Defining parameters
| Level: | \( N \) | \(=\) | \( 294 = 2 \cdot 3 \cdot 7^{2} \) |
| Weight: | \( k \) | \(=\) | \( 5 \) |
| Character orbit: | \([\chi]\) | \(=\) | 294.g (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Newform subspaces: | \( 8 \) | ||
| Sturm bound: | \(280\) | ||
| Trace bound: | \(10\) | ||
| Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{5}(294, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 480 | 52 | 428 |
| Cusp forms | 416 | 52 | 364 |
| Eisenstein series | 64 | 0 | 64 |
Trace form
Decomposition of \(S_{5}^{\mathrm{new}}(294, [\chi])\) into newform subspaces
Decomposition of \(S_{5}^{\mathrm{old}}(294, [\chi])\) into lower level spaces
\( S_{5}^{\mathrm{old}}(294, [\chi]) \simeq \) \(S_{5}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(98, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(147, [\chi])\)\(^{\oplus 2}\)