Properties

Label 296.1.h.b.147.2
Level $296$
Weight $1$
Character 296.147
Self dual yes
Analytic conductor $0.148$
Analytic rank $0$
Dimension $2$
Projective image $D_{5}$
CM discriminant -296
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [296,1,Mod(147,296)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(296, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("296.147"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 296 = 2^{3} \cdot 37 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 296.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.147723243739\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{5}\)
Projective field: Galois closure of 5.1.87616.1
Artin image: $D_5$
Artin field: Galois closure of 5.1.87616.1

Embedding invariants

Embedding label 147.2
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 296.147

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +0.618034 q^{3} +1.00000 q^{4} -1.61803 q^{5} +0.618034 q^{6} +1.00000 q^{8} -0.618034 q^{9} -1.61803 q^{10} -1.61803 q^{11} +0.618034 q^{12} +0.618034 q^{13} -1.00000 q^{15} +1.00000 q^{16} -0.618034 q^{18} -1.61803 q^{20} -1.61803 q^{22} +0.618034 q^{23} +0.618034 q^{24} +1.61803 q^{25} +0.618034 q^{26} -1.00000 q^{27} +0.618034 q^{29} -1.00000 q^{30} -1.61803 q^{31} +1.00000 q^{32} -1.00000 q^{33} -0.618034 q^{36} +1.00000 q^{37} +0.381966 q^{39} -1.61803 q^{40} +0.618034 q^{41} -1.61803 q^{44} +1.00000 q^{45} +0.618034 q^{46} +0.618034 q^{48} +1.00000 q^{49} +1.61803 q^{50} +0.618034 q^{52} -1.00000 q^{54} +2.61803 q^{55} +0.618034 q^{58} -1.00000 q^{60} -1.61803 q^{61} -1.61803 q^{62} +1.00000 q^{64} -1.00000 q^{65} -1.00000 q^{66} -1.61803 q^{67} +0.381966 q^{69} -0.618034 q^{72} -1.61803 q^{73} +1.00000 q^{74} +1.00000 q^{75} +0.381966 q^{78} +0.618034 q^{79} -1.61803 q^{80} +0.618034 q^{82} +2.00000 q^{83} +0.381966 q^{87} -1.61803 q^{88} +1.00000 q^{90} +0.618034 q^{92} -1.00000 q^{93} +0.618034 q^{96} +1.00000 q^{98} +1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - q^{3} + 2 q^{4} - q^{5} - q^{6} + 2 q^{8} + q^{9} - q^{10} - q^{11} - q^{12} - q^{13} - 2 q^{15} + 2 q^{16} + q^{18} - q^{20} - q^{22} - q^{23} - q^{24} + q^{25} - q^{26}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/296\mathbb{Z}\right)^\times\).

\(n\) \(113\) \(149\) \(223\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.00000
\(3\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(4\) 1.00000 1.00000
\(5\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(6\) 0.618034 0.618034
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 1.00000 1.00000
\(9\) −0.618034 −0.618034
\(10\) −1.61803 −1.61803
\(11\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(12\) 0.618034 0.618034
\(13\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(14\) 0 0
\(15\) −1.00000 −1.00000
\(16\) 1.00000 1.00000
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) −0.618034 −0.618034
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) −1.61803 −1.61803
\(21\) 0 0
\(22\) −1.61803 −1.61803
\(23\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(24\) 0.618034 0.618034
\(25\) 1.61803 1.61803
\(26\) 0.618034 0.618034
\(27\) −1.00000 −1.00000
\(28\) 0 0
\(29\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(30\) −1.00000 −1.00000
\(31\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(32\) 1.00000 1.00000
\(33\) −1.00000 −1.00000
\(34\) 0 0
\(35\) 0 0
\(36\) −0.618034 −0.618034
\(37\) 1.00000 1.00000
\(38\) 0 0
\(39\) 0.381966 0.381966
\(40\) −1.61803 −1.61803
\(41\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) −1.61803 −1.61803
\(45\) 1.00000 1.00000
\(46\) 0.618034 0.618034
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0.618034 0.618034
\(49\) 1.00000 1.00000
\(50\) 1.61803 1.61803
\(51\) 0 0
\(52\) 0.618034 0.618034
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) −1.00000 −1.00000
\(55\) 2.61803 2.61803
\(56\) 0 0
\(57\) 0 0
\(58\) 0.618034 0.618034
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) −1.00000 −1.00000
\(61\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(62\) −1.61803 −1.61803
