Defining parameters
Level: | \( N \) | \(=\) | \( 296 = 2^{3} \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 296.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(76\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(296))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 42 | 9 | 33 |
Cusp forms | 35 | 9 | 26 |
Eisenstein series | 7 | 0 | 7 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(37\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(1\) |
\(+\) | \(-\) | \(-\) | \(4\) |
\(-\) | \(+\) | \(-\) | \(3\) |
\(-\) | \(-\) | \(+\) | \(1\) |
Plus space | \(+\) | \(2\) | |
Minus space | \(-\) | \(7\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(296))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 37 | |||||||
296.2.a.a | $1$ | $2.364$ | \(\Q\) | None | \(0\) | \(-1\) | \(-2\) | \(1\) | $+$ | $+$ | \(q-q^{3}-2q^{5}+q^{7}-2q^{9}+q^{11}-6q^{13}+\cdots\) | |
296.2.a.b | $1$ | $2.364$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(-3\) | $-$ | $-$ | \(q-q^{3}-3q^{7}-2q^{9}-3q^{11}+2q^{17}+\cdots\) | |
296.2.a.c | $3$ | $2.364$ | 3.3.229.1 | None | \(0\) | \(2\) | \(-1\) | \(7\) | $-$ | $+$ | \(q+(1+\beta _{2})q^{3}+\beta _{2}q^{5}+(2+\beta _{1}-\beta _{2})q^{7}+\cdots\) | |
296.2.a.d | $4$ | $2.364$ | 4.4.48389.1 | None | \(0\) | \(2\) | \(5\) | \(-1\) | $+$ | $-$ | \(q+(1-\beta _{1})q^{3}+(1-\beta _{3})q^{5}+(-\beta _{2}+\beta _{3})q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(296))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(296)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(37))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(74))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(148))\)\(^{\oplus 2}\)