) 0 0
\(533\) −36.0398 −1.56106
\(534\) 0 0
\(535\) −4.28193 −0.185124
\(536\) 0 0
\(537\) 27.4378 1.18403
\(538\) 0 0
\(539\) 35.2492 1.51829
\(540\) 0 0
\(541\) −44.9495 −1.93253 −0.966265 0.257551i \(-0.917084\pi\)
−0.966265 + 0.257551i \(0.917084\pi\)
\(542\) 0 0
\(543\) −14.9141 −0.640024
\(544\) 0 0
\(545\) −46.8892 −2.00851
\(546\) 0 0
\(547\) 2.87463 0.122910 0.0614552 0.998110i \(-0.480426\pi\)
0.0614552 + 0.998110i \(0.480426\pi\)
\(548\) 0 0
\(549\) 19.9728 0.852418
\(550\) 0 0
\(551\) −24.9862 −1.06445
\(552\) 0 0
\(553\) 33.4844 1.42390
\(554\) 0 0
\(555\) 7.77575 0.330062
\(556\) 0 0
\(557\) 16.5066 0.699409 0.349704 0.936860i \(-0.386282\pi\)
0.349704 + 0.936860i \(0.386282\pi\)
\(558\) 0 0
\(559\) 8.56386 0.362213
\(560\) 0 0
\(561\) 17.9833 0.759255
\(562\) 0 0
\(563\) 15.5515 0.655417 0.327709 0.944779i \(-0.393724\pi\)
0.327709 + 0.944779i \(0.393724\pi\)
\(564\) 0 0
\(565\) 36.8499 1.55029
\(566\) 0 0
\(567\) 13.7717 0.578359
\(568\) 0 0
\(569\) −28.2620 −1.18481 −0.592403 0.805642i \(-0.701821\pi\)
−0.592403 + 0.805642i \(0.701821\pi\)
\(570\) 0 0
\(571\) −41.1802 −1.72334 −0.861669 0.507470i \(-0.830581\pi\)
−0.861669 + 0.507470i \(0.830581\pi\)
\(572\) 0 0
\(573\) 49.5017 2.06796
\(574\) 0 0
\(575\) −16.7898 −0.700181
\(576\) 0 0
\(577\) −25.9016 −1.07830 −0.539149 0.842211i \(-0.681254\pi\)
−0.539149 + 0.842211i \(0.681254\pi\)
\(578\) 0 0
\(579\) −59.3817 −2.46782
\(580\) 0 0
\(581\) −46.8995 −1.94572
\(582\) 0 0
\(583\) −2.60541 −0.107905
\(584\) 0 0
\(585\) −60.8929 −2.51761
\(586\) 0 0
\(587\) −19.3224 −0.797522 −0.398761 0.917055i \(-0.630560\pi\)
−0.398761 + 0.917055i \(0.630560\pi\)
\(588\) 0 0
\(589\) −66.3350 −2.73329
\(590\) 0 0
\(591\) 49.8798 2.05178
\(592\) 0 0
\(593\) −5.33809 −0.219209 −0.109605 0.993975i \(-0.534958\pi\)
−0.109605 + 0.993975i \(0.534958\pi\)
\(594\) 0 0
\(595\) −24.1154 −0.988633
\(596\) 0 0
\(597\) 45.7288 1.87156
\(598\) 0 0
\(599\) −16.1329 −0.659172 −0.329586 0.944126i \(-0.606909\pi\)
−0.329586 + 0.944126i \(0.606909\pi\)
\(600\) 0 0
\(601\) 40.6147 1.65671 0.828354 0.560205i \(-0.189278\pi\)
0.828354 + 0.560205i \(0.189278\pi\)
\(602\) 0 0
\(603\) −27.1712 −1.10650
\(604\) 0 0
\(605\) 0.117369 0.00477173
\(606\) 0 0
\(607\) −1.16268 −0.0471919 −0.0235960 0.999722i \(-0.507512\pi\)
−0.0235960 + 0.999722i \(0.507512\pi\)
\(608\) 0 0
\(609\) −39.6318 −1.60596
\(610\) 0 0
\(611\) 53.7429 2.17420
