Properties

Label 294.6.e.e.79.1
Level $294$
Weight $6$
Character 294.79
Analytic conductor $47.153$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,6,Mod(67,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.67");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 294.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.1528430250\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 79.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 294.79
Dual form 294.6.e.e.67.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.00000 + 3.46410i) q^{2} +(4.50000 + 7.79423i) q^{3} +(-8.00000 - 13.8564i) q^{4} +(-3.00000 + 5.19615i) q^{5} -36.0000 q^{6} +64.0000 q^{8} +(-40.5000 + 70.1481i) q^{9} +O(q^{10})\) \(q+(-2.00000 + 3.46410i) q^{2} +(4.50000 + 7.79423i) q^{3} +(-8.00000 - 13.8564i) q^{4} +(-3.00000 + 5.19615i) q^{5} -36.0000 q^{6} +64.0000 q^{8} +(-40.5000 + 70.1481i) q^{9} +(-12.0000 - 20.7846i) q^{10} +(333.000 + 576.773i) q^{11} +(72.0000 - 124.708i) q^{12} +559.000 q^{13} -54.0000 q^{15} +(-128.000 + 221.703i) q^{16} +(-870.000 - 1506.88i) q^{17} +(-162.000 - 280.592i) q^{18} +(578.500 - 1001.99i) q^{19} +96.0000 q^{20} -2664.00 q^{22} +(1734.00 - 3003.38i) q^{23} +(288.000 + 498.831i) q^{24} +(1544.50 + 2675.15i) q^{25} +(-1118.00 + 1936.43i) q^{26} -729.000 q^{27} +3372.00 q^{29} +(108.000 - 187.061i) q^{30} +(3146.50 + 5449.90i) q^{31} +(-512.000 - 886.810i) q^{32} +(-2997.00 + 5190.96i) q^{33} +6960.00 q^{34} +1296.00 q^{36} +(-1565.50 + 2711.53i) q^{37} +(2314.00 + 4007.97i) q^{38} +(2515.50 + 4356.97i) q^{39} +(-192.000 + 332.554i) q^{40} +4866.00 q^{41} -11407.0 q^{43} +(5328.00 - 9228.37i) q^{44} +(-243.000 - 420.888i) q^{45} +(6936.00 + 12013.5i) q^{46} +(1155.00 - 2000.52i) q^{47} -2304.00 q^{48} -12356.0 q^{50} +(7830.00 - 13562.0i) q^{51} +(-4472.00 - 7745.73i) q^{52} +(14148.0 + 24505.1i) q^{53} +(1458.00 - 2525.33i) q^{54} -3996.00 q^{55} +10413.0 q^{57} +(-6744.00 + 11681.0i) q^{58} +(10272.0 + 17791.6i) q^{59} +(432.000 + 748.246i) q^{60} +(-2315.00 + 4009.70i) q^{61} -25172.0 q^{62} +4096.00 q^{64} +(-1677.00 + 2904.65i) q^{65} +(-11988.0 - 20763.8i) q^{66} +(9372.50 + 16233.6i) q^{67} +(-13920.0 + 24110.1i) q^{68} +31212.0 q^{69} -38226.0 q^{71} +(-2592.00 + 4489.48i) q^{72} +(35294.5 + 61131.9i) q^{73} +(-6262.00 - 10846.1i) q^{74} +(-13900.5 + 24076.4i) q^{75} -18512.0 q^{76} -20124.0 q^{78} +(31146.5 - 53947.3i) q^{79} +(-768.000 - 1330.22i) q^{80} +(-3280.50 - 5681.99i) q^{81} +(-9732.00 + 16856.3i) q^{82} -79818.0 q^{83} +10440.0 q^{85} +(22814.0 - 39515.0i) q^{86} +(15174.0 + 26282.1i) q^{87} +(21312.0 + 36913.5i) q^{88} +(-9060.00 + 15692.4i) q^{89} +1944.00 q^{90} -55488.0 q^{92} +(-28318.5 + 49049.1i) q^{93} +(4620.00 + 8002.07i) q^{94} +(3471.00 + 6011.95i) q^{95} +(4608.00 - 7981.29i) q^{96} -124754. q^{97} -53946.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 9 q^{3} - 16 q^{4} - 6 q^{5} - 72 q^{6} + 128 q^{8} - 81 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 4 q^{2} + 9 q^{3} - 16 q^{4} - 6 q^{5} - 72 q^{6} + 128 q^{8} - 81 q^{9} - 24 q^{10} + 666 q^{11} + 144 q^{12} + 1118 q^{13} - 108 q^{15} - 256 q^{16} - 1740 q^{17} - 324 q^{18} + 1157 q^{19} + 192 q^{20} - 5328 q^{22} + 3468 q^{23} + 576 q^{24} + 3089 q^{25} - 2236 q^{26} - 1458 q^{27} + 6744 q^{29} + 216 q^{30} + 6293 q^{31} - 1024 q^{32} - 5994 q^{33} + 13920 q^{34} + 2592 q^{36} - 3131 q^{37} + 4628 q^{38} + 5031 q^{39} - 384 q^{40} + 9732 q^{41} - 22814 q^{43} + 10656 q^{44} - 486 q^{45} + 13872 q^{46} + 2310 q^{47} - 4608 q^{48} - 24712 q^{50} + 15660 q^{51} - 8944 q^{52} + 28296 q^{53} + 2916 q^{54} - 7992 q^{55} + 20826 q^{57} - 13488 q^{58} + 20544 q^{59} + 864 q^{60} - 4630 q^{61} - 50344 q^{62} + 8192 q^{64} - 3354 q^{65} - 23976 q^{66} + 18745 q^{67} - 27840 q^{68} + 62424 q^{69} - 76452 q^{71} - 5184 q^{72} + 70589 q^{73} - 12524 q^{74} - 27801 q^{75} - 37024 q^{76} - 40248 q^{78} + 62293 q^{79} - 1536 q^{80} - 6561 q^{81} - 19464 q^{82} - 159636 q^{83} + 20880 q^{85} + 45628 q^{86} + 30348 q^{87} + 42624 q^{88} - 18120 q^{89} + 3888 q^{90} - 110976 q^{92} - 56637 q^{93} + 9240 q^{94} + 6942 q^{95} + 9216 q^{96} - 249508 q^{97} - 107892 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/294\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(199\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 + 3.46410i −0.353553 + 0.612372i
\(3\) 4.50000 + 7.79423i 0.288675 + 0.500000i
\(4\) −8.00000 13.8564i −0.250000 0.433013i
\(5\) −3.00000 + 5.19615i −0.0536656 + 0.0929516i −0.891610 0.452804i \(-0.850424\pi\)
0.837945 + 0.545755i \(0.183757\pi\)
\(6\) −36.0000 −0.408248
\(7\) 0 0
\(8\) 64.0000 0.353553
\(9\) −40.5000 + 70.1481i −0.166667 + 0.288675i
\(10\) −12.0000 20.7846i −0.0379473 0.0657267i
\(11\) 333.000 + 576.773i 0.829779 + 1.43722i 0.898211 + 0.439564i \(0.144867\pi\)
−0.0684322 + 0.997656i \(0.521800\pi\)
\(12\) 72.0000 124.708i 0.144338 0.250000i
\(13\) 559.000 0.917389 0.458694 0.888594i \(-0.348317\pi\)
0.458694 + 0.888594i \(0.348317\pi\)
\(14\) 0 0
\(15\) −54.0000 −0.0619677
\(16\) −128.000 + 221.703i −0.125000 + 0.216506i
\(17\) −870.000 1506.88i −0.730125 1.26461i −0.956830 0.290649i \(-0.906129\pi\)
0.226705 0.973963i \(-0.427205\pi\)
\(18\) −162.000 280.592i −0.117851 0.204124i
\(19\) 578.500 1001.99i 0.367637 0.636766i −0.621558 0.783368i \(-0.713500\pi\)
0.989196 + 0.146602i \(0.0468335\pi\)
