Properties

Label 294.5.g.a
Level $294$
Weight $5$
Character orbit 294.g
Analytic conductor $30.391$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [294,5,Mod(19,294)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("294.19"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(294, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 294.g (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-18,-16,24,0,0,0,54,-96] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.3907691467\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{3} + \beta_1) q^{2} + (3 \beta_{2} - 3) q^{3} + ( - 8 \beta_{2} - 8) q^{4} + ( - 2 \beta_{3} + 4 \beta_{2} + \cdots + 8) q^{5} + ( - 3 \beta_{3} - 6 \beta_1) q^{6} - 8 \beta_{3} q^{8} - 27 \beta_{2} q^{9}+ \cdots + (1134 \beta_{3} + 2754) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 18 q^{3} - 16 q^{4} + 24 q^{5} + 54 q^{9} - 96 q^{10} + 204 q^{11} + 144 q^{12} - 144 q^{15} - 128 q^{16} + 480 q^{17} - 1176 q^{19} + 1344 q^{22} + 300 q^{23} - 962 q^{25} - 1824 q^{26} - 1848 q^{29}+ \cdots + 11016 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/294\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(199\)
\(\chi(n)\) \(1\) \(-\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
19.1
0.707107 + 1.22474i
−0.707107 1.22474i
0.707107 1.22474i
−0.707107 + 1.22474i
−1.41421 + 2.44949i −4.50000 + 2.59808i −4.00000 6.92820i 14.4853 + 8.36308i 14.6969i 0 22.6274 13.5000 23.3827i −40.9706 + 23.6544i
19.2 1.41421 2.44949i −4.50000 + 2.59808i −4.00000 6.92820i −2.48528 1.43488i 14.6969i 0 −22.6274 13.5000 23.3827i −7.02944 + 4.05845i
31.1 −1.41421 2.44949i −4.50000 2.59808i −4.00000 + 6.92820i 14.4853 8.36308i 14.6969i 0 22.6274 13.5000 + 23.3827i −40.9706 23.6544i
31.2 1.41421 + 2.44949i −4.50000 2.59808i −4.00000 + 6.92820i −2.48528 + 1.43488i 14.6969i 0 −22.6274 13.5000 + 23.3827i −7.02944 4.05845i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 294.5.g.a 4
7.b odd 2 1 294.5.g.b 4
7.c even 3 1 42.5.c.a 4
7.c even 3 1 294.5.g.b 4
7.d odd 6 1 42.5.c.a 4
7.d odd 6 1 inner 294.5.g.a 4
21.g even 6 1 126.5.c.b 4
21.h odd 6 1 126.5.c.b 4
28.f even 6 1 336.5.f.a 4
28.g odd 6 1 336.5.f.a 4
35.i odd 6 1 1050.5.f.a 4
35.j even 6 1 1050.5.f.a 4
35.k even 12 2 1050.5.h.a 8
35.l odd 12 2 1050.5.h.a 8
84.j odd 6 1 1008.5.f.f 4
84.n even 6 1 1008.5.f.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.5.c.a 4 7.c even 3 1
42.5.c.a 4 7.d odd 6 1
126.5.c.b 4 21.g even 6 1
126.5.c.b 4 21.h odd 6 1
294.5.g.a 4 1.a even 1 1 trivial
294.5.g.a 4 7.d odd 6 1 inner
294.5.g.b 4 7.b odd 2 1
294.5.g.b 4 7.c even 3 1
336.5.f.a 4 28.f even 6 1
336.5.f.a 4 28.g odd 6 1
1008.5.f.f 4 84.j odd 6 1
1008.5.f.f 4 84.n even 6 1
1050.5.f.a 4 35.i odd 6 1
1050.5.f.a 4 35.j even 6 1
1050.5.h.a 8 35.k even 12 2
1050.5.h.a 8 35.l odd 12 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} - 24T_{5}^{3} + 144T_{5}^{2} + 1152T_{5} + 2304 \) acting on \(S_{5}^{\mathrm{new}}(294, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 8T^{2} + 64 \) Copy content Toggle raw display
$3$ \( (T^{2} + 9 T + 27)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} - 24 T^{3} + \cdots + 2304 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} - 204 T^{3} + \cdots + 13749264 \) Copy content Toggle raw display
$13$ \( T^{4} + 103968 T^{2} + 300259584 \) Copy content Toggle raw display
$17$ \( T^{4} - 480 T^{3} + \cdots + 282240000 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 11903682816 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 5014339344 \) Copy content Toggle raw display
$29$ \( (T^{2} + 924 T - 100188)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 3537890141184 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 683208046096 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 25205540742144 \) Copy content Toggle raw display
$43$ \( (T^{2} - 308 T - 1553372)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 25374512185344 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 15522622895376 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 997521767610624 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 363850436618496 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 4223337365776 \) Copy content Toggle raw display
$71$ \( (T^{2} + 8076 T + 16079652)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 18235222953984 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 4830834743056 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 28\!\cdots\!96 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 36\!\cdots\!36 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 425280742096896 \) Copy content Toggle raw display
show more
show less