Properties

Label 294.6.e.e.67.1
Level $294$
Weight $6$
Character 294.67
Analytic conductor $47.153$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,6,Mod(67,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.67");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 294.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.1528430250\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 67.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 294.67
Dual form 294.6.e.e.79.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.00000 - 3.46410i) q^{2} +(4.50000 - 7.79423i) q^{3} +(-8.00000 + 13.8564i) q^{4} +(-3.00000 - 5.19615i) q^{5} -36.0000 q^{6} +64.0000 q^{8} +(-40.5000 - 70.1481i) q^{9} +O(q^{10})\) \(q+(-2.00000 - 3.46410i) q^{2} +(4.50000 - 7.79423i) q^{3} +(-8.00000 + 13.8564i) q^{4} +(-3.00000 - 5.19615i) q^{5} -36.0000 q^{6} +64.0000 q^{8} +(-40.5000 - 70.1481i) q^{9} +(-12.0000 + 20.7846i) q^{10} +(333.000 - 576.773i) q^{11} +(72.0000 + 124.708i) q^{12} +559.000 q^{13} -54.0000 q^{15} +(-128.000 - 221.703i) q^{16} +(-870.000 + 1506.88i) q^{17} +(-162.000 + 280.592i) q^{18} +(578.500 + 1001.99i) q^{19} +96.0000 q^{20} -2664.00 q^{22} +(1734.00 + 3003.38i) q^{23} +(288.000 - 498.831i) q^{24} +(1544.50 - 2675.15i) q^{25} +(-1118.00 - 1936.43i) q^{26} -729.000 q^{27} +3372.00 q^{29} +(108.000 + 187.061i) q^{30} +(3146.50 - 5449.90i) q^{31} +(-512.000 + 886.810i) q^{32} +(-2997.00 - 5190.96i) q^{33} +6960.00 q^{34} +1296.00 q^{36} +(-1565.50 - 2711.53i) q^{37} +(2314.00 - 4007.97i) q^{38} +(2515.50 - 4356.97i) q^{39} +(-192.000 - 332.554i) q^{40} +4866.00 q^{41} -11407.0 q^{43} +(5328.00 + 9228.37i) q^{44} +(-243.000 + 420.888i) q^{45} +(6936.00 - 12013.5i) q^{46} +(1155.00 + 2000.52i) q^{47} -2304.00 q^{48} -12356.0 q^{50} +(7830.00 + 13562.0i) q^{51} +(-4472.00 + 7745.73i) q^{52} +(14148.0 - 24505.1i) q^{53} +(1458.00 + 2525.33i) q^{54} -3996.00 q^{55} +10413.0 q^{57} +(-6744.00 - 11681.0i) q^{58} +(10272.0 - 17791.6i) q^{59} +(432.000 - 748.246i) q^{60} +(-2315.00 - 4009.70i) q^{61} -25172.0 q^{62} +4096.00 q^{64} +(-1677.00 - 2904.65i) q^{65} +(-11988.0 + 20763.8i) q^{66} +(9372.50 - 16233.6i) q^{67} +(-13920.0 - 24110.1i) q^{68} +31212.0 q^{69} -38226.0 q^{71} +(-2592.00 - 4489.48i) q^{72} +(35294.5 - 61131.9i) q^{73} +(-6262.00 + 10846.1i) q^{74} +(-13900.5 - 24076.4i) q^{75} -18512.0 q^{76} -20124.0 q^{78} +(31146.5 + 53947.3i) q^{79} +(-768.000 + 1330.22i) q^{80} +(-3280.50 + 5681.99i) q^{81} +(-9732.00 - 16856.3i) q^{82} -79818.0 q^{83} +10440.0 q^{85} +(22814.0 + 39515.0i) q^{86} +(15174.0 - 26282.1i) q^{87} +(21312.0 - 36913.5i) q^{88} +(-9060.00 - 15692.4i) q^{89} +1944.00 q^{90} -55488.0 q^{92} +(-28318.5 - 49049.1i) q^{93} +(4620.00 - 8002.07i) q^{94} +(3471.00 - 6011.95i) q^{95} +(4608.00 + 7981.29i) q^{96} -124754. q^{97} -53946.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 9 q^{3} - 16 q^{4} - 6 q^{5} - 72 q^{6} + 128 q^{8} - 81 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 4 q^{2} + 9 q^{3} - 16 q^{4} - 6 q^{5} - 72 q^{6} + 128 q^{8} - 81 q^{9} - 24 q^{10} + 666 q^{11} + 144 q^{12} + 1118 q^{13} - 108 q^{15} - 256 q^{16} - 1740 q^{17} - 324 q^{18} + 1157 q^{19} + 192 q^{20} - 5328 q^{22} + 3468 q^{23} + 576 q^{24} + 3089 q^{25} - 2236 q^{26} - 1458 q^{27} + 6744 q^{29} + 216 q^{30} + 6293 q^{31} - 1024 q^{32} - 5994 q^{33} + 13920 q^{34} + 2592 q^{36} - 3131 q^{37} + 4628 q^{38} + 5031 q^{39} - 384 q^{40} + 9732 q^{41} - 22814 q^{43} + 10656 q^{44} - 486 q^{45} + 13872 q^{46} + 2310 q^{47} - 4608 q^{48} - 24712 q^{50} + 15660 q^{51} - 8944 q^{52} + 28296 q^{53} + 2916 q^{54} - 7992 q^{55} + 20826 q^{57} - 13488 q^{58} + 20544 q^{59} + 864 q^{60} - 4630 q^{61} - 50344 q^{62} + 8192 q^{64} - 3354 q^{65} - 23976 q^{66} + 18745 q^{67} - 27840 q^{68} + 62424 q^{69} - 76452 q^{71} - 5184 q^{72} + 70589 q^{73} - 12524 q^{74} - 27801 q^{75} - 37024 q^{76} - 40248 q^{78} + 62293 q^{79} - 1536 q^{80} - 6561 q^{81} - 19464 q^{82} - 159636 q^{83} + 20880 q^{85} + 45628 q^{86} + 30348 q^{87} + 42624 q^{88} - 18120 q^{89} + 3888 q^{90} - 110976 q^{92} - 56637 q^{93} + 9240 q^{94} + 6942 q^{95} + 9216 q^{96} - 249508 q^{97} - 107892 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/294\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(199\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 3.46410i −0.353553 0.612372i
\(3\) 4.50000 7.79423i 0.288675 0.500000i
\(4\) −8.00000 + 13.8564i −0.250000 + 0.433013i
\(5\) −3.00000 5.19615i −0.0536656 0.0929516i 0.837945 0.545755i \(-0.183757\pi\)
−0.891610 + 0.452804i \(0.850424\pi\)
\(6\) −36.0000 −0.408248
\(7\) 0 0
\(8\) 64.0000 0.353553
\(9\) −40.5000 70.1481i −0.166667 0.288675i
\(10\) −12.0000 + 20.7846i −0.0379473 + 0.0657267i
\(11\) 333.000 576.773i 0.829779 1.43722i −0.0684322 0.997656i \(-0.521800\pi\)
0.898211 0.439564i \(-0.144867\pi\)
\(12\) 72.0000 + 124.708i 0.144338 + 0.250000i
\(13\) 559.000 0.917389 0.458694 0.888594i \(-0.348317\pi\)
0.458694 + 0.888594i \(0.348317\pi\)
\(14\) 0 0
\(15\) −54.0000 −0.0619677
\(16\) −128.000 221.703i −0.125000 0.216506i
\(17\) −870.000 + 1506.88i −0.730125 + 1.26461i 0.226705 + 0.973963i \(0.427205\pi\)
−0.956830 + 0.290649i \(0.906129\pi\)
\(18\) −162.000 + 280.592i −0.117851 + 0.204124i
\(19\) 578.500 + 1001.99i 0.367637 + 0.636766i 0.989196 0.146602i \(-0.0468335\pi\)
−0.621558 + 0.783368i \(0.713500\pi\)