\(20\) 96.0000 0.0536656
\(21\) 0 0
\(22\) −2664.00 −1.17348
\(23\) 1734.00 3003.38i 0.683486 1.18383i −0.290424 0.956898i \(-0.593796\pi\)
0.973910 0.226934i \(-0.0728702\pi\)
\(24\) 288.000 + 498.831i 0.102062 + 0.176777i
\(25\) 1544.50 + 2675.15i 0.494240 + 0.856049i
\(26\) −1118.00 + 1936.43i −0.324346 + 0.561784i
\(27\) −729.000 −0.192450
\(28\) 0 0
\(29\) 3372.00 0.744548 0.372274 0.928123i \(-0.378578\pi\)
0.372274 + 0.928123i \(0.378578\pi\)
\(30\) 108.000 187.061i 0.0219089 0.0379473i
\(31\) 3146.50 + 5449.90i 0.588063 + 1.01855i 0.994486 + 0.104869i \(0.0334424\pi\)
−0.406423 + 0.913685i \(0.633224\pi\)
\(32\) −512.000 886.810i −0.0883883 0.153093i
\(33\) −2997.00 + 5190.96i −0.479073 + 0.829779i
\(34\) 6960.00 1.03255
\(35\) 0 0
\(36\) 1296.00 0.166667
\(37\) −1565.50 + 2711.53i −0.187996 + 0.325619i −0.944582 0.328276i \(-0.893533\pi\)
0.756586 + 0.653894i \(0.226866\pi\)
\(38\) 2314.00 + 4007.97i 0.259959 + 0.450262i
\(39\) 2515.50 + 4356.97i 0.264827 + 0.458694i
\(40\) −192.000 + 332.554i −0.0189737 + 0.0328634i
\(41\) 4866.00 0.452077 0.226039 0.974118i \(-0.427422\pi\)
0.226039 + 0.974118i \(0.427422\pi\)
\(42\) 0 0
\(43\) −11407.0 −0.940806 −0.470403 0.882452i \(-0.655892\pi\)
−0.470403 + 0.882452i \(0.655892\pi\)
\(44\) 5328.00 9228.37i 0.414890 0.718610i
\(45\) −243.000 420.888i −0.0178885 0.0309839i
\(46\) 6936.00 + 12013.5i 0.483297 + 0.837096i
\(47\) 1155.00 2000.52i 0.0762671 0.132099i −0.825369 0.564593i \(-0.809033\pi\)
0.901637 + 0.432494i \(0.142366\pi\)
\(48\) −2304.00 −0.144338
\(49\) 0 0
\(50\) −12356.0 −0.698961
\(51\) 7830.00 13562.0i 0.421538 0.730125i
\(52\) −4472.00 7745.73i −0.229347 0.397241i
\(53\) 14148.0 + 24505.1i 0.691840 + 1.19830i 0.971235 + 0.238125i \(0.0765328\pi\)
−0.279395 + 0.960176i \(0.590134\pi\)
\(54\) 1458.00 2525.33i 0.0680414 0.117851i
\(55\) −3996.00 −0.178122
\(56\) 0 0
\(57\) 10413.0 0.424511
\(58\) −6744.00 + 11681.0i −0.263237 + 0.455941i
\(59\) 10272.0 + 17791.6i 0.384171 + 0.665404i 0.991654 0.128929i \(-0.0411539\pi\)
−0.607483 + 0.794333i \(0.707821\pi\)
\(60\) 432.000 + 748.246i 0.0154919 + 0.0268328i
\(61\) −2315.00 + 4009.70i −0.0796575 + 0.137971i −0.903102 0.429426i \(-0.858716\pi\)
0.823445 + 0.567397i \(0.192049\pi\)
\(62\) −25172.0 −0.831646
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) −1677.00 + 2904.65i −0.0492322 + 0.0852728i
\(66\) −11988.0 20763.8i −0.338756 0.586742i
\(67\) 9372.50 + 16233.6i 0.255075 + 0.441803i 0.964916 0.262559i \(-0.0845664\pi\)
−0.709841 + 0.704362i \(0.751233\pi\)
\(68\) −13920.0 + 24110.1i −0.365062 + 0.632306i
\(69\) 31212.0 0.789221
\(70\) 0 0
\(71\) −38226.0 −0.899939 −0.449969 0.893044i \(-0.648565\pi\)
−0.449969 + 0.893044i \(0.648565\pi\)
\(72\) −2592.00 + 4489.48i −0.0589256 + 0.102062i
\(73\) 35294.5 + 61131.9i 0.775175 + 1.34264i 0.934696 + 0.355448i \(0.115672\pi\)
−0.159521 + 0.987195i \(0.550995\pi\)
\(74\) −6262.00 10846.1i −0.132933 0.230247i
\(75\) −13900.5 + 24076.4i −0.285350 + 0.494240i
\(76\) −18512.0 −0.367637
\(77\) 0 0
\(78\) −20124.0 −0.374522
\(79\) 31146.5 53947.3i 0.561489 0.972528i −0.435877 0.900006i \(-0.643562\pi\)
0.997367 0.0725221i \(-0.0231048\pi\)
\(80\) −768.000 1330.22i −0.0134164 0.0232379i
\(81\) −3280.50 5681.99i −0.0555556 0.0962250i
\(82\) −9732.00 + 16856.3i −0.159833 + 0.276840i
\(83\) −79818.0 −1.27176 −0.635881 0.771787i \(-0.719363\pi\)
−0.635881 + 0.771787i \(0.719363\pi\)
\(84\) 0 0
\(85\) 10440.0 0.156730
\(86\) 22814.0 39515.0i 0.332625 0.576124i
\(87\) 15174.0 + 26282.1i 0.214932 + 0.372274i
\(88\) 21312.0 + 36913.5i 0.293371 + 0.508134i
\(89\) −9060.00 + 15692.4i −0.121242 + 0.209997i −0.920258 0.391313i \(-0.872021\pi\)
0.799016 + 0.601310i \(0.205354\pi\)
\(90\) 1944.00 0.0252982
\(91\) 0 0
\(92\) −55488.0 −0.683486
\(93\) −28318.5 + 49049.1i −0.339518 + 0.588063i
\(94\) 4620.00 + 8002.07i 0.0539290 + 0.0934078i
\(95\) 3471.00 + 6011.95i 0.0394590 + 0.0683449i
\(96\) 4608.00 7981.29i 0.0510310 0.0883883i
\(97\) −124754. −1.34625 −0.673124 0.739530i \(-0.735048\pi\)
−0.673124 + 0.739530i \(0.735048\pi\)
\(98\) 0 0
\(99\) −53946.0 −0.553186
\(100\) 24712.0 42802.4i 0.247120 0.428024i
\(101\) −46695.0 80878.1i −0.455478 0.788910i 0.543238 0.839579i \(-0.317198\pi\)
−0.998716 + 0.0506685i \(0.983865\pi\)
\(102\) 31320.0 + 54247.8i 0.298072 + 0.516276i
\(103\) −83865.5 + 145259.i −0.778915 + 1.34912i 0.153652 + 0.988125i \(0.450897\pi\)
−0.932567 + 0.360996i \(0.882437\pi\)
\(104\) 35776.0 0.324346
\(105\) 0 0
\(106\) −113184. −0.978409
\(107\) −34590.0 + 59911.6i −0.292073 + 0.505885i −0.974300 0.225256i \(-0.927678\pi\)
0.682227 + 0.731141i \(0.261012\pi\)
\(108\) 5832.00 + 10101.3i 0.0481125 + 0.0833333i
\(109\) 109779. + 190144.i 0.885024 + 1.53291i 0.845686 + 0.533680i \(0.179191\pi\)
0.0393377 + 0.999226i \(0.487475\pi\)
\(110\) 7992.00 13842.6i 0.0629758 0.109077i
\(111\) −28179.0 −0.217079
\(112\) 0 0
\(113\) −39354.0 −0.289930 −0.144965 0.989437i \(-0.546307\pi\)
−0.144965 + 0.989437i \(0.546307\pi\)
\(114\) −20826.0 + 36071.7i −0.150087 + 0.259959i
\(115\) 10404.0 + 18020.3i 0.0733594 + 0.127062i
\(116\) −26976.0 46723.8i −0.186137 0.322399i
\(117\) −22639.5 + 39212.8i −0.152898 + 0.264827i
\(118\) −82176.0 −0.543300
\(119\) 0 0
\(120\) −3456.00 −0.0219089
\(121\) −141252. + 244657.i −0.877067 + 1.51912i
\(122\) −9260.00 16038.8i −0.0563263 0.0975601i
\(123\) 21897.0 + 37926.7i 0.130503 + 0.226039i