\(63\) 0 0
\(64\) 1.00000 1.00000
\(65\) −1.00000 −1.00000
\(66\) −1.00000 −1.00000
\(67\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(68\) 0 0
\(69\) 0.381966 0.381966
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) −0.618034 −0.618034
\(73\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(74\) 1.00000 1.00000
\(75\) 1.00000 1.00000
\(76\) 0 0
\(77\) 0 0
\(78\) 0.381966 0.381966
\(79\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(80\) −1.61803 −1.61803
\(81\) 0 0
\(82\) 0.618034 0.618034
\(83\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0.381966 0.381966
\(88\) −1.61803 −1.61803
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 1.00000 1.00000
\(91\) 0 0
\(92\) 0.618034 0.618034
\(93\) −1.00000 −1.00000
\(94\) 0 0
\(95\) 0 0
\(96\) 0.618034 0.618034
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 1.00000 1.00000
\(99\) 1.00000 1.00000
\(100\) 1.61803 1.61803
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(104\) 0.618034 0.618034
\(105\) 0 0
\(106\) 0 0
\(107\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(108\) −1.00000 −1.00000
\(109\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(110\) 2.61803 2.61803
\(111\) 0.618034 0.618034
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) −1.00000 −1.00000
\(116\) 0.618034 0.618034
\(117\) −0.381966 −0.381966
\(118\) 0 0
\(119\) 0 0
\(120\) −1.00000 −1.00000
\(121\) 1.61803 1.61803
\(122\) −1.61803 −1.61803
\(123\) 0.381966 0.381966
\(124\) −1.61803 −1.61803
\(125\) −1.00000 −1.00000
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 1.00000 1.00000
\(129\) 0 0
\(130\) −1.00000 −1.00000
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) −1.00000 −1.00000
\(133\) 0 0
\(134\) −1.61803 −1.61803
\(135\) 1.61803 1.61803
\(136\) 0 0
\(137\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(138\) 0.381966 0.381966
\(139\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.00000 −1.00000
\(144\) −0.618034 −0.618034
\(145\) −1.00000 −1.00000
\(146\) −1.61803 −1.61803
\(147\) 0.618034 0.618034
\(148\) 1.00000 1.00000
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 1.00000 1.00000
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.61803 2.61803
\(156\) 0.381966 0.381966
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0.618034 0.618034
\(159\) 0 0
\(160\) −1.61803 −1.61803
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0.618034 0.618034
\(165\) 1.61803 1.61803
\(166\) 2.00000 2.00000
\(167\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(168\) 0 0
\(169\) −0.618034 −0.618034
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0.381966 0.381966
\(175\) 0 0
\(176\) −1.61803 −1.61803
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 1.00000 1.00000
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) −1.00000 −1.00000
\(184\) 0.618034 0.618034
\(185\) −1.61803 −1.61803
\(186\) −1.00000 −1.00000
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(192\) 0.618034 0.618034
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) −0.618034 −0.618034
\(196\) 1.00000 1.00000
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 1.00000 1.00000
\(199\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(200\) 1.61803 1.61803
\(201\) −1.00000 −1.00000
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −1.00000 −1.00000
\(206\) −1.61803 −1.61803
\(207\) −0.381966 −0.381966
\(208\) 0.618034 0.618034
\(209\) 0 0
\(210\) 0 0
\(211\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0.618034 0.618034
\(215\) 0 0
\(216\) −1.00000 −1.00000
\(217\) 0 0
\(218\) 2.00000 2.00000
\(219\) −1.00000 −1.00000
\(220\) 2.61803 2.61803
\(221\) 0 0
\(222\) 0.618034 0.618034
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) −1.00000 −1.00000
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) −1.00000 −1.00000
\(231\) 0 0
\(232\) 0.618034 0.618034
\(233\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(234\) −0.381966 −0.381966
\(235\) 0 0
\(236\) 0 0
\(237\) 0.381966 0.381966
\(238\) 0 0
\(239\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(240\) −1.00000 −1.00000