\(612\) 0 0
\(613\) 5.29759 0.213968 0.106984 0.994261i \(-0.465881\pi\)
0.106984 + 0.994261i \(0.465881\pi\)
\(614\) 0 0
\(615\) 57.1643 2.30509
\(616\) 0 0
\(617\) −38.6893 −1.55757 −0.778787 0.627288i \(-0.784165\pi\)
−0.778787 + 0.627288i \(0.784165\pi\)
\(618\) 0 0
\(619\) 28.7773 1.15666 0.578328 0.815804i \(-0.303705\pi\)
0.578328 + 0.815804i \(0.303705\pi\)
\(620\) 0 0
\(621\) −18.4538 −0.740525
\(622\) 0 0
\(623\) 20.0016 0.801349
\(624\) 0 0
\(625\) −30.6773 −1.22709
\(626\) 0 0
\(627\) −64.3715 −2.57075
\(628\) 0 0
\(629\) 2.00000 0.0797452
\(630\) 0 0
\(631\) −24.7646 −0.985862 −0.492931 0.870068i \(-0.664074\pi\)
−0.492931 + 0.870068i \(0.664074\pi\)
\(632\) 0 0
\(633\) 21.3615 0.849043
\(634\) 0 0
\(635\) 48.1803 1.91198
\(636\) 0 0
\(637\) −52.0053 −2.06052
\(638\) 0 0
\(639\) 22.7965 0.901815
\(640\) 0 0
\(641\) −1.77611 −0.0701520 −0.0350760 0.999385i \(-0.511167\pi\)
−0.0350760 + 0.999385i \(0.511167\pi\)
\(642\) 0 0
\(643\) −7.09406 −0.279762 −0.139881 0.990168i \(-0.544672\pi\)
−0.139881 + 0.990168i \(0.544672\pi\)
\(644\) 0 0
\(645\) −13.5835 −0.534851
\(646\) 0 0
\(647\) −25.1627 −0.989247 −0.494624 0.869107i \(-0.664694\pi\)
−0.494624 + 0.869107i \(0.664694\pi\)
\(648\) 0 0
\(649\) 1.70618 0.0669736
\(650\) 0 0
\(651\) −105.217 −4.12378
\(652\) 0 0
\(653\) 34.5581 1.35236 0.676181 0.736735i \(-0.263634\pi\)
0.676181 + 0.736735i \(0.263634\pi\)
\(654\) 0 0
\(655\) −25.5908 −0.999916
\(656\) 0 0
\(657\) −9.38493 −0.366141
\(658\) 0 0
\(659\) 13.9284 0.542575 0.271287 0.962498i \(-0.412551\pi\)
0.271287 + 0.962498i \(0.412551\pi\)
\(660\) 0 0
\(661\) −8.15973 −0.317377 −0.158688 0.987329i \(-0.550727\pi\)
−0.158688 + 0.987329i \(0.550727\pi\)
\(662\) 0 0
\(663\) −26.5318 −1.03041
\(664\) 0 0
\(665\) 86.3213 3.34740
\(666\) 0 0
\(667\) −17.9932 −0.696698
\(668\) 0 0
\(669\) −12.8811 −0.498013
\(670\) 0 0
\(671\) 15.3524 0.592674
\(672\) 0 0
\(673\) 26.9608 1.03926 0.519631 0.854391i \(-0.326069\pi\)
0.519631 + 0.854391i \(0.326069\pi\)
\(674\) 0 0
\(675\) 11.6576 0.448700
\(676\) 0 0
\(677\) 45.3423 1.74265 0.871323 0.490710i \(-0.163262\pi\)
0.871323 + 0.490710i \(0.163262\pi\)
\(678\) 0 0
\(679\) 1.81189 0.0695339
\(680\) 0 0
\(681\) 6.53913 0.250580
\(682\) 0 0
\(683\) 27.2518 1.04276 0.521380 0.853324i \(-0.325417\pi\)
0.521380 + 0.853324i \(0.325417\pi\)
\(684\) 0 0
\(685\) 32.5378 1.24321
\(686\) 0 0
\(687\) 21.0111 0.801622
\(688\) 0 0