\(124\) 50344.0 87198.4i 0.294031 0.509277i
\(125\) −37284.0 −0.213426
\(126\) 0 0
\(127\) 317093. 1.74453 0.872263 0.489037i \(-0.162652\pi\)
0.872263 + 0.489037i \(0.162652\pi\)
\(128\) −8192.00 + 14189.0i −0.0441942 + 0.0765466i
\(129\) −51331.5 88908.8i −0.271587 0.470403i
\(130\) −6708.00 11618.6i −0.0348125 0.0602969i
\(131\) −77415.0 + 134087.i −0.394137 + 0.682665i −0.992991 0.118194i \(-0.962290\pi\)
0.598854 + 0.800858i \(0.295623\pi\)
\(132\) 95904.0 0.479073
\(133\) 0 0
\(134\) −74980.0 −0.360731
\(135\) 2187.00 3788.00i 0.0103280 0.0178885i
\(136\) −55680.0 96440.6i −0.258138 0.447108i
\(137\) −33666.0 58311.2i −0.153246 0.265430i 0.779173 0.626809i \(-0.215639\pi\)
−0.932419 + 0.361379i \(0.882306\pi\)
\(138\) −62424.0 + 108122.i −0.279032 + 0.483297i
\(139\) 365215. 1.60329 0.801644 0.597802i \(-0.203959\pi\)
0.801644 + 0.597802i \(0.203959\pi\)
\(140\) 0 0
\(141\) 20790.0 0.0880657
\(142\) 76452.0 132419.i 0.318176 0.551098i
\(143\) 186147. + 322416.i 0.761230 + 1.31849i
\(144\) −10368.0 17957.9i −0.0416667 0.0721688i
\(145\) −10116.0 + 17521.4i −0.0399566 + 0.0692069i
\(146\) −282356. −1.09626
\(147\) 0 0
\(148\) 50096.0 0.187996
\(149\) 84030.0 145544.i 0.310076 0.537068i −0.668302 0.743890i \(-0.732979\pi\)
0.978379 + 0.206822i \(0.0663120\pi\)
\(150\) −55602.0 96305.5i −0.201773 0.349480i
\(151\) −76768.0 132966.i −0.273992 0.474568i 0.695888 0.718150i \(-0.255011\pi\)
−0.969880 + 0.243582i \(0.921678\pi\)
\(152\) 37024.0 64127.4i 0.129979 0.225131i
\(153\) 140940. 0.486750
\(154\) 0 0
\(155\) −37758.0 −0.126235
\(156\) 40248.0 69711.6i 0.132414 0.229347i
\(157\) 101209. + 175299.i 0.327695 + 0.567585i 0.982054 0.188599i \(-0.0603948\pi\)
−0.654359 + 0.756184i \(0.727061\pi\)
\(158\) 124586. + 215789.i 0.397033 + 0.687681i
\(159\) −127332. + 220545.i −0.399434 + 0.691840i
\(160\) 6144.00 0.0189737
\(161\) 0 0
\(162\) 26244.0 0.0785674
\(163\) 89882.0 155680.i 0.264974 0.458949i −0.702583 0.711602i \(-0.747970\pi\)
0.967557 + 0.252653i \(0.0813032\pi\)
\(164\) −38928.0 67425.3i −0.113019 0.195755i
\(165\) −17982.0 31145.7i −0.0514195 0.0890612i
\(166\) 159636. 276498.i 0.449636 0.778792i
\(167\) −217302. −0.602938 −0.301469 0.953476i \(-0.597477\pi\)
−0.301469 + 0.953476i \(0.597477\pi\)
\(168\) 0 0
\(169\) −58812.0 −0.158398
\(170\) −20880.0 + 36165.2i −0.0554126 + 0.0959774i
\(171\) 46858.5 + 81161.3i 0.122546 + 0.212255i
\(172\) 91256.0 + 158060.i 0.235202 + 0.407381i
\(173\) −36990.0 + 64068.6i −0.0939656 + 0.162753i −0.909176 0.416411i \(-0.863288\pi\)
0.815211 + 0.579164i \(0.196621\pi\)
\(174\) −121392. −0.303960
\(175\) 0 0
\(176\) −170496. −0.414890
\(177\) −92448.0 + 160125.i −0.221801 + 0.384171i
\(178\) −36240.0 62769.5i −0.0857311 0.148491i
\(179\) −394683. 683611.i −0.920695 1.59469i −0.798342 0.602204i \(-0.794289\pi\)
−0.122353 0.992487i \(-0.539044\pi\)
\(180\) −3888.00 + 6734.21i −0.00894427 + 0.0154919i
\(181\) 477739. 1.08391 0.541956 0.840407i \(-0.317684\pi\)
0.541956 + 0.840407i \(0.317684\pi\)
\(182\) 0 0
\(183\) −41670.0 −0.0919805
\(184\) 110976. 192216.i 0.241649 0.418548i
\(185\) −9393.00 16269.2i −0.0201779 0.0349491i
\(186\) −113274. 196196.i −0.240076 0.415823i
\(187\) 579420. 1.00358e6i 1.21168 2.09870i
\(188\) −36960.0 −0.0762671
\(189\) 0 0
\(190\) −27768.0 −0.0558034
\(191\) −179487. + 310881.i −0.356000 + 0.616609i −0.987289 0.158938i \(-0.949193\pi\)
0.631289 + 0.775548i \(0.282526\pi\)
\(192\) 18432.0 + 31925.2i 0.0360844 + 0.0625000i
\(193\) 90966.5 + 157559.i 0.175788 + 0.304473i 0.940434 0.339978i \(-0.110419\pi\)
−0.764646 + 0.644451i \(0.777086\pi\)
\(194\) 249508. 432161.i 0.475971 0.824405i
\(195\) −30186.0 −0.0568485
\(196\) 0 0
\(197\) 717924. 1.31799 0.658996 0.752146i \(-0.270981\pi\)
0.658996 + 0.752146i \(0.270981\pi\)
\(198\) 107892. 186874.i 0.195581 0.338756i
\(199\) 101548. + 175886.i 0.181777 + 0.314847i 0.942486 0.334246i \(-0.108482\pi\)
−0.760709 + 0.649093i \(0.775148\pi\)
\(200\) 98848.0 + 171210.i 0.174740 + 0.302659i
\(201\) −84352.5 + 146103.i −0.147268 + 0.255075i
\(202\) 373560. 0.644142
\(203\) 0 0
\(204\) −250560. −0.421538
\(205\) −14598.0 + 25284.5i −0.0242610 + 0.0420213i
\(206\) −335462. 581037.i −0.550776 0.953973i
\(207\) 140454. + 243273.i 0.227829 + 0.394611i
\(208\) −71552.0 + 123932.i −0.114674 + 0.198620i
\(209\) 770562. 1.22023
\(210\) 0 0
\(211\) 1.17098e6 1.81069 0.905343 0.424680i \(-0.139613\pi\)
0.905343 + 0.424680i \(0.139613\pi\)
\(212\) 226368. 392081.i 0.345920 0.599151i
\(213\) −172017. 297942.i −0.259790 0.449969i
\(214\) −138360. 239647.i −0.206527 0.357715i
\(215\) 34221.0 59272.5i 0.0504890 0.0874495i
\(216\) −46656.0 −0.0680414
\(217\) 0 0
\(218\) −878236. −1.25161
\(219\) −317651. + 550187.i −0.447548 + 0.775175i
\(220\) 31968.0 + 55370.2i 0.0445306 + 0.0771293i
\(221\) −486330. 842348.i −0.669808 1.16014i
\(222\) 56358.0 97614.9i 0.0767491 0.132933i
\(223\) −1.24635e6 −1.67833 −0.839167 0.543873i \(-0.816957\pi\)
−0.839167 + 0.543873i \(0.816957\pi\)
\(224\) 0 0
\(225\) −250209. −0.329493
\(226\) 78708.0 136326.i 0.102506 0.177545i
\(227\) −459471. 795827.i −0.591825 1.02507i −0.993987 0.109503i \(-0.965074\pi\)
0.402161 0.915569i \(-0.368259\pi\)
\(228\) −83304.0 144287.i −0.106128 0.183819i
\(229\) 601874. 1.04248e6i 0.758433 1.31364i −0.185216 0.982698i \(-0.559299\pi\)
0.943649 0.330947i \(-0.107368\pi\)