\(20\) 96.0000 0.0536656
\(21\) 0 0
\(22\) −2664.00 −1.17348
\(23\) 1734.00 + 3003.38i 0.683486 + 1.18383i 0.973910 + 0.226934i \(0.0728702\pi\)
−0.290424 + 0.956898i \(0.593796\pi\)
\(24\) 288.000 498.831i 0.102062 0.176777i
\(25\) 1544.50 2675.15i 0.494240 0.856049i
\(26\) −1118.00 1936.43i −0.324346 0.561784i
\(27\) −729.000 −0.192450
\(28\) 0 0
\(29\) 3372.00 0.744548 0.372274 0.928123i \(-0.378578\pi\)
0.372274 + 0.928123i \(0.378578\pi\)
\(30\) 108.000 + 187.061i 0.0219089 + 0.0379473i
\(31\) 3146.50 5449.90i 0.588063 1.01855i −0.406423 0.913685i \(-0.633224\pi\)
0.994486 0.104869i \(-0.0334424\pi\)
\(32\) −512.000 + 886.810i −0.0883883 + 0.153093i
\(33\) −2997.00 5190.96i −0.479073 0.829779i
\(34\) 6960.00 1.03255
\(35\) 0 0
\(36\) 1296.00 0.166667
\(37\) −1565.50 2711.53i −0.187996 0.325619i 0.756586 0.653894i \(-0.226866\pi\)
−0.944582 + 0.328276i \(0.893533\pi\)
\(38\) 2314.00 4007.97i 0.259959 0.450262i
\(39\) 2515.50 4356.97i 0.264827 0.458694i
\(40\) −192.000 332.554i −0.0189737 0.0328634i
\(41\) 4866.00 0.452077 0.226039 0.974118i \(-0.427422\pi\)
0.226039 + 0.974118i \(0.427422\pi\)
\(42\) 0 0
\(43\) −11407.0 −0.940806 −0.470403 0.882452i \(-0.655892\pi\)
−0.470403 + 0.882452i \(0.655892\pi\)
\(44\) 5328.00 + 9228.37i 0.414890 + 0.718610i
\(45\) −243.000 + 420.888i −0.0178885 + 0.0309839i
\(46\) 6936.00 12013.5i 0.483297 0.837096i
\(47\) 1155.00 + 2000.52i 0.0762671 + 0.132099i 0.901637 0.432494i \(-0.142366\pi\)
−0.825369 + 0.564593i \(0.809033\pi\)
\(48\) −2304.00 −0.144338
\(49\) 0 0
\(50\) −12356.0 −0.698961
\(51\) 7830.00 + 13562.0i 0.421538 + 0.730125i
\(52\) −4472.00 + 7745.73i −0.229347 + 0.397241i
\(53\) 14148.0 24505.1i 0.691840 1.19830i −0.279395 0.960176i \(-0.590134\pi\)
0.971235 0.238125i \(-0.0765328\pi\)
\(54\) 1458.00 + 2525.33i 0.0680414 + 0.117851i
\(55\) −3996.00 −0.178122
\(56\) 0 0
\(57\) 10413.0 0.424511
\(58\) −6744.00 11681.0i −0.263237 0.455941i
\(59\) 10272.0 17791.6i 0.384171 0.665404i −0.607483 0.794333i \(-0.707821\pi\)
0.991654 + 0.128929i \(0.0411539\pi\)
\(60\) 432.000 748.246i 0.0154919 0.0268328i
\(61\) −2315.00 4009.70i −0.0796575 0.137971i 0.823445 0.567397i \(-0.192049\pi\)
−0.903102 + 0.429426i \(0.858716\pi\)
\(62\) −25172.0 −0.831646
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) −1677.00 2904.65i −0.0492322 0.0852728i
\(66\) −11988.0 + 20763.8i −0.338756 + 0.586742i
\(67\) 9372.50 16233.6i 0.255075 0.441803i −0.709841 0.704362i \(-0.751233\pi\)
0.964916 + 0.262559i \(0.0845664\pi\)
\(68\) −13920.0 24110.1i −0.365062 0.632306i
\(69\) 31212.0 0.789221
\(70\) 0 0
\(71\) −38226.0 −0.899939 −0.449969 0.893044i \(-0.648565\pi\)
−0.449969 + 0.893044i \(0.648565\pi\)
\(72\) −2592.00 4489.48i −0.0589256 0.102062i
\(73\) 35294.5 61131.9i 0.775175 1.34264i −0.159521 0.987195i \(-0.550995\pi\)
0.934696 0.355448i \(-0.115672\pi\)
\(74\) −6262.00 + 10846.1i −0.132933 + 0.230247i
\(75\) −13900.5 24076.4i −0.285350 0.494240i
\(76\) −18512.0 −0.367637
\(77\) 0 0
\(78\) −20124.0 −0.374522
\(79\) 31146.5 + 53947.3i 0.561489 + 0.972528i 0.997367 + 0.0725221i \(0.0231048\pi\)
−0.435877 + 0.900006i \(0.643562\pi\)
\(80\) −768.000 + 1330.22i −0.0134164 + 0.0232379i
\(81\) −3280.50 + 5681.99i −0.0555556 + 0.0962250i
\(82\) −9732.00 16856.3i −0.159833 0.276840i
\(83\) −79818.0 −1.27176 −0.635881 0.771787i \(-0.719363\pi\)
−0.635881 + 0.771787i \(0.719363\pi\)
\(84\) 0 0
\(85\) 10440.0 0.156730
\(86\) 22814.0 + 39515.0i 0.332625 + 0.576124i
\(87\) 15174.0 26282.1i 0.214932 0.372274i
\(88\) 21312.0 36913.5i 0.293371 0.508134i
\(89\) −9060.00 15692.4i −0.121242 0.209997i 0.799016 0.601310i \(-0.205354\pi\)
−0.920258 + 0.391313i \(0.872021\pi\)
\(90\) 1944.00 0.0252982
\(91\) 0 0
\(92\) −55488.0 −0.683486
\(93\) −28318.5 49049.1i −0.339518 0.588063i
\(94\) 4620.00 8002.07i 0.0539290 0.0934078i
\(95\) 3471.00 6011.95i 0.0394590 0.0683449i
\(96\) 4608.00 + 7981.29i 0.0510310 + 0.0883883i
\(97\) −124754. −1.34625 −0.673124 0.739530i \(-0.735048\pi\)
−0.673124 + 0.739530i \(0.735048\pi\)
\(98\) 0 0
\(99\) −53946.0 −0.553186
\(100\) 24712.0 + 42802.4i 0.247120 + 0.428024i
\(101\) −46695.0 + 80878.1i −0.455478 + 0.788910i −0.998716 0.0506685i \(-0.983865\pi\)
0.543238 + 0.839579i \(0.317198\pi\)
\(102\) 31320.0 54247.8i 0.298072 0.516276i
\(103\) −83865.5 145259.i −0.778915 1.34912i −0.932567 0.360996i \(-0.882437\pi\)
0.153652 0.988125i \(-0.450897\pi\)
\(104\) 35776.0 0.324346
\(105\) 0 0
\(106\) −113184. −0.978409
\(107\) −34590.0 59911.6i −0.292073 0.505885i 0.682227 0.731141i \(-0.261012\pi\)
−0.974300 + 0.225256i \(0.927678\pi\)
\(108\) 5832.00 10101.3i 0.0481125 0.0833333i
\(109\) 109779. 190144.i 0.885024 1.53291i 0.0393377 0.999226i \(-0.487475\pi\)
0.845686 0.533680i \(-0.179191\pi\)
\(110\) 7992.00 + 13842.6i 0.0629758 + 0.109077i
\(111\) −28179.0 −0.217079
\(112\) 0 0
\(113\) −39354.0 −0.289930 −0.144965 0.989437i \(-0.546307\pi\)
−0.144965 + 0.989437i \(0.546307\pi\)
\(114\) −20826.0 36071.7i −0.150087 0.259959i
\(115\) 10404.0 18020.3i 0.0733594 0.127062i
\(116\) −26976.0 + 46723.8i −0.186137 + 0.322399i
\(117\) −22639.5 39212.8i −0.152898 0.264827i
\(118\) −82176.0 −0.543300
\(119\) 0 0
\(120\) −3456.00 −0.0219089
\(121\) −141252. 244657.i −0.877067 1.51912i
\(122\) −9260.00 + 16038.8i −0.0563263 + 0.0975601i
\(123\) 21897.0 37926.7i 0.130503 0.226039i
\(124\) 50344.0 + 87198.4i 0.294031 + 0.509277i
\(125\) −37284.0 −0.213426