\(689\) 3.84392 0.146442
\(690\) 0 0
\(691\) −4.11536 −0.156556 −0.0782778 0.996932i \(-0.524942\pi\)
−0.0782778 + 0.996932i \(0.524942\pi\)
\(692\) 0 0
\(693\) −60.2731 −2.28959
\(694\) 0 0
\(695\) 60.2965 2.28718
\(696\) 0 0
\(697\) 14.7032 0.556925
\(698\) 0 0
\(699\) −36.1325 −1.36666
\(700\) 0 0
\(701\) 49.3069 1.86230 0.931148 0.364642i \(-0.118809\pi\)
0.931148 + 0.364642i \(0.118809\pi\)
\(702\) 0 0
\(703\) −7.15903 −0.270008
\(704\) 0 0
\(705\) −85.2440 −3.21048
\(706\) 0 0
\(707\) −17.2656 −0.649338
\(708\) 0 0
\(709\) 18.3039 0.687419 0.343709 0.939076i \(-0.388317\pi\)
0.343709 + 0.939076i \(0.388317\pi\)
\(710\) 0 0
\(711\) −34.4942 −1.29363
\(712\) 0 0
\(713\) −47.7694 −1.78898
\(714\) 0 0
\(715\) −46.8064 −1.75046
\(716\) 0 0
\(717\) 0.551735 0.0206049
\(718\) 0 0
\(719\) 26.3933 0.984303 0.492152 0.870509i \(-0.336211\pi\)
0.492152 + 0.870509i \(0.336211\pi\)
\(720\) 0 0
\(721\) −2.01835 −0.0751674
\(722\) 0 0
\(723\) −46.1257 −1.71543
\(724\) 0 0
\(725\) 11.3666 0.422144
\(726\) 0 0
\(727\) −32.3192 −1.19865 −0.599327 0.800504i \(-0.704565\pi\)
−0.599327 + 0.800504i \(0.704565\pi\)
\(728\) 0 0
\(729\) −43.2463 −1.60171
\(730\) 0 0
\(731\) −3.49382 −0.129224
\(732\) 0 0
\(733\) −1.73077 −0.0639276 −0.0319638 0.999489i \(-0.510176\pi\)
−0.0319638 + 0.999489i \(0.510176\pi\)
\(734\) 0 0
\(735\) 82.4879 3.04261
\(736\) 0 0
\(737\) −20.8856 −0.769330
\(738\) 0 0
\(739\) 45.9196 1.68918 0.844590 0.535414i \(-0.179844\pi\)
0.844590 + 0.535414i \(0.179844\pi\)
\(740\) 0 0
\(741\) 94.9712 3.48885
\(742\) 0 0
\(743\) 30.9995 1.13726 0.568631 0.822593i \(-0.307473\pi\)
0.568631 + 0.822593i \(0.307473\pi\)
\(744\) 0 0
\(745\) −29.4641 −1.07948
\(746\) 0 0
\(747\) 48.3138 1.76771
\(748\) 0 0
\(749\) 6.25309 0.228483
\(750\) 0 0
\(751\) −12.2963 −0.448697 −0.224349 0.974509i \(-0.572025\pi\)
−0.224349 + 0.974509i \(0.572025\pi\)
\(752\) 0 0
\(753\) −16.1300 −0.587808
\(754\) 0 0
\(755\) 26.0833 0.949270
\(756\) 0 0
\(757\) 5.30524 0.192822 0.0964112 0.995342i \(-0.469264\pi\)
0.0964112 + 0.995342i \(0.469264\pi\)
\(758\) 0 0
\(759\) −46.3554 −1.68259
\(760\) 0 0
\(761\) −1.98186 −0.0718422 −0.0359211 0.999355i \(-0.511437\pi\)
−0.0359211 + 0.999355i \(0.511437\pi\)
\(762\) 0 0
\(763\) 68.4744 2.47894
\(764\) 0 0
\(765\) 24.8426 0.898186
\(766\) 0 0
\(767\) −2.51724 −0.0908921
\(768\) 0 0
\(769\) 17.4458 0.629111 0.314556 0.949239i \(-0.398144\pi\)