\(230\) −83232.0 −0.103746
\(231\) 0 0
\(232\) 215808. 0.263237
\(233\) 459531. 795931.i 0.554530 0.960474i −0.443410 0.896319i \(-0.646231\pi\)
0.997940 0.0641551i \(-0.0204353\pi\)
\(234\) −90558.0 156851.i −0.108115 0.187261i
\(235\) 6930.00 + 12003.1i 0.00818585 + 0.0141783i
\(236\) 164352. 284666.i 0.192086 0.332702i
\(237\) 560637. 0.648352
\(238\) 0 0
\(239\) −625338. −0.708142 −0.354071 0.935219i \(-0.615203\pi\)
−0.354071 + 0.935219i \(0.615203\pi\)
\(240\) 6912.00 11971.9i 0.00774597 0.0134164i
\(241\) 626911. + 1.08584e6i 0.695286 + 1.20427i 0.970084 + 0.242768i \(0.0780555\pi\)
−0.274799 + 0.961502i \(0.588611\pi\)
\(242\) −565010. 978626.i −0.620180 1.07418i
\(243\) 29524.5 51137.9i 0.0320750 0.0555556i
\(244\) 74080.0 0.0796575
\(245\) 0 0
\(246\) −175176. −0.184560
\(247\) 323382. 560113.i 0.337266 0.584162i
\(248\) 201376. + 348793.i 0.207911 + 0.360113i
\(249\) −359181. 622120.i −0.367126 0.635881i
\(250\) 74568.0 129156.i 0.0754575 0.130696i
\(251\) 1.51333e6 1.51618 0.758089 0.652152i \(-0.226133\pi\)
0.758089 + 0.652152i \(0.226133\pi\)
\(252\) 0 0
\(253\) 2.30969e6 2.26857
\(254\) −634186. + 1.09844e6i −0.616783 + 1.06830i
\(255\) 46980.0 + 81371.7i 0.0452442 + 0.0783652i
\(256\) −32768.0 56755.8i −0.0312500 0.0541266i
\(257\) −777465. + 1.34661e6i −0.734257 + 1.27177i 0.220792 + 0.975321i \(0.429136\pi\)
−0.955049 + 0.296449i \(0.904197\pi\)
\(258\) 410652. 0.384083
\(259\) 0 0
\(260\) 53664.0 0.0492322
\(261\) −136566. + 236539.i −0.124091 + 0.214932i
\(262\) −309660. 536347.i −0.278697 0.482717i
\(263\) 557658. + 965892.i 0.497140 + 0.861071i 0.999995 0.00329949i \(-0.00105026\pi\)
−0.502855 + 0.864371i \(0.667717\pi\)
\(264\) −191808. + 332221.i −0.169378 + 0.293371i
\(265\) −169776. −0.148512
\(266\) 0 0
\(267\) −163080. −0.139998
\(268\) 149960. 259738.i 0.127538 0.220902i
\(269\) 17835.0 + 30891.1i 0.0150277 + 0.0260287i 0.873441 0.486929i \(-0.161883\pi\)
−0.858414 + 0.512958i \(0.828550\pi\)
\(270\) 8748.00 + 15152.0i 0.00730297 + 0.0126491i
\(271\) −146384. + 253545.i −0.121079 + 0.209716i −0.920194 0.391464i \(-0.871969\pi\)
0.799114 + 0.601179i \(0.205302\pi\)
\(272\) 445440. 0.365062
\(273\) 0 0
\(274\) 269328. 0.216723
\(275\) −1.02864e6 + 1.78165e6i −0.820220 + 1.42066i
\(276\) −249696. 432486.i −0.197305 0.341743i
\(277\) −431607. 747564.i −0.337978 0.585395i 0.646074 0.763275i \(-0.276410\pi\)
−0.984052 + 0.177879i \(0.943076\pi\)
\(278\) −730430. + 1.26514e6i −0.566848 + 0.981810i
\(279\) −509733. −0.392042
\(280\) 0 0
\(281\) 1.47110e6 1.11142 0.555709 0.831377i \(-0.312447\pi\)
0.555709 + 0.831377i \(0.312447\pi\)
\(282\) −41580.0 + 72018.7i −0.0311359 + 0.0539290i
\(283\) 344420. + 596554.i 0.255637 + 0.442775i 0.965068 0.261999i \(-0.0843816\pi\)
−0.709432 + 0.704774i \(0.751048\pi\)
\(284\) 305808. + 529675.i 0.224985 + 0.389685i
\(285\) −31239.0 + 54107.5i −0.0227816 + 0.0394590i
\(286\) −1.48918e6 −1.07654
\(287\) 0 0
\(288\) 82944.0 0.0589256
\(289\) −803872. + 1.39235e6i −0.566164 + 0.980624i
\(290\) −40464.0 70085.7i −0.0282536 0.0489367i
\(291\) −561393. 972361.i −0.388628 0.673124i
\(292\) 564712. 978110.i 0.387588 0.671321i
\(293\) −722832. −0.491890 −0.245945 0.969284i \(-0.579098\pi\)
−0.245945 + 0.969284i \(0.579098\pi\)
\(294\) 0 0
\(295\) −123264. −0.0824672
\(296\) −100192. + 173538.i −0.0664666 + 0.115124i
\(297\) −242757. 420467.i −0.159691 0.276593i
\(298\) 336120. + 582177.i 0.219257 + 0.379764i
\(299\) 969306. 1.67889e6i 0.627022 1.08603i
\(300\) 444816. 0.285350
\(301\) 0 0
\(302\) 614144. 0.387483
\(303\) 420255. 727903.i 0.262970 0.455478i
\(304\) 148096. + 256510.i 0.0919093 + 0.159192i
\(305\) −13890.0 24058.2i −0.00854973 0.0148086i
\(306\) −281880. + 488230.i −0.172092 + 0.298072i
\(307\) 20125.0 0.0121868 0.00609340 0.999981i \(-0.498060\pi\)
0.00609340 + 0.999981i \(0.498060\pi\)
\(308\) 0 0
\(309\) −1.50958e6 −0.899414
\(310\) 75516.0 130798.i 0.0446308 0.0773028i
\(311\) −871779. 1.50997e6i −0.511099 0.885250i −0.999917 0.0128643i \(-0.995905\pi\)
0.488818 0.872386i \(-0.337428\pi\)
\(312\) 160992. + 278846.i 0.0936306 + 0.162173i
\(313\) 904272. 1.56624e6i 0.521721 0.903647i −0.477960 0.878382i \(-0.658624\pi\)
0.999681 0.0252651i \(-0.00804299\pi\)
\(314\) −809672. −0.463431
\(315\) 0 0
\(316\) −996688. −0.561489
\(317\) −511776. + 886422.i −0.286043 + 0.495442i −0.972862 0.231388i \(-0.925673\pi\)
0.686818 + 0.726829i \(0.259007\pi\)
\(318\) −509328. 882182.i −0.282442 0.489204i
\(319\) 1.12288e6 + 1.94488e6i 0.617810 + 1.07008i
\(320\) −12288.0 + 21283.4i −0.00670820 + 0.0116190i
\(321\) −622620. −0.337257
\(322\) 0 0
\(323\) −2.01318e6 −1.07368
\(324\) −52488.0 + 90911.9i −0.0277778 + 0.0481125i
\(325\) 863376. + 1.49541e6i 0.453410 + 0.785330i
\(326\) 359528. + 622721.i 0.187365 + 0.324526i
\(327\) −988016. + 1.71129e6i −0.510969 + 0.885024i
\(328\) 311424. 0.159833
\(329\) 0 0
\(330\) 143856. 0.0727182
\(331\) 503766. 872549.i 0.252731 0.437744i −0.711545 0.702640i \(-0.752004\pi\)
0.964277 + 0.264896i \(0.0853378\pi\)
\(332\) 638544. + 1.10599e6i 0.317940 + 0.550689i
\(333\) −126806. 219634.i −0.0626654 0.108540i
\(334\) 434604. 752756.i 0.213171 0.369223i
\(335\) −112470. −0.0547551
\(336\) 0 0
\(337\) −1.56571e6 −0.750993 −0.375496 0.926824i \(-0.622528\pi\)
−0.375496 + 0.926824i \(0.622528\pi\)
\(338\) 117624. 203731.i 0.0560021 0.0969985i
\(339\) −177093. 306734.i −0.0836955 0.144965i