\(126\) 0 0
\(127\) 317093. 1.74453 0.872263 0.489037i \(-0.162652\pi\)
0.872263 + 0.489037i \(0.162652\pi\)
\(128\) −8192.00 14189.0i −0.0441942 0.0765466i
\(129\) −51331.5 + 88908.8i −0.271587 + 0.470403i
\(130\) −6708.00 + 11618.6i −0.0348125 + 0.0602969i
\(131\) −77415.0 134087.i −0.394137 0.682665i 0.598854 0.800858i \(-0.295623\pi\)
−0.992991 + 0.118194i \(0.962290\pi\)
\(132\) 95904.0 0.479073
\(133\) 0 0
\(134\) −74980.0 −0.360731
\(135\) 2187.00 + 3788.00i 0.0103280 + 0.0178885i
\(136\) −55680.0 + 96440.6i −0.258138 + 0.447108i
\(137\) −33666.0 + 58311.2i −0.153246 + 0.265430i −0.932419 0.361379i \(-0.882306\pi\)
0.779173 + 0.626809i \(0.215639\pi\)
\(138\) −62424.0 108122.i −0.279032 0.483297i
\(139\) 365215. 1.60329 0.801644 0.597802i \(-0.203959\pi\)
0.801644 + 0.597802i \(0.203959\pi\)
\(140\) 0 0
\(141\) 20790.0 0.0880657
\(142\) 76452.0 + 132419.i 0.318176 + 0.551098i
\(143\) 186147. 322416.i 0.761230 1.31849i
\(144\) −10368.0 + 17957.9i −0.0416667 + 0.0721688i
\(145\) −10116.0 17521.4i −0.0399566 0.0692069i
\(146\) −282356. −1.09626
\(147\) 0 0
\(148\) 50096.0 0.187996
\(149\) 84030.0 + 145544.i 0.310076 + 0.537068i 0.978379 0.206822i \(-0.0663120\pi\)
−0.668302 + 0.743890i \(0.732979\pi\)
\(150\) −55602.0 + 96305.5i −0.201773 + 0.349480i
\(151\) −76768.0 + 132966.i −0.273992 + 0.474568i −0.969880 0.243582i \(-0.921678\pi\)
0.695888 + 0.718150i \(0.255011\pi\)
\(152\) 37024.0 + 64127.4i 0.129979 + 0.225131i
\(153\) 140940. 0.486750
\(154\) 0 0
\(155\) −37758.0 −0.126235
\(156\) 40248.0 + 69711.6i 0.132414 + 0.229347i
\(157\) 101209. 175299.i 0.327695 0.567585i −0.654359 0.756184i \(-0.727061\pi\)
0.982054 + 0.188599i \(0.0603948\pi\)
\(158\) 124586. 215789.i 0.397033 0.687681i
\(159\) −127332. 220545.i −0.399434 0.691840i
\(160\) 6144.00 0.0189737
\(161\) 0 0
\(162\) 26244.0 0.0785674
\(163\) 89882.0 + 155680.i 0.264974 + 0.458949i 0.967557 0.252653i \(-0.0813032\pi\)
−0.702583 + 0.711602i \(0.747970\pi\)
\(164\) −38928.0 + 67425.3i −0.113019 + 0.195755i
\(165\) −17982.0 + 31145.7i −0.0514195 + 0.0890612i
\(166\) 159636. + 276498.i 0.449636 + 0.778792i
\(167\) −217302. −0.602938 −0.301469 0.953476i \(-0.597477\pi\)
−0.301469 + 0.953476i \(0.597477\pi\)
\(168\) 0 0
\(169\) −58812.0 −0.158398
\(170\) −20880.0 36165.2i −0.0554126 0.0959774i
\(171\) 46858.5 81161.3i 0.122546 0.212255i
\(172\) 91256.0 158060.i 0.235202 0.407381i
\(173\) −36990.0 64068.6i −0.0939656 0.162753i 0.815211 0.579164i \(-0.196621\pi\)
−0.909176 + 0.416411i \(0.863288\pi\)
\(174\) −121392. −0.303960
\(175\) 0 0
\(176\) −170496. −0.414890
\(177\) −92448.0 160125.i −0.221801 0.384171i
\(178\) −36240.0 + 62769.5i −0.0857311 + 0.148491i
\(179\) −394683. + 683611.i −0.920695 + 1.59469i −0.122353 + 0.992487i \(0.539044\pi\)
−0.798342 + 0.602204i \(0.794289\pi\)
\(180\) −3888.00 6734.21i −0.00894427 0.0154919i
\(181\) 477739. 1.08391 0.541956 0.840407i \(-0.317684\pi\)
0.541956 + 0.840407i \(0.317684\pi\)
\(182\) 0 0
\(183\) −41670.0 −0.0919805
\(184\) 110976. + 192216.i 0.241649 + 0.418548i
\(185\) −9393.00 + 16269.2i −0.0201779 + 0.0349491i
\(186\) −113274. + 196196.i −0.240076 + 0.415823i
\(187\) 579420. + 1.00358e6i 1.21168 + 2.09870i
\(188\) −36960.0 −0.0762671
\(189\) 0 0
\(190\) −27768.0 −0.0558034
\(191\) −179487. 310881.i −0.356000 0.616609i 0.631289 0.775548i \(-0.282526\pi\)
−0.987289 + 0.158938i \(0.949193\pi\)
\(192\) 18432.0 31925.2i 0.0360844 0.0625000i
\(193\) 90966.5 157559.i 0.175788 0.304473i −0.764646 0.644451i \(-0.777086\pi\)
0.940434 + 0.339978i \(0.110419\pi\)
\(194\) 249508. + 432161.i 0.475971 + 0.824405i
\(195\) −30186.0 −0.0568485
\(196\) 0 0
\(197\) 717924. 1.31799 0.658996 0.752146i \(-0.270981\pi\)
0.658996 + 0.752146i \(0.270981\pi\)
\(198\) 107892. + 186874.i 0.195581 + 0.338756i
\(199\) 101548. 175886.i 0.181777 0.314847i −0.760709 0.649093i \(-0.775148\pi\)
0.942486 + 0.334246i \(0.108482\pi\)
\(200\) 98848.0 171210.i 0.174740 0.302659i
\(201\) −84352.5 146103.i −0.147268 0.255075i
\(202\) 373560. 0.644142
\(203\) 0 0
\(204\) −250560. −0.421538
\(205\) −14598.0 25284.5i −0.0242610 0.0420213i
\(206\) −335462. + 581037.i −0.550776 + 0.953973i
\(207\) 140454. 243273.i 0.227829 0.394611i
\(208\) −71552.0 123932.i −0.114674 0.198620i
\(209\) 770562. 1.22023
\(210\) 0 0
\(211\) 1.17098e6 1.81069 0.905343 0.424680i \(-0.139613\pi\)
0.905343 + 0.424680i \(0.139613\pi\)
\(212\) 226368. + 392081.i 0.345920 + 0.599151i
\(213\) −172017. + 297942.i −0.259790 + 0.449969i
\(214\) −138360. + 239647.i −0.206527 + 0.357715i
\(215\) 34221.0 + 59272.5i 0.0504890 + 0.0874495i
\(216\) −46656.0 −0.0680414
\(217\) 0 0
\(218\) −878236. −1.25161
\(219\) −317651. 550187.i −0.447548 0.775175i
\(220\) 31968.0 55370.2i 0.0445306 0.0771293i
\(221\) −486330. + 842348.i −0.669808 + 1.16014i
\(222\) 56358.0 + 97614.9i 0.0767491 + 0.132933i
\(223\) −1.24635e6 −1.67833 −0.839167 0.543873i \(-0.816957\pi\)
−0.839167 + 0.543873i \(0.816957\pi\)
\(224\) 0 0
\(225\) −250209. −0.329493
\(226\) 78708.0 + 136326.i 0.102506 + 0.177545i
\(227\) −459471. + 795827.i −0.591825 + 1.02507i 0.402161 + 0.915569i \(0.368259\pi\)
−0.993987 + 0.109503i \(0.965074\pi\)
\(228\) −83304.0 + 144287.i −0.106128 + 0.183819i
\(229\) 601874. + 1.04248e6i 0.758433 + 1.31364i 0.943649 + 0.330947i \(0.107368\pi\)
−0.185216 + 0.982698i \(0.559299\pi\)
\(230\) −83232.0 −0.103746
\(231\) 0 0