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 1.61803 1.61803
\(243\) 1.00000 1.00000
\(244\) −1.61803 −1.61803
\(245\) −1.61803 −1.61803
\(246\) 0.381966 0.381966
\(247\) 0 0
\(248\) −1.61803 −1.61803
\(249\) 1.23607 1.23607
\(250\) −1.00000 −1.00000
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) −1.00000 −1.00000
\(254\) 0 0
\(255\) 0 0
\(256\) 1.00000 1.00000
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −1.00000 −1.00000
\(261\) −0.381966 −0.381966
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) −1.00000 −1.00000
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −1.61803 −1.61803
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 1.61803 1.61803
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −1.61803 −1.61803
\(275\) −2.61803 −2.61803
\(276\) 0.381966 0.381966
\(277\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(278\) 0.618034 0.618034
\(279\) 1.00000 1.00000
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) −1.00000 −1.00000
\(287\) 0 0
\(288\) −0.618034 −0.618034
\(289\) 1.00000 1.00000
\(290\) −1.00000 −1.00000
\(291\) 0 0
\(292\) −1.61803 −1.61803
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0.618034 0.618034
\(295\) 0 0
\(296\) 1.00000 1.00000
\(297\) 1.61803 1.61803
\(298\) 0 0
\(299\) 0.381966 0.381966
\(300\) 1.00000 1.00000
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.61803 2.61803
\(306\) 0 0
\(307\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(308\) 0 0
\(309\) −1.00000 −1.00000
\(310\) 2.61803 2.61803
\(311\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(312\) 0.381966 0.381966
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0.618034 0.618034
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) −1.00000 −1.00000
\(320\) −1.61803 −1.61803
\(321\) 0.381966 0.381966
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 1.00000 1.00000
\(326\) 0 0
\(327\) 1.23607 1.23607
\(328\) 0.618034 0.618034
\(329\) 0 0
\(330\) 1.61803 1.61803
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 2.00000 2.00000
\(333\) −0.618034 −0.618034
\(334\) −1.61803 −1.61803
\(335\) 2.61803 2.61803
\(336\) 0 0
\(337\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(338\) −0.618034 −0.618034
\(339\) 0 0
\(340\) 0 0
\(341\) 2.61803 2.61803
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −0.618034 −0.618034
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0.381966 0.381966
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) −0.618034 −0.618034
\(352\) −1.61803 −1.61803
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 1.00000 1.00000
\(361\) 1.00000 1.00000
\(362\) 0 0
\(363\) 1.00000 1.00000
\(364\) 0 0
\(365\) 2.61803 2.61803
\(366\) −1.00000 −1.00000
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0.618034 0.618034
\(369\) −0.381966 −0.381966
\(370\) −1.61803 −1.61803
\(371\) 0 0
\(372\) −1.00000 −1.00000
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) −0.618034 −0.618034
\(376\) 0 0
\(377\) 0.381966 0.381966
\(378\) 0 0
\(379\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −1.61803 −1.61803
\(383\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(384\) 0.618034 0.618034
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(390\) −0.618034 −0.618034
\(391\) 0 0
\(392\) 1.00000 1.00000
\(393\) 0 0
\(394\) 0 0
\(395\) −1.00000 −1.00000
\(396\) 1.00000 1.00000
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 2.00000 2.00000
\(399\) 0 0
\(400\) 1.61803 1.61803
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) −1.00000 −1.00000
\(403\) −1.00000 −1.00000
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.61803 −1.61803
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) −1.00000 −1.00000
\(411\) −1.00000 −1.00000
\(412\) −1.61803 −1.61803
\(413\) 0 0
\(414\) −0.381966 −0.381966
\(415\) −3.23607 −3.23607
\(416\) 0.618034 0.618034
\(417\) 0.381966 0.381966
\(418\) 0 0
\(419\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(420\) 0 0
\(421\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(422\) −1.61803 −1.61803
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0.618034 0.618034
\(429\) −0.618034 −0.618034