\(340\) −83520.0 144661.i −0.0391826 0.0678662i
\(341\) −2.09557e6 + 3.62963e6i −0.975924 + 1.69035i
\(342\) −374868. −0.173306
\(343\) 0 0
\(344\) −730048. −0.332625
\(345\) −93636.0 + 162182.i −0.0423541 + 0.0733594i
\(346\) −147960. 256274.i −0.0664437 0.115084i
\(347\) −378642. 655827.i −0.168813 0.292392i 0.769190 0.639020i \(-0.220660\pi\)
−0.938003 + 0.346628i \(0.887327\pi\)
\(348\) 242784. 420514.i 0.107466 0.186137i
\(349\) 455638. 0.200243 0.100121 0.994975i \(-0.468077\pi\)
0.100121 + 0.994975i \(0.468077\pi\)
\(350\) 0 0
\(351\) −407511. −0.176552
\(352\) 340992. 590615.i 0.146686 0.254067i
\(353\) −1.81569e6 3.14487e6i −0.775543 1.34328i −0.934489 0.355992i \(-0.884143\pi\)
0.158946 0.987287i \(-0.449190\pi\)
\(354\) −369792. 640499.i −0.156837 0.271650i
\(355\) 114678. 198628.i 0.0482958 0.0836508i
\(356\) 289920. 0.121242
\(357\) 0 0
\(358\) 3.15746e6 1.30206
\(359\) 2.01242e6 3.48561e6i 0.824104 1.42739i −0.0784980 0.996914i \(-0.525012\pi\)
0.902602 0.430476i \(-0.141654\pi\)
\(360\) −15552.0 26936.9i −0.00632456 0.0109545i
\(361\) 568725. + 985061.i 0.229686 + 0.397828i
\(362\) −955478. + 1.65494e6i −0.383221 + 0.663758i
\(363\) −2.54254e6 −1.01275
\(364\) 0 0
\(365\) −423534. −0.166401
\(366\) 83340.0 144349.i 0.0325200 0.0563263i
\(367\) 1.28894e6 + 2.23251e6i 0.499536 + 0.865222i 1.00000 0.000535822i \(-0.000170558\pi\)
−0.500464 + 0.865757i \(0.666837\pi\)
\(368\) 443904. + 768864.i 0.170871 + 0.295958i
\(369\) −197073. + 341340.i −0.0753462 + 0.130503i
\(370\) 75144.0 0.0285358
\(371\) 0 0
\(372\) 906192. 0.339518
\(373\) 1.26566e6 2.19220e6i 0.471028 0.815844i −0.528423 0.848981i \(-0.677216\pi\)
0.999451 + 0.0331372i \(0.0105498\pi\)
\(374\) 2.31768e6 + 4.01434e6i 0.856790 + 1.48400i
\(375\) −167778. 290600.i −0.0616108 0.106713i
\(376\) 73920.0 128033.i 0.0269645 0.0467039i
\(377\) 1.88495e6 0.683040
\(378\) 0 0
\(379\) −3.06677e6 −1.09669 −0.548344 0.836253i \(-0.684742\pi\)
−0.548344 + 0.836253i \(0.684742\pi\)
\(380\) 55536.0 96191.2i 0.0197295 0.0341725i
\(381\) 1.42692e6 + 2.47150e6i 0.503601 + 0.872263i
\(382\) −717948. 1.24352e6i −0.251730 0.436009i
\(383\) −1.96260e6 + 3.39932e6i −0.683652 + 1.18412i 0.290207 + 0.956964i \(0.406276\pi\)
−0.973859 + 0.227155i \(0.927057\pi\)
\(384\) −147456. −0.0510310
\(385\) 0 0
\(386\) −727732. −0.248601
\(387\) 461984. 800179.i 0.156801 0.271587i
\(388\) 998032. + 1.72864e6i 0.336562 + 0.582943i
\(389\) 2.01334e6 + 3.48722e6i 0.674597 + 1.16844i 0.976587 + 0.215125i \(0.0690158\pi\)
−0.301990 + 0.953311i \(0.597651\pi\)
\(390\) 60372.0 104567.i 0.0200990 0.0348125i
\(391\) −6.03432e6 −1.99612
\(392\) 0 0
\(393\) −1.39347e6 −0.455110
\(394\) −1.43585e6 + 2.48696e6i −0.465981 + 0.807102i
\(395\) 186879. + 323684.i 0.0602654 + 0.104383i
\(396\) 431568. + 747498.i 0.138297 + 0.239537i
\(397\) 2.28720e6 3.96155e6i 0.728329 1.26150i −0.229260 0.973365i \(-0.573630\pi\)
0.957589 0.288138i \(-0.0930362\pi\)
\(398\) −812384. −0.257071
\(399\) 0 0
\(400\) −790784. −0.247120
\(401\) 1.13472e6 1.96539e6i 0.352393 0.610363i −0.634275 0.773108i \(-0.718701\pi\)
0.986668 + 0.162744i \(0.0520346\pi\)
\(402\) −337410. 584411.i −0.104134 0.180365i
\(403\) 1.75889e6 + 3.04649e6i 0.539482 + 0.934410i
\(404\) −747120. + 1.29405e6i −0.227739 + 0.394455i
\(405\) 39366.0 0.0119257
\(406\) 0 0
\(407\) −2.08525e6 −0.623981
\(408\) 501120. 867965.i 0.149036 0.258138i
\(409\) −2.02298e6 3.50391e6i −0.597976 1.03572i −0.993120 0.117105i \(-0.962639\pi\)
0.395144 0.918619i \(-0.370695\pi\)
\(410\) −58392.0 101138.i −0.0171551 0.0297135i
\(411\) 302994. 524801.i 0.0884768 0.153246i
\(412\) 2.68370e6 0.778915
\(413\) 0 0
\(414\) −1.12363e6 −0.322198
\(415\) 239454. 414746.i 0.0682499 0.118212i
\(416\) −286208. 495727.i −0.0810865 0.140446i
\(417\) 1.64347e6 + 2.84657e6i 0.462829 + 0.801644i
\(418\) −1.54112e6 + 2.66931e6i −0.431417 + 0.747236i
\(419\) 3.91281e6 1.08881 0.544407 0.838821i \(-0.316755\pi\)
0.544407 + 0.838821i \(0.316755\pi\)
\(420\) 0 0
\(421\) −2.78086e6 −0.764671 −0.382335 0.924024i \(-0.624880\pi\)
−0.382335 + 0.924024i \(0.624880\pi\)
\(422\) −2.34196e6 + 4.05639e6i −0.640174 + 1.10881i
\(423\) 93555.0 + 162042.i 0.0254224 + 0.0440328i
\(424\) 905472. + 1.56832e6i 0.244602 + 0.423663i
\(425\) 2.68743e6 4.65477e6i 0.721714 1.25004i
\(426\) 1.37614e6 0.367398
\(427\) 0 0
\(428\) 1.10688e6 0.292073
\(429\) −1.67532e6 + 2.90174e6i −0.439496 + 0.761230i
\(430\) 136884. + 237090.i 0.0357011 + 0.0618361i
\(431\) 2.19104e6 + 3.79498e6i 0.568141 + 0.984049i 0.996750 + 0.0805589i \(0.0256705\pi\)
−0.428609 + 0.903490i \(0.640996\pi\)
\(432\) 93312.0 161621.i 0.0240563 0.0416667i
\(433\) −1.24946e6 −0.320261 −0.160130 0.987096i \(-0.551191\pi\)
−0.160130 + 0.987096i \(0.551191\pi\)
\(434\) 0 0
\(435\) −182088. −0.0461379
\(436\) 1.75647e6 3.04230e6i 0.442512 0.766453i
\(437\) −2.00624e6 3.47491e6i −0.502550 0.870441i
\(438\) −1.27060e6 2.20075e6i −0.316464 0.548132i
\(439\) −3.37210e6 + 5.84066e6i −0.835102 + 1.44644i 0.0588449 + 0.998267i \(0.481258\pi\)
−0.893947 + 0.448172i \(0.852075\pi\)
\(440\) −255744. −0.0629758
\(441\) 0 0
\(442\) 3.89064e6 0.947252
\(443\) −239448. + 414736.i −0.0579698 + 0.100407i −0.893554 0.448956i \(-0.851796\pi\)
0.835584 + 0.549362i \(0.185129\pi\)
\(444\) 225432. + 390460.i 0.0542698 + 0.0939980i
\(445\) −54360.0 94154.3i −0.0130131 0.0225393i
