Properties

Label 296.1.h
Level $296$
Weight $1$
Character orbit 296.h
Rep. character $\chi_{296}(147,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $2$
Sturm bound $38$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 296 = 2^{3} \cdot 37 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 296.h (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 296 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(38\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(296, [\chi])\).

Total New Old
Modular forms 6 6 0
Cusp forms 4 4 0
Eisenstein series 2 2 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 4 0 0 0

Trace form

\( 4 q - 2 q^{3} + 4 q^{4} + 2 q^{9} - 2 q^{10} - 2 q^{11} - 2 q^{12} + 4 q^{16} + 2 q^{25} - 2 q^{26} - 4 q^{27} - 4 q^{30} - 4 q^{33} + 2 q^{36} - 2 q^{40} - 2 q^{41} - 2 q^{44} - 2 q^{46} - 2 q^{48} + 4 q^{49}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(296, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
296.1.h.a 296.h 296.h $2$ $0.148$ \(\Q(\sqrt{5}) \) $D_{5}$ \(\Q(\sqrt{-74}) \) None 296.1.h.a \(-2\) \(-1\) \(1\) \(0\) \(q-q^{2}+(-1+\beta )q^{3}+q^{4}+\beta q^{5}+(1+\cdots)q^{6}+\cdots\)
296.1.h.b 296.h 296.h $2$ $0.148$ \(\Q(\sqrt{5}) \) $D_{5}$ \(\Q(\sqrt{-74}) \) None 296.1.h.a \(2\) \(-1\) \(-1\) \(0\) \(q+q^{2}+(-1+\beta )q^{3}+q^{4}-\beta q^{5}+(-1+\cdots)q^{6}+\cdots\)