\(430\) 0 0
\(431\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(432\) −1.00000 −1.00000
\(433\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(434\) 0 0
\(435\) −0.618034 −0.618034
\(436\) 2.00000 2.00000
\(437\) 0 0
\(438\) −1.00000 −1.00000
\(439\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(440\) 2.61803 2.61803
\(441\) −0.618034 −0.618034
\(442\) 0 0
\(443\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(444\) 0.618034 0.618034
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) −1.00000 −1.00000
\(451\) −1.00000 −1.00000
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) −1.00000 −1.00000
\(461\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(462\) 0 0
\(463\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(464\) 0.618034 0.618034
\(465\) 1.61803 1.61803
\(466\) 0.618034 0.618034
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) −0.381966 −0.381966
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0.381966 0.381966
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) −1.61803 −1.61803
\(479\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(480\) −1.00000 −1.00000
\(481\) 0.618034 0.618034
\(482\) 0 0
\(483\) 0 0
\(484\) 1.61803 1.61803
\(485\) 0 0
\(486\) 1.00000 1.00000
\(487\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(488\) −1.61803 −1.61803
\(489\) 0 0
\(490\) −1.61803 −1.61803
\(491\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(492\) 0.381966 0.381966
\(493\) 0 0
\(494\) 0 0
\(495\) −1.61803 −1.61803
\(496\) −1.61803 −1.61803
\(497\) 0 0
\(498\) 1.23607 1.23607
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) −1.00000 −1.00000
\(501\) −1.00000 −1.00000
\(502\) 0 0
\(503\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −1.00000 −1.00000
\(507\) −0.381966 −0.381966
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 1.00000
\(513\) 0 0
\(514\) 0 0
\(515\) 2.61803 2.61803
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) −1.00000 −1.00000
\(521\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(522\) −0.381966 −0.381966
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −1.00000 −1.00000
\(529\) −0.618034 −0.618034
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0.381966 0.381966
\(534\) 0 0
\(535\) −1.00000 −1.00000
\(536\) −1.61803 −1.61803
\(537\) 0 0
\(538\) 0 0
\(539\) −1.61803 −1.61803
\(540\) 1.61803 1.61803
\(541\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −3.23607 −3.23607
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) −1.61803 −1.61803
\(549\) 1.00000 1.00000
\(550\) −2.61803 −2.61803
\(551\) 0 0
\(552\) 0.381966 0.381966
\(553\) 0 0
\(554\) −1.61803 −1.61803
\(555\) −1.00000 −1.00000
\(556\) 0.618034 0.618034
\(557\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(558\) 1.00000 1.00000
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(572\) −1.00000 −1.00000
\(573\) −1.00000 −1.00000
\(574\) 0 0
\(575\) 1.00000 1.00000
\(576\) −0.618034 −0.618034
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 1.00000 1.00000
\(579\) 0 0
\(580\) −1.00000 −1.00000
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) −1.61803 −1.61803
\(585\) 0.618034 0.618034
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0.618034 0.618034
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 1.00000 1.00000
\(593\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(594\) 1.61803 1.61803
\(595\) 0 0
\(596\) 0 0
\(597\) 1.23607 1.23607
\(598\) 0.381966 0.381966
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 1.00000 1.00000
\(601\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(602\) 0 0
\(603\) 1.00000 1.00000
\(604\) 0 0
\(605\) −2.61803 −2.61803
\(606\) 0 0
\(607\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 2.61803 2.61803
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0.618034 0.618034
\(615\) −0.618034 −0.618034
\(616\) 0 0
\(617\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(618\) −1.00000 −1.00000
\(619\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(620\) 2.61803 2.61803
\(621\) −0.618034 −0.618034
\(622\) 0.618034 0.618034
\(623\) 0 0
\(624\) 0.381966 0.381966