\(446\) 2.49270e6 4.31749e6i 0.593381 1.02777i
\(447\) 1.51254e6 0.358045
\(448\) 0 0
\(449\) 724506. 0.169600 0.0848001 0.996398i \(-0.472975\pi\)
0.0848001 + 0.996398i \(0.472975\pi\)
\(450\) 500418. 866749.i 0.116493 0.201773i
\(451\) 1.62038e6 + 2.80658e6i 0.375124 + 0.649734i
\(452\) 314832. + 545305.i 0.0724824 + 0.125543i
\(453\) 690912. 1.19669e6i 0.158189 0.273992i
\(454\) 3.67577e6 0.836967
\(455\) 0 0
\(456\) 666432. 0.150087
\(457\) 1.16978e6 2.02612e6i 0.262008 0.453811i −0.704768 0.709438i \(-0.748949\pi\)
0.966775 + 0.255627i \(0.0822820\pi\)
\(458\) 2.40750e6 + 4.16991e6i 0.536293 + 0.928887i
\(459\) 634230. + 1.09852e6i 0.140513 + 0.243375i
\(460\) 166464. 288324.i 0.0366797 0.0635311i
\(461\) −2.98247e6 −0.653617 −0.326809 0.945091i \(-0.605973\pi\)
−0.326809 + 0.945091i \(0.605973\pi\)
\(462\) 0 0
\(463\) 4.28423e6 0.928795 0.464398 0.885627i \(-0.346271\pi\)
0.464398 + 0.885627i \(0.346271\pi\)
\(464\) −431616. + 747581.i −0.0930685 + 0.161199i
\(465\) −169911. 294294.i −0.0364409 0.0631175i
\(466\) 1.83812e6 + 3.18372e6i 0.392112 + 0.679158i
\(467\) −2.87018e6 + 4.97129e6i −0.608998 + 1.05482i 0.382407 + 0.923994i \(0.375095\pi\)
−0.991406 + 0.130822i \(0.958238\pi\)
\(468\) 724464. 0.152898
\(469\) 0 0
\(470\) −55440.0 −0.0115765
\(471\) −910881. + 1.57769e6i −0.189195 + 0.327695i
\(472\) 657408. + 1.13866e6i 0.135825 + 0.235256i
\(473\) −3.79853e6 6.57925e6i −0.780662 1.35215i
\(474\) −1.12127e6 + 1.94210e6i −0.229227 + 0.397033i
\(475\) 3.57397e6 0.726804
\(476\) 0 0
\(477\) −2.29198e6 −0.461226
\(478\) 1.25068e6 2.16623e6i 0.250366 0.433646i
\(479\) 1.32526e6 + 2.29541e6i 0.263913 + 0.457111i 0.967278 0.253718i \(-0.0816534\pi\)
−0.703365 + 0.710829i \(0.748320\pi\)
\(480\) 27648.0 + 47887.7i 0.00547723 + 0.00948683i
\(481\) −875114. + 1.51574e6i −0.172465 + 0.298719i
\(482\) −5.01529e6 −0.983282
\(483\) 0 0
\(484\) 4.52008e6 0.877067
\(485\) 374262. 648241.i 0.0722473 0.125136i
\(486\) 118098. + 204552.i 0.0226805 + 0.0392837i
\(487\) −1.40277e6 2.42967e6i −0.268018 0.464221i 0.700332 0.713817i \(-0.253035\pi\)
−0.968350 + 0.249597i \(0.919702\pi\)
\(488\) −148160. + 256621.i −0.0281632 + 0.0487800i
\(489\) 1.61788e6 0.305966
\(490\) 0 0
\(491\) −4.68450e6 −0.876919 −0.438460 0.898751i \(-0.644476\pi\)
−0.438460 + 0.898751i \(0.644476\pi\)
\(492\) 350352. 606827.i 0.0652517 0.113019i
\(493\) −2.93364e6 5.08121e6i −0.543613 0.941565i
\(494\) 1.29353e6 + 2.24045e6i 0.238483 + 0.413065i
\(495\) 161838. 280312.i 0.0296871 0.0514195i
\(496\) −1.61101e6 −0.294031
\(497\) 0 0
\(498\) 2.87345e6 0.519194
\(499\) −737876. + 1.27804e6i −0.132658 + 0.229770i −0.924700 0.380696i \(-0.875684\pi\)
0.792043 + 0.610466i \(0.209018\pi\)
\(500\) 298272. + 516622.i 0.0533565 + 0.0924162i
\(501\) −977859. 1.69370e6i −0.174053 0.301469i
\(502\) −3.02666e6 + 5.24234e6i −0.536050 + 0.928465i
\(503\) −63606.0 −0.0112093 −0.00560465 0.999984i \(-0.501784\pi\)
−0.00560465 + 0.999984i \(0.501784\pi\)
\(504\) 0 0
\(505\) 560340. 0.0977740
\(506\) −4.61938e6 + 8.00099e6i −0.802060 + 1.38921i
\(507\) −264654. 458394.i −0.0457255 0.0791989i
\(508\) −2.53674e6 4.39377e6i −0.436131 0.755402i
\(509\) 3.10578e6 5.37937e6i 0.531345 0.920317i −0.467986 0.883736i \(-0.655020\pi\)
0.999331 0.0365806i \(-0.0116466\pi\)
\(510\) −375840. −0.0639849
\(511\) 0 0
\(512\) 262144. 0.0441942
\(513\) −421726. + 730452.i −0.0707518 + 0.122546i
\(514\) −3.10986e6 5.38644e6i −0.519198 0.899277i
\(515\) −503193. 871556.i −0.0836020 0.144803i
\(516\) −821304. + 1.42254e6i −0.135794 + 0.235202i
\(517\) 1.53846e6 0.253139
\(518\) 0 0
\(519\) −665820. −0.108502
\(520\) −107328. + 185898.i −0.0174062 + 0.0301485i
\(521\) 706026. + 1.22287e6i 0.113953 + 0.197373i 0.917361 0.398057i \(-0.130315\pi\)
−0.803408 + 0.595429i \(0.796982\pi\)
\(522\) −546264. 946157.i −0.0877458 0.151980i
\(523\) 2.61467e6 4.52875e6i 0.417987 0.723976i −0.577749 0.816214i \(-0.696069\pi\)
0.995737 + 0.0922386i \(0.0294023\pi\)
\(524\) 2.47728e6 0.394137
\(525\) 0 0
\(526\) −4.46126e6 −0.703062
\(527\) 5.47491e6 9.48282e6i 0.858718 1.48734i
\(528\) −767232. 1.32888e6i −0.119768 0.207445i
\(529\) −2.79534e6 4.84167e6i −0.434306 0.752240i
\(530\) 339552. 588121.i 0.0525069 0.0909447i
\(531\) −1.66406e6 −0.256114
\(532\) 0 0
\(533\) 2.72009e6 0.414730
\(534\) 326160. 564926.i 0.0494968 0.0857311i
\(535\) −207540. 359470.i −0.0313485 0.0542973i
\(536\) 599840. + 1.03895e6i 0.0901827 + 0.156201i
\(537\) 3.55215e6 6.15250e6i 0.531564 0.920695i
\(538\) −142680. −0.0212524
\(539\) 0 0
\(540\) −69984.0 −0.0103280
\(541\) −2.20686e6 + 3.82240e6i −0.324177 + 0.561491i −0.981345 0.192253i \(-0.938421\pi\)
0.657169 + 0.753744i \(0.271754\pi\)
\(542\) −585536. 1.01418e6i −0.0856161 0.148291i
\(543\) 2.14983e6 + 3.72361e6i 0.312899 + 0.541956i
\(544\) −890880. + 1.54305e6i −0.129069 + 0.223554i
\(545\) −1.31735e6 −0.189981
\(546\) 0 0
\(547\) −1.19038e7 −1.70105 −0.850523 0.525938i \(-0.823714\pi\)
−0.850523 + 0.525938i \(0.823714\pi\)
\(548\) −538656. + 932980.i −0.0766232 + 0.132715i
\(549\) −187515. 324786.i −0.0265525 0.0459903i
\(550\) −4.11455e6 7.12661e6i −0.579983 1.00456i
\(551\) 1.95070e6 3.37871e6i 0.273723 0.474103i
\(552\) 1.99757e6 0.279032
\(553\) 0 0
\(554\) 3.45285e6 0.477973
\(555\) 84537.0 146422.i 0.0116497 0.0201779i
\(556\) −2.92172e6 5.06057e6i −0.400822 0.694244i
\(557\) −6.45665e6 1.11832e7i −0.881798 1.52732i −0.849340 0.527847i \(-0.823000\pi\)
