Properties

Label 2912.2.k.g.1793.6
Level $2912$
Weight $2$
Character 2912.1793
Analytic conductor $23.252$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2912,2,Mod(1793,2912)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2912, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2912.1793"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.k (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,44,0,0,0,-4,0,0,0,8,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.2524370686\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.6179217664.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 13x^{6} + 40x^{4} + 13x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1793.6
Root \(-2.90570i\) of defining polynomial
Character \(\chi\) \(=\) 2912.1793
Dual form 2912.2.k.g.1793.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.53741 q^{3} +3.24985i q^{5} +1.00000i q^{7} +3.43845 q^{9} +5.56155i q^{11} +(1.56155 + 3.24985i) q^{13} +8.24621i q^{15} -3.12311 q^{17} -6.56155i q^{19} +2.53741i q^{21} +0.712445 q^{23} -5.56155 q^{25} +1.11252 q^{27} +5.43845 q^{29} -1.00000i q^{31} +14.1119i q^{33} -3.24985 q^{35} -3.96230i q^{37} +(3.96230 + 8.24621i) q^{39} -2.53741i q^{41} -8.32467 q^{43} +11.1745i q^{45} +12.3693i q^{47} -1.00000 q^{49} -7.92460 q^{51} +8.56155 q^{53} -18.0742 q^{55} -16.6493i q^{57} -15.1231i q^{59} -0.438447 q^{61} +3.43845i q^{63} +(-10.5616 + 5.07482i) q^{65} +0.684658i q^{67} +1.80776 q^{69} -6.24621i q^{71} +4.36237i q^{73} -14.1119 q^{75} -5.56155 q^{77} -5.78726 q^{79} -7.49242 q^{81} +3.43845i q^{83} -10.1496i q^{85} +13.7996 q^{87} +3.24985i q^{89} +(-3.24985 + 1.56155i) q^{91} -2.53741i q^{93} +21.3241 q^{95} +10.8621i q^{97} +19.1231i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 44 q^{9} - 4 q^{13} + 8 q^{17} - 28 q^{25} + 60 q^{29} - 8 q^{49} + 52 q^{53} - 20 q^{61} - 68 q^{65} - 68 q^{69} - 28 q^{77} + 72 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2912\mathbb{Z}\right)^\times\).

\(n\) \(1093\) \(1249\) \(2017\) \(2367\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.53741 1.46497 0.732487 0.680781i \(-0.238359\pi\)
0.732487 + 0.680781i \(0.238359\pi\)
\(4\) 0 0
\(5\) 3.24985i 1.45338i 0.686966 + 0.726690i \(0.258942\pi\)
−0.686966 + 0.726690i \(0.741058\pi\)
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) 3.43845 1.14615
\(10\) 0 0
\(11\) 5.56155i 1.67687i 0.545001 + 0.838436i \(0.316529\pi\)
−0.545001 + 0.838436i \(0.683471\pi\)
\(12\) 0 0
\(13\) 1.56155 + 3.24985i 0.433097 + 0.901347i
\(14\) 0 0
\(15\) 8.24621i 2.12916i
\(16\) 0 0
\(17\) −3.12311 −0.757464 −0.378732 0.925506i \(-0.623640\pi\)