\(232\) 215808. 0.263237
\(233\) 459531. + 795931.i 0.554530 + 0.960474i 0.997940 + 0.0641551i \(0.0204353\pi\)
−0.443410 + 0.896319i \(0.646231\pi\)
\(234\) −90558.0 + 156851.i −0.108115 + 0.187261i
\(235\) 6930.00 12003.1i 0.00818585 0.0141783i
\(236\) 164352. + 284666.i 0.192086 + 0.332702i
\(237\) 560637. 0.648352
\(238\) 0 0
\(239\) −625338. −0.708142 −0.354071 0.935219i \(-0.615203\pi\)
−0.354071 + 0.935219i \(0.615203\pi\)
\(240\) 6912.00 + 11971.9i 0.00774597 + 0.0134164i
\(241\) 626911. 1.08584e6i 0.695286 1.20427i −0.274799 0.961502i \(-0.588611\pi\)
0.970084 0.242768i \(-0.0780555\pi\)
\(242\) −565010. + 978626.i −0.620180 + 1.07418i
\(243\) 29524.5 + 51137.9i 0.0320750 + 0.0555556i
\(244\) 74080.0 0.0796575
\(245\) 0 0
\(246\) −175176. −0.184560
\(247\) 323382. + 560113.i 0.337266 + 0.584162i
\(248\) 201376. 348793.i 0.207911 0.360113i
\(249\) −359181. + 622120.i −0.367126 + 0.635881i
\(250\) 74568.0 + 129156.i 0.0754575 + 0.130696i
\(251\) 1.51333e6 1.51618 0.758089 0.652152i \(-0.226133\pi\)
0.758089 + 0.652152i \(0.226133\pi\)
\(252\) 0 0
\(253\) 2.30969e6 2.26857
\(254\) −634186. 1.09844e6i −0.616783 1.06830i
\(255\) 46980.0 81371.7i 0.0452442 0.0783652i
\(256\) −32768.0 + 56755.8i −0.0312500 + 0.0541266i
\(257\) −777465. 1.34661e6i −0.734257 1.27177i −0.955049 0.296449i \(-0.904197\pi\)
0.220792 0.975321i \(-0.429136\pi\)
\(258\) 410652. 0.384083
\(259\) 0 0
\(260\) 53664.0 0.0492322
\(261\) −136566. 236539.i −0.124091 0.214932i
\(262\) −309660. + 536347.i −0.278697 + 0.482717i
\(263\) 557658. 965892.i 0.497140 0.861071i −0.502855 0.864371i \(-0.667717\pi\)
0.999995 + 0.00329949i \(0.00105026\pi\)
\(264\) −191808. 332221.i −0.169378 0.293371i
\(265\) −169776. −0.148512
\(266\) 0 0
\(267\) −163080. −0.139998
\(268\) 149960. + 259738.i 0.127538 + 0.220902i
\(269\) 17835.0 30891.1i 0.0150277 0.0260287i −0.858414 0.512958i \(-0.828550\pi\)
0.873441 + 0.486929i \(0.161883\pi\)
\(270\) 8748.00 15152.0i 0.00730297 0.0126491i
\(271\) −146384. 253545.i −0.121079 0.209716i 0.799114 0.601179i \(-0.205302\pi\)
−0.920194 + 0.391464i \(0.871969\pi\)
\(272\) 445440. 0.365062
\(273\) 0 0
\(274\) 269328. 0.216723
\(275\) −1.02864e6 1.78165e6i −0.820220 1.42066i
\(276\) −249696. + 432486.i −0.197305 + 0.341743i
\(277\) −431607. + 747564.i −0.337978 + 0.585395i −0.984052 0.177879i \(-0.943076\pi\)
0.646074 + 0.763275i \(0.276410\pi\)
\(278\) −730430. 1.26514e6i −0.566848 0.981810i
\(279\) −509733. −0.392042
\(280\) 0 0
\(281\) 1.47110e6 1.11142 0.555709 0.831377i \(-0.312447\pi\)
0.555709 + 0.831377i \(0.312447\pi\)
\(282\) −41580.0 72018.7i −0.0311359 0.0539290i
\(283\) 344420. 596554.i 0.255637 0.442775i −0.709432 0.704774i \(-0.751048\pi\)
0.965068 + 0.261999i \(0.0843816\pi\)
\(284\) 305808. 529675.i 0.224985 0.389685i
\(285\) −31239.0 54107.5i −0.0227816 0.0394590i
\(286\) −1.48918e6 −1.07654
\(287\) 0 0
\(288\) 82944.0 0.0589256
\(289\) −803872. 1.39235e6i −0.566164 0.980624i
\(290\) −40464.0 + 70085.7i −0.0282536 + 0.0489367i
\(291\) −561393. + 972361.i −0.388628 + 0.673124i
\(292\) 564712. + 978110.i 0.387588 + 0.671321i
\(293\) −722832. −0.491890 −0.245945 0.969284i \(-0.579098\pi\)
−0.245945 + 0.969284i \(0.579098\pi\)
\(294\) 0 0
\(295\) −123264. −0.0824672
\(296\) −100192. 173538.i −0.0664666 0.115124i
\(297\) −242757. + 420467.i −0.159691 + 0.276593i
\(298\) 336120. 582177.i 0.219257 0.379764i
\(299\) 969306. + 1.67889e6i 0.627022 + 1.08603i
\(300\) 444816. 0.285350
\(301\) 0 0
\(302\) 614144. 0.387483
\(303\) 420255. + 727903.i 0.262970 + 0.455478i
\(304\) 148096. 256510.i 0.0919093 0.159192i
\(305\) −13890.0 + 24058.2i −0.00854973 + 0.0148086i
\(306\) −281880. 488230.i −0.172092 0.298072i
\(307\) 20125.0 0.0121868 0.00609340 0.999981i \(-0.498060\pi\)
0.00609340 + 0.999981i \(0.498060\pi\)
\(308\) 0 0
\(309\) −1.50958e6 −0.899414
\(310\) 75516.0 + 130798.i 0.0446308 + 0.0773028i
\(311\) −871779. + 1.50997e6i −0.511099 + 0.885250i 0.488818 + 0.872386i \(0.337428\pi\)
−0.999917 + 0.0128643i \(0.995905\pi\)
\(312\) 160992. 278846.i 0.0936306 0.162173i
\(313\) 904272. + 1.56624e6i 0.521721 + 0.903647i 0.999681 + 0.0252651i \(0.00804299\pi\)
−0.477960 + 0.878382i \(0.658624\pi\)
\(314\) −809672. −0.463431
\(315\) 0 0
\(316\) −996688. −0.561489
\(317\) −511776. 886422.i −0.286043 0.495442i 0.686818 0.726829i \(-0.259007\pi\)
−0.972862 + 0.231388i \(0.925673\pi\)
\(318\) −509328. + 882182.i −0.282442 + 0.489204i
\(319\) 1.12288e6 1.94488e6i 0.617810 1.07008i
\(320\) −12288.0 21283.4i −0.00670820 0.0116190i
\(321\) −622620. −0.337257
\(322\) 0 0
\(323\) −2.01318e6 −1.07368
\(324\) −52488.0 90911.9i −0.0277778 0.0481125i
\(325\) 863376. 1.49541e6i 0.453410 0.785330i
\(326\) 359528. 622721.i 0.187365 0.324526i
\(327\) −988016. 1.71129e6i −0.510969 0.885024i
\(328\) 311424. 0.159833
\(329\) 0 0
\(330\) 143856. 0.0727182
\(331\) 503766. + 872549.i 0.252731 + 0.437744i 0.964277 0.264896i \(-0.0853378\pi\)
−0.711545 + 0.702640i \(0.752004\pi\)
\(332\) 638544. 1.10599e6i 0.317940 0.550689i
\(333\) −126806. + 219634.i −0.0626654 + 0.108540i
\(334\) 434604. + 752756.i 0.213171 + 0.369223i
\(335\) −112470. −0.0547551
\(336\) 0 0
\(337\) −1.56571e6 −0.750993 −0.375496 0.926824i \(-0.622528\pi\)
−0.375496 + 0.926824i \(0.622528\pi\)
\(338\) 117624. + 203731.i 0.0560021 + 0.0969985i
\(339\) −177093. + 306734.i −0.0836955 + 0.144965i
\(340\) −83520.0 + 144661.i −0.0391826 + 0.0678662i