−0.0324587 0.999473i \(-0.510334\pi\)
\(558\) 1.01947e6 1.76577e6i 0.138608 0.240076i
\(559\) −6.37651e6 −0.863085
\(560\) 0 0
\(561\) 1.04296e7 1.39913
\(562\) −2.94221e6 + 5.09605e6i −0.392946 + 0.680602i
\(563\) −5.68492e6 9.84657e6i −0.755881 1.30922i −0.944935 0.327257i \(-0.893876\pi\)
0.189055 0.981967i \(-0.439458\pi\)
\(564\) −166320. 288075.i −0.0220164 0.0381336i
\(565\) 118062. 204489.i 0.0155593 0.0269494i
\(566\) −2.75536e6 −0.361525
\(567\) 0 0
\(568\) −2.44646e6 −0.318176
\(569\) 2.84898e6 4.93457e6i 0.368900 0.638953i −0.620494 0.784211i \(-0.713068\pi\)
0.989394 + 0.145258i \(0.0464013\pi\)
\(570\) −124956. 216430.i −0.0161091 0.0279017i
\(571\) 3.52110e6 + 6.09873e6i 0.451948 + 0.782797i 0.998507 0.0546236i \(-0.0173959\pi\)
−0.546559 + 0.837421i \(0.684063\pi\)
\(572\) 2.97835e6 5.15866e6i 0.380615 0.659245i
\(573\) −3.23077e6 −0.411073
\(574\) 0 0
\(575\) 1.07127e7 1.35122
\(576\) −165888. + 287326.i −0.0208333 + 0.0360844i
\(577\) −1.29098e6 2.23605e6i −0.161429 0.279603i 0.773952 0.633244i \(-0.218277\pi\)
−0.935381 + 0.353641i \(0.884944\pi\)
\(578\) −3.21549e6 5.56939e6i −0.400338 0.693406i
\(579\) −818698. + 1.41803e6i −0.101491 + 0.175788i
\(580\) 323712. 0.0399566
\(581\) 0 0
\(582\) 4.49114e6 0.549604
\(583\) −9.42257e6 + 1.63204e7i −1.14815 + 1.98865i
\(584\) 2.25885e6 + 3.91244e6i 0.274066 + 0.474696i
\(585\) −135837. 235277.i −0.0164107 0.0284243i
\(586\) 1.44566e6 2.50396e6i 0.173910 0.301220i
\(587\) −4.69459e6 −0.562345 −0.281172 0.959657i \(-0.590723\pi\)
−0.281172 + 0.959657i \(0.590723\pi\)
\(588\) 0 0
\(589\) 7.28100e6 0.864774
\(590\) 246528. 426999.i 0.0291566 0.0505006i
\(591\) 3.23066e6 + 5.59566e6i 0.380472 + 0.658996i
\(592\) −400768. 694151.i −0.0469990 0.0814047i
\(593\) 6.71175e6 1.16251e7i 0.783789 1.35756i −0.145931 0.989295i \(-0.546618\pi\)
0.929720 0.368268i \(-0.120049\pi\)
\(594\) 1.94206e6 0.225837
\(595\) 0 0
\(596\) −2.68896e6 −0.310076
\(597\) −913932. + 1.58298e6i −0.104949 + 0.181777i
\(598\) 3.87722e6 + 6.71555e6i 0.443372 + 0.767942i
\(599\) −2.52301e6 4.36997e6i −0.287310 0.497636i 0.685856 0.727737i \(-0.259428\pi\)
−0.973167 + 0.230101i \(0.926094\pi\)
\(600\) −889632. + 1.54089e6i −0.100886 + 0.174740i
\(601\) 1.06391e7 1.20148 0.600742 0.799443i \(-0.294872\pi\)
0.600742 + 0.799443i \(0.294872\pi\)
\(602\) 0 0
\(603\) −1.51834e6 −0.170050
\(604\) −1.22829e6 + 2.12746e6i −0.136996 + 0.237284i
\(605\) −847515. 1.46794e6i −0.0941367 0.163050i
\(606\) 1.68102e6 + 2.91161e6i 0.185948 + 0.322071i
\(607\) 708041. 1.22636e6i 0.0779986 0.135098i −0.824388 0.566026i \(-0.808480\pi\)
0.902386 + 0.430928i \(0.141814\pi\)
\(608\) −1.18477e6 −0.129979
\(609\) 0 0
\(610\) 111120. 0.0120912
\(611\) 645645. 1.11829e6i 0.0699666 0.121186i
\(612\) −1.12752e6 1.95292e6i −0.121687 0.210769i
\(613\) −4.73152e6 8.19523e6i −0.508568 0.880866i −0.999951 0.00992215i \(-0.996842\pi\)
0.491383 0.870944i \(-0.336492\pi\)
\(614\) −40250.0 + 69715.0i −0.00430869 + 0.00746286i
\(615\) −262764. −0.0280142
\(616\) 0 0
\(617\) 1.29388e7 1.36830 0.684148 0.729343i \(-0.260174\pi\)
0.684148 + 0.729343i \(0.260174\pi\)
\(618\) 3.01916e6 5.22934e6i 0.317991 0.550776i
\(619\) −1.90188e6 3.29415e6i −0.199506 0.345555i 0.748862 0.662726i \(-0.230600\pi\)
−0.948368 + 0.317171i \(0.897267\pi\)
\(620\) 302064. + 523190.i 0.0315587 + 0.0546614i
\(621\) −1.26409e6 + 2.18946e6i −0.131537 + 0.227829i
\(622\) 6.97423e6 0.722804
\(623\) 0 0
\(624\) −1.28794e6 −0.132414
\(625\) −4.71471e6 + 8.16612e6i −0.482786 + 0.836210i
\(626\) 3.61709e6 + 6.26498e6i 0.368912 + 0.638975i
\(627\) 3.46753e6 + 6.00594e6i 0.352250 + 0.610115i
\(628\) 1.61934e6 2.80479e6i 0.163848 0.283792i
\(629\) 5.44794e6 0.549042
\(630\) 0 0
\(631\) −9.17498e6 −0.917343 −0.458671 0.888606i \(-0.651674\pi\)
−0.458671 + 0.888606i \(0.651674\pi\)
\(632\) 1.99338e6 3.45263e6i 0.198516 0.343841i
\(633\) 5.26941e6 + 9.12689e6i 0.522700 + 0.905343i
\(634\) −2.04710e6 3.54569e6i −0.202263 0.350330i
\(635\) −951279. + 1.64766e6i −0.0936211 + 0.162156i
\(636\) 4.07462e6 0.399434
\(637\) 0 0
\(638\) −8.98301e6 −0.873716
\(639\) 1.54815e6 2.68148e6i 0.149990 0.259790i
\(640\) −49152.0 85133.8i −0.00474342 0.00821584i
\(641\) −5.12269e6 8.87275e6i −0.492439 0.852930i 0.507523 0.861638i \(-0.330561\pi\)
−0.999962 + 0.00870851i \(0.997228\pi\)
\(642\) 1.24524e6 2.15682e6i 0.119238 0.206527i
\(643\) 5.72346e6 0.545922 0.272961 0.962025i \(-0.411997\pi\)
0.272961 + 0.962025i \(0.411997\pi\)
\(644\) 0 0
\(645\) 615978. 0.0582996
\(646\) 4.02636e6 6.97386e6i 0.379604 0.657494i
\(647\) −4.99397e6 8.64981e6i −0.469013 0.812355i 0.530359 0.847773i \(-0.322057\pi\)
−0.999373 + 0.0354179i \(0.988724\pi\)
\(648\) −209952. 363648.i −0.0196419 0.0340207i
\(649\) −6.84115e6 + 1.18492e7i −0.637555 + 1.10428i
\(650\) −6.90700e6 −0.641219
\(651\) 0 0
\(652\) −2.87622e6 −0.264974
\(653\) 599439. 1.03826e6i 0.0550126 0.0952846i −0.837208 0.546885i \(-0.815813\pi\)
0.892220 + 0.451601i \(0.149147\pi\)
\(654\) −3.95206e6 6.84517e6i −0.361309 0.625806i
\(655\) −464490. 804520.i −0.0423032 0.0732713i
\(656\) −622848. + 1.07880e6i −0.0565096 + 0.0978776i
\(657\) −5.71771e6 −0.516783
\(658\) 0 0
\(659\) 1.18065e7 1.05903 0.529516 0.848300i \(-0.322374\pi\)
0.529516 + 0.848300i \(0.322374\pi\)
\(660\) −287712. + 498332.i −0.0257098 + 0.0445306i