−0.378732 + 0.925506i \(0.623640\pi\)
\(18\) 0 0
\(19\) 6.56155i 1.50532i −0.658407 0.752662i \(-0.728770\pi\)
0.658407 0.752662i \(-0.271230\pi\)
\(20\) 0 0
\(21\) 2.53741i 0.553708i
\(22\) 0 0
\(23\) 0.712445 0.148555 0.0742775 0.997238i \(-0.476335\pi\)
0.0742775 + 0.997238i \(0.476335\pi\)
\(24\) 0 0
\(25\) −5.56155 −1.11231
\(26\) 0 0
\(27\) 1.11252 0.214105
\(28\) 0 0
\(29\) 5.43845 1.00989 0.504947 0.863150i \(-0.331512\pi\)
0.504947 + 0.863150i \(0.331512\pi\)
\(30\) 0 0
\(31\) 1.00000i 0.179605i −0.995960 0.0898027i \(-0.971376\pi\)
0.995960 0.0898027i \(-0.0286236\pi\)
\(32\) 0 0
\(33\) 14.1119i 2.45657i
\(34\) 0 0
\(35\) −3.24985 −0.549326
\(36\) 0 0
\(37\) 3.96230i 0.651398i −0.945474 0.325699i \(-0.894400\pi\)
0.945474 0.325699i \(-0.105600\pi\)
\(38\) 0 0
\(39\) 3.96230 + 8.24621i 0.634476 + 1.32045i
\(40\) 0 0
\(41\) 2.53741i 0.396277i −0.980174 0.198138i \(-0.936510\pi\)
0.980174 0.198138i \(-0.0634895\pi\)
\(42\) 0 0
\(43\) −8.32467 −1.26950 −0.634750 0.772717i \(-0.718897\pi\)
−0.634750 + 0.772717i \(0.718897\pi\)
\(44\) 0 0
\(45\) 11.1745i 1.66579i
\(46\) 0 0
\(47\) 12.3693i 1.80425i 0.431474 + 0.902125i \(0.357994\pi\)
−0.431474 + 0.902125i \(0.642006\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) −7.92460 −1.10967
\(52\) 0 0
\(53\) 8.56155 1.17602 0.588010 0.808854i \(-0.299912\pi\)
0.588010 + 0.808854i \(0.299912\pi\)
\(54\) 0 0
\(55\) −18.0742 −2.43713
\(56\) 0 0
\(57\) 16.6493i 2.20526i
\(58\) 0 0
\(59\) 15.1231i 1.96886i −0.175775 0.984430i \(-0.556243\pi\)
0.175775 0.984430i \(-0.443757\pi\)
\(60\) 0 0
\(61\) −0.438447 −0.0561374 −0.0280687 0.999606i \(-0.508936\pi\)
−0.0280687 + 0.999606i \(0.508936\pi\)
\(62\) 0 0
\(63\) 3.43845i 0.433204i
\(64\) 0 0
\(65\) −10.5616 + 5.07482i −1.31000 + 0.629454i
\(66\) 0 0
\(67\) 0.684658i 0.0836443i 0.999125 + 0.0418222i \(0.0133163\pi\)
−0.999125 + 0.0418222i \(0.986684\pi\)
\(68\) 0 0
\(69\) 1.80776 0.217629
\(70\) 0 0
\(71\) 6.24621i 0.741289i −0.928775 0.370644i \(-0.879137\pi\)
0.928775 0.370644i \(-0.120863\pi\)
\(72\) 0 0
\(73\) 4.36237i 0.510577i 0.966865 + 0.255289i \(0.0821705\pi\)
−0.966865 + 0.255289i \(0.917830\pi\)
\(74\) 0 0
\(75\) −14.1119 −1.62951
\(76\) 0 0
\(77\) −5.56155 −0.633798
\(78\) 0 0
\(79\) −5.78726 −0.651118 −0.325559 0.945522i \(-0.605552\pi\)
−0.325559 + 0.945522i \(0.605552\pi\)
\(80\) 0 0
\(81\) −7.49242 −0.832491
\(82\) 0 0
\(83\) 3.43845i 0.377419i 0.982033 + 0.188709i \(0.0604304\pi\)
−0.982033 + 0.188709i \(0.939570\pi\)
\(84\) 0 0
\(85\) 10.1496i 1.10088i
\(86\) 0 0
\(87\) 13.7996 1.47947
\(88\) 0 0
\(89\) 3.24985i 0.344484i 0.985055 + 0.172242i \(0.0551011\pi\)