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(632\) 0.618034 0.618034
\(633\) −1.00000 −1.00000
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0.618034 0.618034
\(638\) −1.00000 −1.00000
\(639\) 0 0
\(640\) −1.61803 −1.61803
\(641\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(642\) 0.381966 0.381966
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 1.00000 1.00000
\(651\) 0 0
\(652\) 0 0
\(653\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(654\) 1.23607 1.23607
\(655\) 0 0
\(656\) 0.618034 0.618034
\(657\) 1.00000 1.00000
\(658\) 0 0
\(659\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(660\) 1.61803 1.61803
\(661\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 2.00000 2.00000
\(665\) 0 0
\(666\) −0.618034 −0.618034
\(667\) 0.381966 0.381966
\(668\) −1.61803 −1.61803
\(669\) 0 0
\(670\) 2.61803 2.61803
\(671\) 2.61803 2.61803
\(672\) 0 0
\(673\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(674\) −1.61803 −1.61803
\(675\) −1.61803 −1.61803
\(676\) −0.618034 −0.618034
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 2.61803 2.61803
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 2.61803 2.61803
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) −0.618034 −0.618034
\(691\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.00000 −1.00000
\(696\) 0.381966 0.381966
\(697\) 0 0
\(698\) 0 0
\(699\) 0.381966 0.381966
\(700\) 0 0
\(701\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(702\) −0.618034 −0.618034
\(703\) 0 0
\(704\) −1.61803 −1.61803
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(710\) 0 0
\(711\) −0.381966 −0.381966
\(712\) 0 0
\(713\) −1.00000 −1.00000
\(714\) 0 0
\(715\) 1.61803 1.61803
\(716\) 0 0
\(717\) −1.00000 −1.00000
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 1.00000 1.00000
\(721\) 0 0
\(722\) 1.00000 1.00000
\(723\) 0 0
\(724\) 0 0
\(725\) 1.00000 1.00000
\(726\) 1.00000 1.00000
\(727\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(728\) 0 0
\(729\) 0.618034 0.618034
\(730\) 2.61803 2.61803
\(731\) 0 0
\(732\) −1.00000 −1.00000
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) −1.00000 −1.00000
\(736\) 0.618034 0.618034
\(737\) 2.61803 2.61803
\(738\) −0.381966 −0.381966
\(739\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(740\) −1.61803 −1.61803
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) −1.00000 −1.00000
\(745\) 0 0
\(746\) 0 0
\(747\) −1.23607 −1.23607
\(748\) 0 0
\(749\) 0 0
\(750\) −0.618034 −0.618034
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0.381966 0.381966
\(755\) 0 0
\(756\) 0 0
\(757\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(758\) 0.618034 0.618034
\(759\) −0.618034 −0.618034
\(760\) 0 0
\(761\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −1.61803 −1.61803
\(765\) 0 0
\(766\) 2.00000 2.00000
\(767\) 0 0
\(768\) 0.618034 0.618034
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) −2.61803 −2.61803
\(776\) 0 0
\(777\) 0 0
\(778\) 0.618034 0.618034
\(779\) 0 0
\(780\) −0.618034 −0.618034
\(781\) 0 0
\(782\) 0 0
\(783\) −0.618034 −0.618034
\(784\) 1.00000 1.00000
\(785\) 0 0
\(786\) 0 0
\(787\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(788\) 0 0
\(789\) 0 0
\(790\) −1.00000 −1.00000
\(791\) 0 0
\(792\) 1.00000 1.00000
\(793\) −1.00000 −1.00000
\(794\) 0 0
\(795\) 0 0
\(796\) 2.00000 2.00000
\(797\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 1.61803 1.61803
\(801\) 0 0
\(802\) 0 0
\(803\) 2.61803 2.61803
\(804\) −1.00000 −1.00000
\(805\) 0 0
\(806\) −1.00000 −1.00000
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −1.61803 −1.61803
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) −1.00000 −1.00000
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) −1.00000 −1.00000
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) −1.61803 −1.61803
\(825\) −1.61803 −1.61803
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) −0.381966 −0.381966
\(829\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(830\) −3.23607 −3.23607
\(831\) −1.00000 −1.00000
\(832\) 0.618034 0.618034
\(833\) 0 0
\(834\) 0.381966 0.381966