0.314556 + 0.949239i \(0.398144\pi\)
\(770\) 0 0
\(771\) −10.6229 −0.382576
\(772\) 0 0
\(773\) −41.2008 −1.48189 −0.740945 0.671565i \(-0.765622\pi\)
−0.740945 + 0.671565i \(0.765622\pi\)
\(774\) 0 0
\(775\) 30.1767 1.08398
\(776\) 0 0
\(777\) −11.3553 −0.407368
\(778\) 0 0
\(779\) −52.6305 −1.88568
\(780\) 0 0
\(781\) 17.5229 0.627019
\(782\) 0 0
\(783\) 12.4931 0.446468
\(784\) 0 0
\(785\) 37.7615 1.34777
\(786\) 0 0
\(787\) −7.25522 −0.258621 −0.129310 0.991604i \(-0.541276\pi\)
−0.129310 + 0.991604i \(0.541276\pi\)
\(788\) 0 0
\(789\) 83.7917 2.98306
\(790\) 0 0
\(791\) −53.8135 −1.91339
\(792\) 0 0
\(793\) −22.6504 −0.804339
\(794\) 0 0
\(795\) −6.09701 −0.216239
\(796\) 0 0
\(797\) −5.40118 −0.191320 −0.0956598 0.995414i \(-0.530496\pi\)
−0.0956598 + 0.995414i \(0.530496\pi\)
\(798\) 0 0
\(799\) −21.9256 −0.775672
\(800\) 0 0
\(801\) −20.6048 −0.728036
\(802\) 0 0
\(803\) −7.21388 −0.254572
\(804\) 0 0
\(805\) 62.1620 2.19092
\(806\) 0 0
\(807\) −47.4955 −1.67192
\(808\) 0 0
\(809\) −13.5922 −0.477877 −0.238939 0.971035i \(-0.576799\pi\)
−0.238939 + 0.971035i \(0.576799\pi\)
\(810\) 0 0
\(811\) 23.2441 0.816212 0.408106 0.912935i \(-0.366189\pi\)
0.408106 + 0.912935i \(0.366189\pi\)
\(812\) 0 0
\(813\) −23.2218 −0.814424
\(814\) 0 0
\(815\) −11.6596 −0.408416
\(816\) 0 0
\(817\) 12.5062 0.437536
\(818\) 0 0
\(819\) 88.9245 3.10727
\(820\) 0 0
\(821\) −44.3933 −1.54934 −0.774668 0.632368i \(-0.782083\pi\)
−0.774668 + 0.632368i \(0.782083\pi\)
\(822\) 0 0
\(823\) −22.9876 −0.801299 −0.400649 0.916231i \(-0.631215\pi\)
−0.400649 + 0.916231i \(0.631215\pi\)
\(824\) 0 0
\(825\) 29.2835 1.01952
\(826\) 0 0
\(827\) 3.01540 0.104856 0.0524279 0.998625i \(-0.483304\pi\)
0.0524279 + 0.998625i \(0.483304\pi\)
\(828\) 0 0
\(829\) 38.2080 1.32702 0.663509 0.748168i \(-0.269066\pi\)
0.663509 + 0.748168i \(0.269066\pi\)
\(830\) 0 0
\(831\) 7.77575 0.269738
\(832\) 0 0
\(833\) 21.2167 0.735116
\(834\) 0 0
\(835\) −43.4654 −1.50418
\(836\) 0 0
\(837\) 33.1675 1.14644
\(838\) 0 0
\(839\) 4.45580 0.153831 0.0769157 0.997038i \(-0.475493\pi\)
0.0769157 + 0.997038i \(0.475493\pi\)
\(840\) 0 0
\(841\) −16.8187 −0.579956
\(842\) 0 0
\(843\) −35.6092 −1.22645
\(844\) 0 0
\(845\) 31.7014 1.09056
\(846\) 0 0
\(847\) −0.171399 −0.00588934
\(848\) 0 0
\(849\) 77.6275 2.66417
\(850\) 0 0
\(851\) −5.15539 −0.176724
\(852\) 0 0
\(853\) 9.45403 0.323700 0.161850 0.986815i \(-0.448254\pi\)