\(341\) −2.09557e6 3.62963e6i −0.975924 1.69035i
\(342\) −374868. −0.173306
\(343\) 0 0
\(344\) −730048. −0.332625
\(345\) −93636.0 162182.i −0.0423541 0.0733594i
\(346\) −147960. + 256274.i −0.0664437 + 0.115084i
\(347\) −378642. + 655827.i −0.168813 + 0.292392i −0.938003 0.346628i \(-0.887327\pi\)
0.769190 + 0.639020i \(0.220660\pi\)
\(348\) 242784. + 420514.i 0.107466 + 0.186137i
\(349\) 455638. 0.200243 0.100121 0.994975i \(-0.468077\pi\)
0.100121 + 0.994975i \(0.468077\pi\)
\(350\) 0 0
\(351\) −407511. −0.176552
\(352\) 340992. + 590615.i 0.146686 + 0.254067i
\(353\) −1.81569e6 + 3.14487e6i −0.775543 + 1.34328i 0.158946 + 0.987287i \(0.449190\pi\)
−0.934489 + 0.355992i \(0.884143\pi\)
\(354\) −369792. + 640499.i −0.156837 + 0.271650i
\(355\) 114678. + 198628.i 0.0482958 + 0.0836508i
\(356\) 289920. 0.121242
\(357\) 0 0
\(358\) 3.15746e6 1.30206
\(359\) 2.01242e6 + 3.48561e6i 0.824104 + 1.42739i 0.902602 + 0.430476i \(0.141654\pi\)
−0.0784980 + 0.996914i \(0.525012\pi\)
\(360\) −15552.0 + 26936.9i −0.00632456 + 0.0109545i
\(361\) 568725. 985061.i 0.229686 0.397828i
\(362\) −955478. 1.65494e6i −0.383221 0.663758i
\(363\) −2.54254e6 −1.01275
\(364\) 0 0
\(365\) −423534. −0.166401
\(366\) 83340.0 + 144349.i 0.0325200 + 0.0563263i
\(367\) 1.28894e6 2.23251e6i 0.499536 0.865222i −0.500464 0.865757i \(-0.666837\pi\)
1.00000 0.000535822i \(0.000170558\pi\)
\(368\) 443904. 768864.i 0.170871 0.295958i
\(369\) −197073. 341340.i −0.0753462 0.130503i
\(370\) 75144.0 0.0285358
\(371\) 0 0
\(372\) 906192. 0.339518
\(373\) 1.26566e6 + 2.19220e6i 0.471028 + 0.815844i 0.999451 0.0331372i \(-0.0105498\pi\)
−0.528423 + 0.848981i \(0.677216\pi\)
\(374\) 2.31768e6 4.01434e6i 0.856790 1.48400i
\(375\) −167778. + 290600.i −0.0616108 + 0.106713i
\(376\) 73920.0 + 128033.i 0.0269645 + 0.0467039i
\(377\) 1.88495e6 0.683040
\(378\) 0 0
\(379\) −3.06677e6 −1.09669 −0.548344 0.836253i \(-0.684742\pi\)
−0.548344 + 0.836253i \(0.684742\pi\)
\(380\) 55536.0 + 96191.2i 0.0197295 + 0.0341725i
\(381\) 1.42692e6 2.47150e6i 0.503601 0.872263i
\(382\) −717948. + 1.24352e6i −0.251730 + 0.436009i
\(383\) −1.96260e6 3.39932e6i −0.683652 1.18412i −0.973859 0.227155i \(-0.927057\pi\)
0.290207 0.956964i \(-0.406276\pi\)
\(384\) −147456. −0.0510310
\(385\) 0 0
\(386\) −727732. −0.248601
\(387\) 461984. + 800179.i 0.156801 + 0.271587i
\(388\) 998032. 1.72864e6i 0.336562 0.582943i
\(389\) 2.01334e6 3.48722e6i 0.674597 1.16844i −0.301990 0.953311i \(-0.597651\pi\)
0.976587 0.215125i \(-0.0690158\pi\)
\(390\) 60372.0 + 104567.i 0.0200990 + 0.0348125i
\(391\) −6.03432e6 −1.99612
\(392\) 0 0
\(393\) −1.39347e6 −0.455110
\(394\) −1.43585e6 2.48696e6i −0.465981 0.807102i
\(395\) 186879. 323684.i 0.0602654 0.104383i
\(396\) 431568. 747498.i 0.138297 0.239537i
\(397\) 2.28720e6 + 3.96155e6i 0.728329 + 1.26150i 0.957589 + 0.288138i \(0.0930362\pi\)
−0.229260 + 0.973365i \(0.573630\pi\)
\(398\) −812384. −0.257071
\(399\) 0 0
\(400\) −790784. −0.247120
\(401\) 1.13472e6 + 1.96539e6i 0.352393 + 0.610363i 0.986668 0.162744i \(-0.0520346\pi\)
−0.634275 + 0.773108i \(0.718701\pi\)
\(402\) −337410. + 584411.i −0.104134 + 0.180365i
\(403\) 1.75889e6 3.04649e6i 0.539482 0.934410i
\(404\) −747120. 1.29405e6i −0.227739 0.394455i
\(405\) 39366.0 0.0119257
\(406\) 0 0
\(407\) −2.08525e6 −0.623981
\(408\) 501120. + 867965.i 0.149036 + 0.258138i
\(409\) −2.02298e6 + 3.50391e6i −0.597976 + 1.03572i 0.395144 + 0.918619i \(0.370695\pi\)
−0.993120 + 0.117105i \(0.962639\pi\)
\(410\) −58392.0 + 101138.i −0.0171551 + 0.0297135i
\(411\) 302994. + 524801.i 0.0884768 + 0.153246i
\(412\) 2.68370e6 0.778915
\(413\) 0 0
\(414\) −1.12363e6 −0.322198
\(415\) 239454. + 414746.i 0.0682499 + 0.118212i
\(416\) −286208. + 495727.i −0.0810865 + 0.140446i
\(417\) 1.64347e6 2.84657e6i 0.462829 0.801644i
\(418\) −1.54112e6 2.66931e6i −0.431417 0.747236i
\(419\) 3.91281e6 1.08881 0.544407 0.838821i \(-0.316755\pi\)
0.544407 + 0.838821i \(0.316755\pi\)
\(420\) 0 0
\(421\) −2.78086e6 −0.764671 −0.382335 0.924024i \(-0.624880\pi\)
−0.382335 + 0.924024i \(0.624880\pi\)
\(422\) −2.34196e6 4.05639e6i −0.640174 1.10881i
\(423\) 93555.0 162042.i 0.0254224 0.0440328i
\(424\) 905472. 1.56832e6i 0.244602 0.423663i
\(425\) 2.68743e6 + 4.65477e6i 0.721714 + 1.25004i
\(426\) 1.37614e6 0.367398
\(427\) 0 0
\(428\) 1.10688e6 0.292073
\(429\) −1.67532e6 2.90174e6i −0.439496 0.761230i
\(430\) 136884. 237090.i 0.0357011 0.0618361i
\(431\) 2.19104e6 3.79498e6i 0.568141 0.984049i −0.428609 0.903490i \(-0.640996\pi\)
0.996750 0.0805589i \(-0.0256705\pi\)
\(432\) 93312.0 + 161621.i 0.0240563 + 0.0416667i
\(433\) −1.24946e6 −0.320261 −0.160130 0.987096i \(-0.551191\pi\)
−0.160130 + 0.987096i \(0.551191\pi\)
\(434\) 0 0
\(435\) −182088. −0.0461379
\(436\) 1.75647e6 + 3.04230e6i 0.442512 + 0.766453i
\(437\) −2.00624e6 + 3.47491e6i −0.502550 + 0.870441i
\(438\) −1.27060e6 + 2.20075e6i −0.316464 + 0.548132i
\(439\) −3.37210e6 5.84066e6i −0.835102 1.44644i −0.893947 0.448172i \(-0.852075\pi\)
0.0588449 0.998267i \(-0.481258\pi\)
\(440\) −255744. −0.0629758
\(441\) 0 0
\(442\) 3.89064e6 0.947252
\(443\) −239448. 414736.i −0.0579698 0.100407i 0.835584 0.549362i \(-0.185129\pi\)
−0.893554 + 0.448956i \(0.851796\pi\)
\(444\) 225432. 390460.i 0.0542698 0.0939980i
\(445\) −54360.0 + 94154.3i −0.0130131 + 0.0225393i
\(446\) 2.49270e6 + 4.31749e6i 0.593381 + 1.02777i