\(661\) 2.36020e6 + 4.08798e6i 0.210109 + 0.363919i 0.951748 0.306879i \(-0.0992848\pi\)
−0.741640 + 0.670799i \(0.765951\pi\)
\(662\) 2.01507e6 + 3.49020e6i 0.178708 + 0.309532i
\(663\) 4.37697e6 7.58113e6i 0.386714 0.669808i
\(664\) −5.10835e6 −0.449636
\(665\) 0 0
\(666\) 1.01444e6 0.0886222
\(667\) 5.84705e6 1.01274e7i 0.508888 0.881420i
\(668\) 1.73842e6 + 3.01102e6i 0.150734 + 0.261080i
\(669\) −5.60858e6 9.71435e6i −0.484493 0.839167i
\(670\) 224940. 389608.i 0.0193589 0.0335305i
\(671\) −3.08358e6 −0.264392
\(672\) 0 0
\(673\) −8.70826e6 −0.741129 −0.370564 0.928807i \(-0.620836\pi\)
−0.370564 + 0.928807i \(0.620836\pi\)
\(674\) 3.13141e6 5.42377e6i 0.265516 0.459887i
\(675\) −1.12594e6 1.95019e6i −0.0951165 0.164747i
\(676\) 470496. + 814923.i 0.0395995 + 0.0685883i
\(677\) 2.55553e6 4.42630e6i 0.214293 0.371167i −0.738760 0.673968i \(-0.764588\pi\)
0.953054 + 0.302801i \(0.0979218\pi\)
\(678\) 1.41674e6 0.118363
\(679\) 0 0
\(680\) 668160. 0.0554126
\(681\) 4.13524e6 7.16244e6i 0.341690 0.591825i
\(682\) −8.38228e6 1.45185e7i −0.690083 1.19526i
\(683\) 8.85989e6 + 1.53458e7i 0.726736 + 1.25874i 0.958256 + 0.285913i \(0.0922968\pi\)
−0.231520 + 0.972830i \(0.574370\pi\)
\(684\) 749736. 1.29858e6i 0.0612729 0.106128i
\(685\) 403992. 0.0328962
\(686\) 0 0
\(687\) 1.08337e7 0.875763
\(688\) 1.46010e6 2.52896e6i 0.117601 0.203691i
\(689\) 7.90873e6 + 1.36983e7i 0.634686 + 1.09931i
\(690\) −374544. 648729.i −0.0299488 0.0518729i
\(691\) −1.12997e7 + 1.95716e7i −0.900265 + 1.55931i −0.0731160 + 0.997323i \(0.523294\pi\)
−0.827149 + 0.561982i \(0.810039\pi\)
\(692\) 1.18368e6 0.0939656
\(693\) 0 0
\(694\) 3.02914e6 0.238737
\(695\) −1.09564e6 + 1.89771e6i −0.0860415 + 0.149028i
\(696\) 971136. + 1.68206e6i 0.0759901 + 0.131619i
\(697\) −4.23342e6 7.33250e6i −0.330073 0.571702i
\(698\) −911276. + 1.57838e6i −0.0707964 + 0.122623i
\(699\) 8.27156e6 0.640316
\(700\) 0 0
\(701\) −818148. −0.0628835 −0.0314418 0.999506i \(-0.510010\pi\)
−0.0314418 + 0.999506i \(0.510010\pi\)
\(702\) 815022. 1.41166e6i 0.0624204 0.108115i
\(703\) 1.81128e6 + 3.13724e6i 0.138229 + 0.239419i
\(704\) 1.36397e6 + 2.36246e6i 0.103722 + 0.179652i
\(705\) −62370.0 + 108028.i −0.00472610 + 0.00818585i
\(706\) 1.45255e7 1.09678
\(707\) 0 0
\(708\) 2.95834e6 0.221801
\(709\) 2.54591e6 4.40965e6i 0.190208 0.329449i −0.755111 0.655597i \(-0.772417\pi\)
0.945319 + 0.326147i \(0.105751\pi\)
\(710\) 458712. + 794512.i 0.0341503 + 0.0591500i
\(711\) 2.52287e6 + 4.36973e6i 0.187163 + 0.324176i
\(712\) −579840. + 1.00431e6i −0.0428655 + 0.0742453i
\(713\) 2.18241e7 1.60773
\(714\) 0 0
\(715\) −2.23376e6 −0.163408
\(716\) −6.31493e6 + 1.09378e7i −0.460348 + 0.797345i
\(717\) −2.81402e6 4.87403e6i −0.204423 0.354071i
\(718\) 8.04967e6 + 1.39424e7i 0.582730 + 1.00932i
\(719\) −240429. + 416435.i −0.0173446 + 0.0300418i −0.874567 0.484904i \(-0.838855\pi\)
0.857223 + 0.514946i \(0.172188\pi\)
\(720\) 124416. 0.00894427
\(721\) 0 0
\(722\) −4.54980e6 −0.324825
\(723\) −5.64220e6 + 9.77258e6i −0.401423 + 0.695286i
\(724\) −3.82191e6 6.61975e6i −0.270978 0.469348i
\(725\) 5.20805e6 + 9.02061e6i 0.367985 + 0.637369i
\(726\) 5.08509e6 8.80763e6i 0.358061 0.620180i
\(727\) 1.40783e7 0.987905 0.493952 0.869489i \(-0.335552\pi\)
0.493952 + 0.869489i \(0.335552\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 847068. 1.46716e6i 0.0588317 0.101899i
\(731\) 9.92409e6 + 1.71890e7i 0.686906 + 1.18976i
\(732\) 333360. + 577396.i 0.0229951 + 0.0398287i
\(733\) 1.01966e6 1.76610e6i 0.0700964 0.121411i −0.828847 0.559475i \(-0.811003\pi\)
0.898943 + 0.438065i \(0.144336\pi\)
\(734\) −1.03115e7 −0.706450
\(735\) 0 0
\(736\) −3.55123e6 −0.241649
\(737\) −6.24209e6 + 1.08116e7i −0.423312 + 0.733199i
\(738\) −788292. 1.36536e6i −0.0532778 0.0922798i
\(739\) 8.24785e6 + 1.42857e7i 0.555558 + 0.962255i 0.997860 + 0.0653888i \(0.0208288\pi\)
−0.442302 + 0.896866i \(0.645838\pi\)
\(740\) −150288. + 260306.i −0.0100889 + 0.0174745i
\(741\) 5.82087e6 0.389441
\(742\) 0 0
\(743\) −2.38121e7 −1.58243 −0.791217 0.611536i \(-0.790552\pi\)
−0.791217 + 0.611536i \(0.790552\pi\)
\(744\) −1.81238e6 + 3.13914e6i −0.120038 + 0.207911i
\(745\) 504180. + 873265.i 0.0332809 + 0.0576442i
\(746\) 5.06266e6 + 8.76878e6i 0.333067 + 0.576889i
\(747\) 3.23263e6 5.59908e6i 0.211960 0.367126i
\(748\) −1.85414e7 −1.21168
\(749\) 0 0
\(750\) 1.34222e6 0.0871308
\(751\) −962480. + 1.66707e6i −0.0622719 + 0.107858i −0.895481 0.445101i \(-0.853168\pi\)
0.833209 + 0.552959i \(0.186501\pi\)
\(752\) 295680. + 512133.i 0.0190668 + 0.0330246i
\(753\) 6.80999e6 + 1.17953e7i 0.437683 + 0.758089i
\(754\) −3.76990e6 + 6.52965e6i −0.241491 + 0.418275i
\(755\) 921216. 0.0588158
\(756\) 0 0
\(757\) 8.98092e6 0.569615 0.284807 0.958585i \(-0.408070\pi\)
0.284807 + 0.958585i \(0.408070\pi\)
\(758\) 6.13354e6 1.06236e7i 0.387738 0.671581i
\(759\) 1.03936e7 + 1.80022e7i 0.654879 + 1.13428i
\(760\) 222144. + 384765.i 0.0139508 + 0.0241636i
\(761\) 7.29955e6 1.26432e7i 0.456914 0.791398i −0.541882 0.840454i \(-0.682288\pi\)
0.998796 + 0.0490566i \(0.0156215\pi\)
\(762\) −1.14153e7 −0.712200
\(763\) 0 0
\(764\) 5.74358e6 0.356000
\(765\) −422820. + 732346.i −0.0261217 + 0.0452442i
\(766\) −7.85040e6 1.35973e7i −0.483415 0.837299i
\(767\) 5.74205e6 + 9.94552e6i 0.352434 + 0.610434i
\(768\) 294912. 510803.i 0.0180422 0.0312500i
\(769\) −2.78381e7 −1.69755 −0.848776 0.528753i