0.161850 + 0.986815i \(0.448254\pi\)
\(854\) 0 0
\(855\) −88.9245 −3.04116
\(856\) 0 0
\(857\) 6.74822 0.230515 0.115257 0.993336i \(-0.463231\pi\)
0.115257 + 0.993336i \(0.463231\pi\)
\(858\) 0 0
\(859\) 32.9709 1.12495 0.562477 0.826813i \(-0.309849\pi\)
0.562477 + 0.826813i \(0.309849\pi\)
\(860\) 0 0
\(861\) −83.4796 −2.84498
\(862\) 0 0
\(863\) 17.4545 0.594158 0.297079 0.954853i \(-0.403988\pi\)
0.297079 + 0.954853i \(0.403988\pi\)
\(864\) 0 0
\(865\) 51.8375 1.76253
\(866\) 0 0
\(867\) −35.1788 −1.19474
\(868\) 0 0
\(869\) −26.5146 −0.899445
\(870\) 0 0
\(871\) 30.8138 1.04408
\(872\) 0 0
\(873\) −1.86653 −0.0631724
\(874\) 0 0
\(875\) 21.0197 0.710594
\(876\) 0 0
\(877\) 6.77033 0.228618 0.114309 0.993445i \(-0.463535\pi\)
0.114309 + 0.993445i \(0.463535\pi\)
\(878\) 0 0
\(879\) −19.3078 −0.651237
\(880\) 0 0
\(881\) 40.9217 1.37869 0.689344 0.724434i \(-0.257899\pi\)
0.689344 + 0.724434i \(0.257899\pi\)
\(882\) 0 0
\(883\) −8.00000 −0.269221 −0.134611 0.990899i \(-0.542978\pi\)
−0.134611 + 0.990899i \(0.542978\pi\)
\(884\) 0 0
\(885\) 3.99270 0.134213
\(886\) 0 0
\(887\) −50.6143 −1.69946 −0.849732 0.527215i \(-0.823236\pi\)
−0.849732 + 0.527215i \(0.823236\pi\)
\(888\) 0 0
\(889\) −70.3599 −2.35979
\(890\) 0 0
\(891\) −10.9051 −0.365335
\(892\) 0 0
\(893\) 78.4831 2.62634
\(894\) 0 0
\(895\) 29.1350 0.973876
\(896\) 0 0
\(897\) 68.3909 2.28351
\(898\) 0 0
\(899\) 32.3396 1.07859
\(900\) 0 0
\(901\) −1.56821 −0.0522447
\(902\) 0 0
\(903\) 19.8366 0.660121
\(904\) 0 0
\(905\) −15.8366 −0.526427
\(906\) 0 0
\(907\) 45.8842 1.52356 0.761779 0.647837i \(-0.224326\pi\)
0.761779 + 0.647837i \(0.224326\pi\)
\(908\) 0 0
\(909\) 17.7862 0.589932
\(910\) 0 0
\(911\) −43.2184 −1.43189 −0.715944 0.698158i \(-0.754003\pi\)
−0.715944 + 0.698158i \(0.754003\pi\)
\(912\) 0 0
\(913\) 37.1372 1.22906
\(914\) 0 0
\(915\) 35.9268 1.18770
\(916\) 0 0
\(917\) 37.3714 1.23411
\(918\) 0 0
\(919\) 22.5822 0.744919 0.372459 0.928049i \(-0.378515\pi\)
0.372459 + 0.928049i \(0.378515\pi\)
\(920\) 0 0
\(921\) −45.1012 −1.48614
\(922\) 0 0
\(923\) −25.8526 −0.850949
\(924\) 0 0
\(925\) 3.25674 0.107081
\(926\) 0 0
\(927\) 2.07922 0.0682906
\(928\) 0 0
\(929\) 7.10983 0.233266 0.116633 0.993175i \(-0.462790\pi\)
0.116633 + 0.993175i \(0.462790\pi\)
\(930\) 0 0
\(931\) −75.9456 −2.48902
\(932\) 0 0
\(933\) −15.7627 −0.516047
\(934\) 0 0
\(935\) 19.0957 0.624496
\(936\) 0 0