\(447\) 1.51254e6 0.358045
\(448\) 0 0
\(449\) 724506. 0.169600 0.0848001 0.996398i \(-0.472975\pi\)
0.0848001 + 0.996398i \(0.472975\pi\)
\(450\) 500418. + 866749.i 0.116493 + 0.201773i
\(451\) 1.62038e6 2.80658e6i 0.375124 0.649734i
\(452\) 314832. 545305.i 0.0724824 0.125543i
\(453\) 690912. + 1.19669e6i 0.158189 + 0.273992i
\(454\) 3.67577e6 0.836967
\(455\) 0 0
\(456\) 666432. 0.150087
\(457\) 1.16978e6 + 2.02612e6i 0.262008 + 0.453811i 0.966775 0.255627i \(-0.0822820\pi\)
−0.704768 + 0.709438i \(0.748949\pi\)
\(458\) 2.40750e6 4.16991e6i 0.536293 0.928887i
\(459\) 634230. 1.09852e6i 0.140513 0.243375i
\(460\) 166464. + 288324.i 0.0366797 + 0.0635311i
\(461\) −2.98247e6 −0.653617 −0.326809 0.945091i \(-0.605973\pi\)
−0.326809 + 0.945091i \(0.605973\pi\)
\(462\) 0 0
\(463\) 4.28423e6 0.928795 0.464398 0.885627i \(-0.346271\pi\)
0.464398 + 0.885627i \(0.346271\pi\)
\(464\) −431616. 747581.i −0.0930685 0.161199i
\(465\) −169911. + 294294.i −0.0364409 + 0.0631175i
\(466\) 1.83812e6 3.18372e6i 0.392112 0.679158i
\(467\) −2.87018e6 4.97129e6i −0.608998 1.05482i −0.991406 0.130822i \(-0.958238\pi\)
0.382407 0.923994i \(-0.375095\pi\)
\(468\) 724464. 0.152898
\(469\) 0 0
\(470\) −55440.0 −0.0115765
\(471\) −910881. 1.57769e6i −0.189195 0.327695i
\(472\) 657408. 1.13866e6i 0.135825 0.235256i
\(473\) −3.79853e6 + 6.57925e6i −0.780662 + 1.35215i
\(474\) −1.12127e6 1.94210e6i −0.229227 0.397033i
\(475\) 3.57397e6 0.726804
\(476\) 0 0
\(477\) −2.29198e6 −0.461226
\(478\) 1.25068e6 + 2.16623e6i 0.250366 + 0.433646i
\(479\) 1.32526e6 2.29541e6i 0.263913 0.457111i −0.703365 0.710829i \(-0.748320\pi\)
0.967278 + 0.253718i \(0.0816534\pi\)
\(480\) 27648.0 47887.7i 0.00547723 0.00948683i
\(481\) −875114. 1.51574e6i −0.172465 0.298719i
\(482\) −5.01529e6 −0.983282
\(483\) 0 0
\(484\) 4.52008e6 0.877067
\(485\) 374262. + 648241.i 0.0722473 + 0.125136i
\(486\) 118098. 204552.i 0.0226805 0.0392837i
\(487\) −1.40277e6 + 2.42967e6i −0.268018 + 0.464221i −0.968350 0.249597i \(-0.919702\pi\)
0.700332 + 0.713817i \(0.253035\pi\)
\(488\) −148160. 256621.i −0.0281632 0.0487800i
\(489\) 1.61788e6 0.305966
\(490\) 0 0
\(491\) −4.68450e6 −0.876919 −0.438460 0.898751i \(-0.644476\pi\)
−0.438460 + 0.898751i \(0.644476\pi\)
\(492\) 350352. + 606827.i 0.0652517 + 0.113019i
\(493\) −2.93364e6 + 5.08121e6i −0.543613 + 0.941565i
\(494\) 1.29353e6 2.24045e6i 0.238483 0.413065i
\(495\) 161838. + 280312.i 0.0296871 + 0.0514195i
\(496\) −1.61101e6 −0.294031
\(497\) 0 0
\(498\) 2.87345e6 0.519194
\(499\) −737876. 1.27804e6i −0.132658 0.229770i 0.792043 0.610466i \(-0.209018\pi\)
−0.924700 + 0.380696i \(0.875684\pi\)
\(500\) 298272. 516622.i 0.0533565 0.0924162i
\(501\) −977859. + 1.69370e6i −0.174053 + 0.301469i
\(502\) −3.02666e6 5.24234e6i −0.536050 0.928465i
\(503\) −63606.0 −0.0112093 −0.00560465 0.999984i \(-0.501784\pi\)
−0.00560465 + 0.999984i \(0.501784\pi\)
\(504\) 0 0
\(505\) 560340. 0.0977740
\(506\) −4.61938e6 8.00099e6i −0.802060 1.38921i
\(507\) −264654. + 458394.i −0.0457255 + 0.0791989i
\(508\) −2.53674e6 + 4.39377e6i −0.436131 + 0.755402i
\(509\) 3.10578e6 + 5.37937e6i 0.531345 + 0.920317i 0.999331 + 0.0365806i \(0.0116466\pi\)
−0.467986 + 0.883736i \(0.655020\pi\)
\(510\) −375840. −0.0639849
\(511\) 0 0
\(512\) 262144. 0.0441942
\(513\) −421726. 730452.i −0.0707518 0.122546i
\(514\) −3.10986e6 + 5.38644e6i −0.519198 + 0.899277i
\(515\) −503193. + 871556.i −0.0836020 + 0.144803i
\(516\) −821304. 1.42254e6i −0.135794 0.235202i
\(517\) 1.53846e6 0.253139
\(518\) 0 0
\(519\) −665820. −0.108502
\(520\) −107328. 185898.i −0.0174062 0.0301485i
\(521\) 706026. 1.22287e6i 0.113953 0.197373i −0.803408 0.595429i \(-0.796982\pi\)
0.917361 + 0.398057i \(0.130315\pi\)
\(522\) −546264. + 946157.i −0.0877458 + 0.151980i
\(523\) 2.61467e6 + 4.52875e6i 0.417987 + 0.723976i 0.995737 0.0922386i \(-0.0294023\pi\)
−0.577749 + 0.816214i \(0.696069\pi\)
\(524\) 2.47728e6 0.394137
\(525\) 0 0
\(526\) −4.46126e6 −0.703062
\(527\) 5.47491e6 + 9.48282e6i 0.858718 + 1.48734i
\(528\) −767232. + 1.32888e6i −0.119768 + 0.207445i
\(529\) −2.79534e6 + 4.84167e6i −0.434306 + 0.752240i
\(530\) 339552. + 588121.i 0.0525069 + 0.0909447i
\(531\) −1.66406e6 −0.256114
\(532\) 0 0
\(533\) 2.72009e6 0.414730
\(534\) 326160. + 564926.i 0.0494968 + 0.0857311i
\(535\) −207540. + 359470.i −0.0313485 + 0.0542973i
\(536\) 599840. 1.03895e6i 0.0901827 0.156201i
\(537\) 3.55215e6 + 6.15250e6i 0.531564 + 0.920695i
\(538\) −142680. −0.0212524
\(539\) 0 0
\(540\) −69984.0 −0.0103280
\(541\) −2.20686e6 3.82240e6i −0.324177 0.561491i 0.657169 0.753744i \(-0.271754\pi\)
−0.981345 + 0.192253i \(0.938421\pi\)
\(542\) −585536. + 1.01418e6i −0.0856161 + 0.148291i
\(543\) 2.14983e6 3.72361e6i 0.312899 0.541956i
\(544\) −890880. 1.54305e6i −0.129069 0.223554i
\(545\) −1.31735e6 −0.189981
\(546\) 0 0
\(547\) −1.19038e7 −1.70105 −0.850523 0.525938i \(-0.823714\pi\)
−0.850523 + 0.525938i \(0.823714\pi\)
\(548\) −538656. 932980.i −0.0766232 0.132715i
\(549\) −187515. + 324786.i −0.0265525 + 0.0459903i
\(550\) −4.11455e6 + 7.12661e6i −0.579983 + 1.00456i
\(551\) 1.95070e6 + 3.37871e6i 0.273723 + 0.474103i
\(552\) 1.99757e6 0.279032
\(553\) 0 0
\(554\) 3.45285e6 0.477973
\(555\) 84537.0 + 146422.i 0.0116497 + 0.0201779i
\(556\) −2.92172e6 + 5.06057e6i −0.400822 + 0.694244i
\(557\) −6.45665e6 + 1.11832e7i −0.881798 + 1.52732i −0.0324587 + 0.999473i \(0.510334\pi\)
