Properties

Label 294.5.g
Level $294$
Weight $5$
Character orbit 294.g
Rep. character $\chi_{294}(19,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $52$
Newform subspaces $8$
Sturm bound $280$
Trace bound $10$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 294.g (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 8 \)
Sturm bound: \(280\)
Trace bound: \(10\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(294, [\chi])\).

Total New Old
Modular forms 480 52 428
Cusp forms 416 52 364
Eisenstein series 64 0 64

Trace form

\( 52 q - 18 q^{3} - 208 q^{4} + 108 q^{5} + 702 q^{9} - 96 q^{10} + 204 q^{11} + 144 q^{12} - 144 q^{15} - 1664 q^{16} - 864 q^{17} - 42 q^{19} - 256 q^{22} + 1200 q^{23} + 938 q^{25} - 1152 q^{26} + 4752 q^{29}+ \cdots + 11016 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(294, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
294.5.g.a 294.g 7.d $4$ $30.391$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 42.5.c.a \(0\) \(-18\) \(24\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\beta _{1}+\beta _{3})q^{2}+(-3+3\beta _{2})q^{3}+(-8+\cdots)q^{4}+\cdots\)
294.5.g.b 294.g 7.d $4$ $30.391$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 42.5.c.a \(0\) \(18\) \(-24\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\beta _{1}-\beta _{3})q^{2}+(3-3\beta _{2})q^{3}+(-8+\cdots)q^{4}+\cdots\)
294.5.g.c 294.g 7.d $4$ $30.391$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 42.5.g.a \(0\) \(18\) \(66\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{1}q^{2}+(6+3\beta _{2})q^{3}+8\beta _{2}q^{4}+(11+\cdots)q^{5}+\cdots\)
294.5.g.d 294.g 7.d $8$ $30.391$ 8.0.339738624.1 None 294.5.c.c \(0\) \(-36\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q-2\beta _{5}q^{2}+(-3+3\beta _{4})q^{3}+(-8-8\beta _{4}+\cdots)q^{4}+\cdots\)
294.5.g.e 294.g 7.d $8$ $30.391$ 8.0.339738624.1 None 294.5.c.b \(0\) \(-36\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-2\beta _{2}-2\beta _{5})q^{2}+(-6-3\beta _{4})q^{3}+\cdots\)
294.5.g.f 294.g 7.d $8$ $30.391$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 42.5.g.b \(0\) \(-36\) \(42\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{3}q^{2}+(-6-3\beta _{1})q^{3}+8\beta _{1}q^{4}+\cdots\)
294.5.g.g 294.g 7.d $8$ $30.391$ 8.0.339738624.1 None 294.5.c.b \(0\) \(36\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(2\beta _{2}+2\beta _{5})q^{2}+(6+3\beta _{4})q^{3}+8\beta _{4}q^{4}+\cdots\)
294.5.g.h 294.g 7.d $8$ $30.391$ 8.0.339738624.1 None 294.5.c.c \(0\) \(36\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q-2\beta _{5}q^{2}+(3-3\beta _{4})q^{3}+(-8-8\beta _{4}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{5}^{\mathrm{old}}(294, [\chi])\) into lower level spaces

\( S_{5}^{\mathrm{old}}(294, [\chi]) \simeq \) \(S_{5}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(98, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(147, [\chi])\)\(^{\oplus 2}\)