\(937\) −58.4139 −1.90830 −0.954149 0.299331i \(-0.903236\pi\)
−0.954149 + 0.299331i \(0.903236\pi\)
\(938\) 0 0
\(939\) −87.2833 −2.84838
\(940\) 0 0
\(941\) −21.0957 −0.687700 −0.343850 0.939025i \(-0.611731\pi\)
−0.343850 + 0.939025i \(0.611731\pi\)
\(942\) 0 0
\(943\) −37.9004 −1.23421
\(944\) 0 0
\(945\) −43.1607 −1.40402
\(946\) 0 0
\(947\) −11.6442 −0.378387 −0.189194 0.981940i \(-0.560587\pi\)
−0.189194 + 0.981940i \(0.560587\pi\)
\(948\) 0 0
\(949\) 10.6431 0.345489
\(950\) 0 0
\(951\) 21.3860 0.693489
\(952\) 0 0
\(953\) −41.6665 −1.34971 −0.674855 0.737950i \(-0.735794\pi\)
−0.674855 + 0.737950i \(0.735794\pi\)
\(954\) 0 0
\(955\) 52.5638 1.70092
\(956\) 0 0
\(957\) 31.3823 1.01445
\(958\) 0 0
\(959\) −47.5164 −1.53439
\(960\) 0 0
\(961\) 54.8572 1.76959
\(962\) 0 0
\(963\) −6.44167 −0.207580
\(964\) 0 0
\(965\) −63.0550 −2.02981
\(966\) 0 0
\(967\) 12.8254 0.412438 0.206219 0.978506i \(-0.433884\pi\)
0.206219 + 0.978506i \(0.433884\pi\)
\(968\) 0 0
\(969\) −38.7456 −1.24469
\(970\) 0 0
\(971\) 31.3125 1.00487 0.502434 0.864616i \(-0.332438\pi\)
0.502434 + 0.864616i \(0.332438\pi\)
\(972\) 0 0
\(973\) −88.0537 −2.82287
\(974\) 0 0
\(975\) −43.2037 −1.38362
\(976\) 0 0
\(977\) −43.0140 −1.37614 −0.688070 0.725644i \(-0.741542\pi\)
−0.688070 + 0.725644i \(0.741542\pi\)
\(978\) 0 0
\(979\) −15.8383 −0.506193
\(980\) 0 0
\(981\) −70.5394 −2.25215
\(982\) 0 0
\(983\) 16.6617 0.531425 0.265713 0.964052i \(-0.414393\pi\)
0.265713 + 0.964052i \(0.414393\pi\)
\(984\) 0 0
\(985\) 52.9653 1.68761
\(986\) 0 0
\(987\) 124.486 3.96242
\(988\) 0 0
\(989\) 9.00599 0.286374
\(990\) 0 0
\(991\) 40.5428 1.28788 0.643942 0.765074i \(-0.277298\pi\)
0.643942 + 0.765074i \(0.277298\pi\)
\(992\) 0 0
\(993\) 46.4831 1.47510
\(994\) 0 0
\(995\) 48.5575 1.53938
\(996\) 0 0
\(997\) 5.21507 0.165163 0.0825815 0.996584i \(-0.473684\pi\)
0.0825815 + 0.996584i \(0.473684\pi\)
\(998\) 0 0
\(999\) 3.57952 0.113251
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 296.2.a.d.1.4 4
3.2 odd 2 2664.2.a.r.1.2 4
4.3 odd 2 592.2.a.j.1.1 4
5.4 even 2 7400.2.a.n.1.1 4
8.3 odd 2 2368.2.a.bh.1.4 4
8.5 even 2 2368.2.a.bg.1.1 4
12.11 even 2 5328.2.a.bp.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
296.2.a.d.1.4 4 1.1 even 1 trivial
592.2.a.j.1.1 4 4.3 odd 2
2368.2.a.bg.1.1 4 8.5 even 2
2368.2.a.bh.1.4 4 8.3 odd 2
2664.2.a.r.1.2 4 3.2 odd 2
5328.2.a.bp.1.2 4 12.11 even 2
7400.2.a.n.1.1 4 5.4 even 2