−0.849340 + 0.527847i \(0.823000\pi\)
\(558\) 1.01947e6 + 1.76577e6i 0.138608 + 0.240076i
\(559\) −6.37651e6 −0.863085
\(560\) 0 0
\(561\) 1.04296e7 1.39913
\(562\) −2.94221e6 5.09605e6i −0.392946 0.680602i
\(563\) −5.68492e6 + 9.84657e6i −0.755881 + 1.30922i 0.189055 + 0.981967i \(0.439458\pi\)
−0.944935 + 0.327257i \(0.893876\pi\)
\(564\) −166320. + 288075.i −0.0220164 + 0.0381336i
\(565\) 118062. + 204489.i 0.0155593 + 0.0269494i
\(566\) −2.75536e6 −0.361525
\(567\) 0 0
\(568\) −2.44646e6 −0.318176
\(569\) 2.84898e6 + 4.93457e6i 0.368900 + 0.638953i 0.989394 0.145258i \(-0.0464013\pi\)
−0.620494 + 0.784211i \(0.713068\pi\)
\(570\) −124956. + 216430.i −0.0161091 + 0.0279017i
\(571\) 3.52110e6 6.09873e6i 0.451948 0.782797i −0.546559 0.837421i \(-0.684063\pi\)
0.998507 + 0.0546236i \(0.0173959\pi\)
\(572\) 2.97835e6 + 5.15866e6i 0.380615 + 0.659245i
\(573\) −3.23077e6 −0.411073
\(574\) 0 0
\(575\) 1.07127e7 1.35122
\(576\) −165888. 287326.i −0.0208333 0.0360844i
\(577\) −1.29098e6 + 2.23605e6i −0.161429 + 0.279603i −0.935381 0.353641i \(-0.884944\pi\)
0.773952 + 0.633244i \(0.218277\pi\)
\(578\) −3.21549e6 + 5.56939e6i −0.400338 + 0.693406i
\(579\) −818698. 1.41803e6i −0.101491 0.175788i
\(580\) 323712. 0.0399566
\(581\) 0 0
\(582\) 4.49114e6 0.549604
\(583\) −9.42257e6 1.63204e7i −1.14815 1.98865i
\(584\) 2.25885e6 3.91244e6i 0.274066 0.474696i
\(585\) −135837. + 235277.i −0.0164107 + 0.0284243i
\(586\) 1.44566e6 + 2.50396e6i 0.173910 + 0.301220i
\(587\) −4.69459e6 −0.562345 −0.281172 0.959657i \(-0.590723\pi\)
−0.281172 + 0.959657i \(0.590723\pi\)
\(588\) 0 0
\(589\) 7.28100e6 0.864774
\(590\) 246528. + 426999.i 0.0291566 + 0.0505006i
\(591\) 3.23066e6 5.59566e6i 0.380472 0.658996i
\(592\) −400768. + 694151.i −0.0469990 + 0.0814047i
\(593\) 6.71175e6 + 1.16251e7i 0.783789 + 1.35756i 0.929720 + 0.368268i \(0.120049\pi\)
−0.145931 + 0.989295i \(0.546618\pi\)
\(594\) 1.94206e6 0.225837
\(595\) 0 0
\(596\) −2.68896e6 −0.310076
\(597\) −913932. 1.58298e6i −0.104949 0.181777i
\(598\) 3.87722e6 6.71555e6i 0.443372 0.767942i
\(599\) −2.52301e6 + 4.36997e6i −0.287310 + 0.497636i −0.973167 0.230101i \(-0.926094\pi\)
0.685856 + 0.727737i \(0.259428\pi\)
\(600\) −889632. 1.54089e6i −0.100886 0.174740i
\(601\) 1.06391e7 1.20148 0.600742 0.799443i \(-0.294872\pi\)
0.600742 + 0.799443i \(0.294872\pi\)
\(602\) 0 0
\(603\) −1.51834e6 −0.170050
\(604\) −1.22829e6 2.12746e6i −0.136996 0.237284i
\(605\) −847515. + 1.46794e6i −0.0941367 + 0.163050i
\(606\) 1.68102e6 2.91161e6i 0.185948 0.322071i
\(607\) 708041. + 1.22636e6i 0.0779986 + 0.135098i 0.902386 0.430928i \(-0.141814\pi\)
−0.824388 + 0.566026i \(0.808480\pi\)
\(608\) −1.18477e6 −0.129979
\(609\) 0 0
\(610\) 111120. 0.0120912
\(611\) 645645. + 1.11829e6i 0.0699666 + 0.121186i
\(612\) −1.12752e6 + 1.95292e6i −0.121687 + 0.210769i
\(613\) −4.73152e6 + 8.19523e6i −0.508568 + 0.880866i 0.491383 + 0.870944i \(0.336492\pi\)
−0.999951 + 0.00992215i \(0.996842\pi\)
\(614\) −40250.0 69715.0i −0.00430869 0.00746286i
\(615\) −262764. −0.0280142
\(616\) 0 0
\(617\) 1.29388e7 1.36830 0.684148 0.729343i \(-0.260174\pi\)
0.684148 + 0.729343i \(0.260174\pi\)
\(618\) 3.01916e6 + 5.22934e6i 0.317991 + 0.550776i
\(619\) −1.90188e6 + 3.29415e6i −0.199506 + 0.345555i −0.948368 0.317171i \(-0.897267\pi\)
0.748862 + 0.662726i \(0.230600\pi\)
\(620\) 302064. 523190.i 0.0315587 0.0546614i
\(621\) −1.26409e6 2.18946e6i −0.131537 0.227829i
\(622\) 6.97423e6 0.722804
\(623\) 0 0
\(624\) −1.28794e6 −0.132414
\(625\) −4.71471e6 8.16612e6i −0.482786 0.836210i
\(626\) 3.61709e6 6.26498e6i 0.368912 0.638975i
\(627\) 3.46753e6 6.00594e6i 0.352250 0.610115i
\(628\) 1.61934e6 + 2.80479e6i 0.163848 + 0.283792i
\(629\) 5.44794e6 0.549042
\(630\) 0 0
\(631\) −9.17498e6 −0.917343 −0.458671 0.888606i \(-0.651674\pi\)
−0.458671 + 0.888606i \(0.651674\pi\)
\(632\) 1.99338e6 + 3.45263e6i 0.198516 + 0.343841i
\(633\) 5.26941e6 9.12689e6i 0.522700 0.905343i
\(634\) −2.04710e6 + 3.54569e6i −0.202263 + 0.350330i
\(635\) −951279. 1.64766e6i −0.0936211 0.162156i
\(636\) 4.07462e6 0.399434
\(637\) 0 0
\(638\) −8.98301e6 −0.873716
\(639\) 1.54815e6 + 2.68148e6i 0.149990 + 0.259790i
\(640\) −49152.0 + 85133.8i −0.00474342 + 0.00821584i
\(641\) −5.12269e6 + 8.87275e6i −0.492439 + 0.852930i −0.999962 0.00870851i \(-0.997228\pi\)
0.507523 + 0.861638i \(0.330561\pi\)
\(642\) 1.24524e6 + 2.15682e6i 0.119238 + 0.206527i
\(643\) 5.72346e6 0.545922 0.272961 0.962025i \(-0.411997\pi\)
0.272961 + 0.962025i \(0.411997\pi\)
\(644\) 0 0
\(645\) 615978. 0.0582996
\(646\) 4.02636e6 + 6.97386e6i 0.379604 + 0.657494i
\(647\) −4.99397e6 + 8.64981e6i −0.469013 + 0.812355i −0.999373 0.0354179i \(-0.988724\pi\)
0.530359 + 0.847773i \(0.322057\pi\)
\(648\) −209952. + 363648.i −0.0196419 + 0.0340207i
\(649\) −6.84115e6 1.18492e7i −0.637555 1.10428i
\(650\) −6.90700e6 −0.641219
\(651\) 0 0
\(652\) −2.87622e6 −0.264974
\(653\) 599439. + 1.03826e6i 0.0550126 + 0.0952846i 0.892220 0.451601i \(-0.149147\pi\)
−0.837208 + 0.546885i \(0.815813\pi\)
\(654\) −3.95206e6 + 6.84517e6i −0.361309 + 0.625806i
\(655\) −464490. + 804520.i −0.0423032 + 0.0732713i
\(656\) −622848. 1.07880e6i −0.0565096 0.0978776i
\(657\) −5.71771e6 −0.516783
\(658\) 0 0
\(659\) 1.18065e7 1.05903 0.529516 0.848300i \(-0.322374\pi\)
0.529516 + 0.848300i \(0.322374\pi\)
