Properties

Label 296.2.a
Level $296$
Weight $2$
Character orbit 296.a
Rep. character $\chi_{296}(1,\cdot)$
Character field $\Q$
Dimension $9$
Newform subspaces $4$
Sturm bound $76$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 296 = 2^{3} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 296.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(76\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(3\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(296))\).

Total New Old
Modular forms 42 9 33
Cusp forms 35 9 26
Eisenstein series 7 0 7

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(37\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(8\)\(1\)\(7\)\(7\)\(1\)\(6\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(13\)\(4\)\(9\)\(11\)\(4\)\(7\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(13\)\(3\)\(10\)\(11\)\(3\)\(8\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(8\)\(1\)\(7\)\(6\)\(1\)\(5\)\(2\)\(0\)\(2\)
Plus space\(+\)\(16\)\(2\)\(14\)\(13\)\(2\)\(11\)\(3\)\(0\)\(3\)
Minus space\(-\)\(26\)\(7\)\(19\)\(22\)\(7\)\(15\)\(4\)\(0\)\(4\)

Trace form

\( 9 q + 2 q^{3} + 2 q^{5} + 4 q^{7} + 7 q^{9} + 2 q^{11} + 2 q^{13} + 12 q^{15} + 2 q^{17} - 3 q^{25} + 8 q^{27} - 2 q^{29} + 8 q^{31} - 4 q^{33} - 24 q^{35} + q^{37} - 16 q^{39} + 8 q^{43} + 6 q^{45} - 8 q^{47}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(296))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 37
296.2.a.a 296.a 1.a $1$ $2.364$ \(\Q\) None 296.2.a.a \(0\) \(-1\) \(-2\) \(1\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-2q^{5}+q^{7}-2q^{9}+q^{11}-6q^{13}+\cdots\)
296.2.a.b 296.a 1.a $1$ $2.364$ \(\Q\) None 296.2.a.b \(0\) \(-1\) \(0\) \(-3\) $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-3q^{7}-2q^{9}-3q^{11}+2q^{17}+\cdots\)
296.2.a.c 296.a 1.a $3$ $2.364$ 3.3.229.1 None 296.2.a.c \(0\) \(2\) \(-1\) \(7\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta _{2})q^{3}+\beta _{2}q^{5}+(2+\beta _{1}-\beta _{2})q^{7}+\cdots\)
296.2.a.d 296.a 1.a $4$ $2.364$ 4.4.48389.1 None 296.2.a.d \(0\) \(2\) \(5\) \(-1\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{3}+(1-\beta _{3})q^{5}+(-\beta _{2}+\beta _{3})q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(296))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(296)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(37))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(74))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(148))\)\(^{\oplus 2}\)