\(835\) 2.61803 2.61803
\(836\) 0 0
\(837\) 1.61803 1.61803
\(838\) 0.618034 0.618034
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) −0.618034 −0.618034
\(842\) 0.618034 0.618034
\(843\) 0 0
\(844\) −1.61803 −1.61803
\(845\) 1.00000 1.00000
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0.618034 0.618034
\(852\) 0 0
\(853\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0.618034 0.618034
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) −0.618034 −0.618034
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 2.00000 2.00000
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) −1.00000 −1.00000
\(865\) 0 0
\(866\) 0.618034 0.618034
\(867\) 0.618034 0.618034
\(868\) 0 0
\(869\) −1.00000 −1.00000
\(870\) −0.618034 −0.618034
\(871\) −1.00000 −1.00000
\(872\) 2.00000 2.00000
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) −1.00000 −1.00000
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0.618034 0.618034
\(879\) 0 0
\(880\) 2.61803 2.61803
\(881\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(882\) −0.618034 −0.618034
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −1.61803 −1.61803
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0.618034 0.618034
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0.236068 0.236068
\(898\) 0 0
\(899\) −1.00000 −1.00000
\(900\) −1.00000 −1.00000
\(901\) 0 0
\(902\) −1.00000 −1.00000
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(912\) 0 0
\(913\) −3.23607 −3.23607
\(914\) 0 0
\(915\) 1.61803 1.61803
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(920\) −1.00000 −1.00000
\(921\) 0.381966 0.381966
\(922\) 2.00000 2.00000
\(923\) 0 0
\(924\) 0 0
\(925\) 1.61803 1.61803
\(926\) 0.618034 0.618034
\(927\) 1.00000 1.00000
\(928\) 0.618034 0.618034
\(929\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(930\) 1.61803 1.61803
\(931\) 0 0
\(932\) 0.618034 0.618034
\(933\) 0.381966 0.381966
\(934\) 0 0
\(935\) 0 0
\(936\) −0.381966 −0.381966
\(937\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0.381966 0.381966
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0.381966 0.381966
\(949\) −1.00000 −1.00000
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(954\) 0 0
\(955\) 2.61803 2.61803
\(956\) −1.61803 −1.61803
\(957\) −0.618034 −0.618034
\(958\) 0.618034 0.618034
\(959\) 0 0
\(960\) −1.00000 −1.00000
\(961\) 1.61803 1.61803
\(962\) 0.618034 0.618034
\(963\) −0.381966 −0.381966
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(968\) 1.61803 1.61803
\(969\) 0 0
\(970\) 0 0
\(971\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(972\) 1.00000 1.00000
\(973\) 0 0
\(974\) 2.00000 2.00000
\(975\) 0.618034 0.618034
\(976\) −1.61803 −1.61803
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −1.61803 −1.61803
\(981\) −1.23607 −1.23607
\(982\) 0.618034 0.618034
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0.381966 0.381966
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) −1.61803 −1.61803
\(991\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(992\) −1.61803 −1.61803
\(993\) 0 0
\(994\) 0 0
\(995\) −3.23607 −3.23607
\(996\) 1.23607 1.23607
\(997\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(998\) 0 0
\(999\) −1.00000 −1.00000
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 296.1.h.b.147.2 yes 2
3.2 odd 2 2664.1.m.a.739.2 2
4.3 odd 2 1184.1.h.a.591.1 2
8.3 odd 2 296.1.h.a.147.2 2
8.5 even 2 1184.1.h.b.591.1 2
24.11 even 2 2664.1.m.b.739.1 2
37.36 even 2 296.1.h.a.147.2 2
111.110 odd 2 2664.1.m.b.739.1 2
148.147 odd 2 1184.1.h.b.591.1 2
296.147 odd 2 CM 296.1.h.b.147.2 yes 2
296.221 even 2 1184.1.h.a.591.1 2
888.443 even 2 2664.1.m.a.739.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
296.1.h.a.147.2 2 8.3 odd 2
296.1.h.a.147.2 2 37.36 even 2
296.1.h.b.147.2 yes 2 1.1 even 1 trivial
296.1.h.b.147.2 yes 2 296.147 odd 2 CM
1184.1.h.a.591.1 2 4.3 odd 2
1184.1.h.a.591.1 2 296.221 even 2
1184.1.h.b.591.1 2 8.5 even 2
1184.1.h.b.591.1 2 148.147 odd 2
2664.1.m.a.739.2 2 3.2 odd 2
2664.1.m.a.739.2 2 888.443 even 2
2664.1.m.b.739.1 2 24.11 even 2
2664.1.m.b.739.1 2 111.110 odd 2