\(660\) −287712. 498332.i −0.0257098 0.0445306i
\(661\) 2.36020e6 4.08798e6i 0.210109 0.363919i −0.741640 0.670799i \(-0.765951\pi\)
0.951748 + 0.306879i \(0.0992848\pi\)
\(662\) 2.01507e6 3.49020e6i 0.178708 0.309532i
\(663\) 4.37697e6 + 7.58113e6i 0.386714 + 0.669808i
\(664\) −5.10835e6 −0.449636
\(665\) 0 0
\(666\) 1.01444e6 0.0886222
\(667\) 5.84705e6 + 1.01274e7i 0.508888 + 0.881420i
\(668\) 1.73842e6 3.01102e6i 0.150734 0.261080i
\(669\) −5.60858e6 + 9.71435e6i −0.484493 + 0.839167i
\(670\) 224940. + 389608.i 0.0193589 + 0.0335305i
\(671\) −3.08358e6 −0.264392
\(672\) 0 0
\(673\) −8.70826e6 −0.741129 −0.370564 0.928807i \(-0.620836\pi\)
−0.370564 + 0.928807i \(0.620836\pi\)
\(674\) 3.13141e6 + 5.42377e6i 0.265516 + 0.459887i
\(675\) −1.12594e6 + 1.95019e6i −0.0951165 + 0.164747i
\(676\) 470496. 814923.i 0.0395995 0.0685883i
\(677\) 2.55553e6 + 4.42630e6i 0.214293 + 0.371167i 0.953054 0.302801i \(-0.0979218\pi\)
−0.738760 + 0.673968i \(0.764588\pi\)
\(678\) 1.41674e6 0.118363
\(679\) 0 0
\(680\) 668160. 0.0554126
\(681\) 4.13524e6 + 7.16244e6i 0.341690 + 0.591825i
\(682\) −8.38228e6 + 1.45185e7i −0.690083 + 1.19526i
\(683\) 8.85989e6 1.53458e7i 0.726736 1.25874i −0.231520 0.972830i \(-0.574370\pi\)
0.958256 0.285913i \(-0.0922968\pi\)
\(684\) 749736. + 1.29858e6i 0.0612729 + 0.106128i
\(685\) 403992. 0.0328962
\(686\) 0 0
\(687\) 1.08337e7 0.875763
\(688\) 1.46010e6 + 2.52896e6i 0.117601 + 0.203691i
\(689\) 7.90873e6 1.36983e7i 0.634686 1.09931i
\(690\) −374544. + 648729.i −0.0299488 + 0.0518729i
\(691\) −1.12997e7 1.95716e7i −0.900265 1.55931i −0.827149 0.561982i \(-0.810039\pi\)
−0.0731160 0.997323i \(-0.523294\pi\)
\(692\) 1.18368e6 0.0939656
\(693\) 0 0
\(694\) 3.02914e6 0.238737
\(695\) −1.09564e6 1.89771e6i −0.0860415 0.149028i
\(696\) 971136. 1.68206e6i 0.0759901 0.131619i
\(697\) −4.23342e6 + 7.33250e6i −0.330073 + 0.571702i
\(698\) −911276. 1.57838e6i −0.0707964 0.122623i
\(699\) 8.27156e6 0.640316
\(700\) 0 0
\(701\) −818148. −0.0628835 −0.0314418 0.999506i \(-0.510010\pi\)
−0.0314418 + 0.999506i \(0.510010\pi\)
\(702\) 815022. + 1.41166e6i 0.0624204 + 0.108115i
\(703\) 1.81128e6 3.13724e6i 0.138229 0.239419i
\(704\) 1.36397e6 2.36246e6i 0.103722 0.179652i
\(705\) −62370.0 108028.i −0.00472610 0.00818585i
\(706\) 1.45255e7 1.09678
\(707\) 0 0
\(708\) 2.95834e6 0.221801
\(709\) 2.54591e6 + 4.40965e6i 0.190208 + 0.329449i 0.945319 0.326147i \(-0.105751\pi\)
−0.755111 + 0.655597i \(0.772417\pi\)
\(710\) 458712. 794512.i 0.0341503 0.0591500i
\(711\) 2.52287e6 4.36973e6i 0.187163 0.324176i
\(712\) −579840. 1.00431e6i −0.0428655 0.0742453i
\(713\) 2.18241e7 1.60773
\(714\) 0 0
\(715\) −2.23376e6 −0.163408
\(716\) −6.31493e6 1.09378e7i −0.460348 0.797345i
\(717\) −2.81402e6 + 4.87403e6i −0.204423 + 0.354071i
\(718\) 8.04967e6 1.39424e7i 0.582730 1.00932i
\(719\) −240429. 416435.i −0.0173446 0.0300418i 0.857223 0.514946i \(-0.172188\pi\)
−0.874567 + 0.484904i \(0.838855\pi\)
\(720\) 124416. 0.00894427
\(721\) 0 0
\(722\) −4.54980e6 −0.324825
\(723\) −5.64220e6 9.77258e6i −0.401423 0.695286i
\(724\) −3.82191e6 + 6.61975e6i −0.270978 + 0.469348i
\(725\) 5.20805e6 9.02061e6i 0.367985 0.637369i
\(726\) 5.08509e6 + 8.80763e6i 0.358061 + 0.620180i
\(727\) 1.40783e7 0.987905 0.493952 0.869489i \(-0.335552\pi\)
0.493952 + 0.869489i \(0.335552\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 847068. + 1.46716e6i 0.0588317 + 0.101899i
\(731\) 9.92409e6 1.71890e7i 0.686906 1.18976i
\(732\) 333360. 577396.i 0.0229951 0.0398287i
\(733\) 1.01966e6 + 1.76610e6i 0.0700964 + 0.121411i 0.898943 0.438065i \(-0.144336\pi\)
−0.828847 + 0.559475i \(0.811003\pi\)
\(734\) −1.03115e7 −0.706450
\(735\) 0 0
\(736\) −3.55123e6 −0.241649
\(737\) −6.24209e6 1.08116e7i −0.423312 0.733199i
\(738\) −788292. + 1.36536e6i −0.0532778 + 0.0922798i
\(739\) 8.24785e6 1.42857e7i 0.555558 0.962255i −0.442302 0.896866i \(-0.645838\pi\)
0.997860 0.0653888i \(-0.0208288\pi\)
\(740\) −150288. 260306.i −0.0100889 0.0174745i
\(741\) 5.82087e6 0.389441
\(742\) 0 0
\(743\) −2.38121e7 −1.58243 −0.791217 0.611536i \(-0.790552\pi\)
−0.791217 + 0.611536i \(0.790552\pi\)
\(744\) −1.81238e6 3.13914e6i −0.120038 0.207911i
\(745\) 504180. 873265.i 0.0332809 0.0576442i
\(746\) 5.06266e6 8.76878e6i 0.333067 0.576889i
\(747\) 3.23263e6 + 5.59908e6i 0.211960 + 0.367126i
\(748\) −1.85414e7 −1.21168
\(749\) 0 0
\(750\) 1.34222e6 0.0871308
\(751\) −962480. 1.66707e6i −0.0622719 0.107858i 0.833209 0.552959i \(-0.186501\pi\)
−0.895481 + 0.445101i \(0.853168\pi\)
\(752\) 295680. 512133.i 0.0190668 0.0330246i
\(753\) 6.80999e6 1.17953e7i 0.437683 0.758089i
\(754\) −3.76990e6 6.52965e6i −0.241491 0.418275i
\(755\) 921216. 0.0588158
\(756\) 0 0
\(757\) 8.98092e6 0.569615 0.284807 0.958585i \(-0.408070\pi\)
0.284807 + 0.958585i \(0.408070\pi\)
\(758\) 6.13354e6 + 1.06236e7i 0.387738 + 0.671581i
\(759\) 1.03936e7 1.80022e7i 0.654879 1.13428i
\(760\) 222144. 384765.i 0.0139508 0.0241636i
\(761\) 7.29955e6 + 1.26432e7i 0.456914 + 0.791398i 0.998796 0.0490566i \(-0.0156215\pi\)
−0.541882 + 0.840454i \(0.682288\pi\)
\(762\) −1.14153e7 −0.712200
\(763\) 0 0
\(764\) 5.74358e6 0.356000
\(765\) −422820. 732346.i −0.0261217 0.0452442i
\(766\) −7.85040e6 + 1.35973e7i −0.483415 + 0.837299i
\(767\) 5.74205e6 9.94552e6i 0.352434 0.610434i
\(768\) 294912. + 510803.i 0.0180422 + 0.0312500i
\(769\) −2.78381e7 −1.69755 −0.848776 0.528753i \(-0.822