−0.985055 + 0.172242i \(0.944899\pi\)
\(90\) 0 0
\(91\) −3.24985 + 1.56155i −0.340677 + 0.163695i
\(92\) 0 0
\(93\) 2.53741i 0.263117i
\(94\) 0 0
\(95\) 21.3241 2.18781
\(96\) 0 0
\(97\) 10.8621i 1.10288i 0.834215 + 0.551439i \(0.185921\pi\)
−0.834215 + 0.551439i \(0.814079\pi\)
\(98\) 0 0
\(99\) 19.1231i 1.92194i
\(100\) 0 0
\(101\) −8.93087 −0.888655 −0.444327 0.895864i \(-0.646557\pi\)
−0.444327 + 0.895864i \(0.646557\pi\)
\(102\) 0 0
\(103\) 6.49971 0.640435 0.320218 0.947344i \(-0.396244\pi\)
0.320218 + 0.947344i \(0.396244\pi\)
\(104\) 0 0
\(105\) −8.24621 −0.804748
\(106\) 0 0
\(107\) 18.0742 1.74730 0.873651 0.486553i \(-0.161746\pi\)
0.873651 + 0.486553i \(0.161746\pi\)
\(108\) 0 0
\(109\) 11.5745i 1.10864i 0.832304 + 0.554319i \(0.187021\pi\)
−0.832304 + 0.554319i \(0.812979\pi\)
\(110\) 0 0
\(111\) 10.0540i 0.954281i
\(112\) 0 0
\(113\) 17.4924 1.64555 0.822774 0.568368i \(-0.192425\pi\)
0.822774 + 0.568368i \(0.192425\pi\)
\(114\) 0 0
\(115\) 2.31534i 0.215907i
\(116\) 0 0
\(117\) 5.36932 + 11.1745i 0.496394 + 1.03308i
\(118\) 0 0
\(119\) 3.12311i 0.286295i
\(120\) 0 0
\(121\) −19.9309 −1.81190
\(122\) 0 0
\(123\) 6.43845i 0.580535i
\(124\) 0 0
\(125\) 1.82496i 0.163230i
\(126\) 0 0
\(127\) −1.11252 −0.0987202 −0.0493601 0.998781i \(-0.515718\pi\)
−0.0493601 + 0.998781i \(0.515718\pi\)
\(128\) 0 0
\(129\) −21.1231 −1.85979
\(130\) 0 0
\(131\) −3.64993 −0.318896 −0.159448 0.987206i \(-0.550971\pi\)
−0.159448 + 0.987206i \(0.550971\pi\)
\(132\) 0 0
\(133\) 6.56155 0.568959
\(134\) 0 0
\(135\) 3.61553i 0.311175i
\(136\) 0 0
\(137\) 19.4991i 1.66592i −0.553331 0.832961i \(-0.686644\pi\)
0.553331 0.832961i \(-0.313356\pi\)
\(138\) 0 0
\(139\) 23.1491 1.96348 0.981739 0.190235i \(-0.0609249\pi\)
0.981739 + 0.190235i \(0.0609249\pi\)
\(140\) 0 0
\(141\) 31.3860i 2.64318i
\(142\) 0 0
\(143\) −18.0742 + 8.68466i −1.51144 + 0.726248i
\(144\) 0 0
\(145\) 17.6742i 1.46776i
\(146\) 0 0
\(147\) −2.53741 −0.209282
\(148\) 0 0
\(149\) 14.1119i 1.15609i 0.816003 + 0.578047i \(0.196185\pi\)
−0.816003 + 0.578047i \(0.803815\pi\)
\(150\) 0 0
\(151\) 4.87689i 0.396876i 0.980113 + 0.198438i \(0.0635869\pi\)
−0.980113 + 0.198438i \(0.936413\pi\)
\(152\) 0 0
\(153\) −10.7386 −0.868167
\(154\) 0 0
\(155\) 3.24985 0.261035
\(156\) 0 0
\(157\) 1.31534 0.104976 0.0524878 0.998622i \(-0.483285\pi\)
0.0524878 + 0.998622i \(0.483285\pi\)
\(158\) 0 0
\(159\) 21.7242 1.72284
\(160\) 0 0
\(161\) 0.712445i 0.0561485i
\(162\) 0 0
\(163\) 19.3693i 1.51712i −0.651602 0.758561i \(-0.725903\pi\)
0.651602 0.758561i \(-0.274097\pi\)
\(164\) 0 0
\(165\) −45.8617 −3.57033
\(166\) 0 0
\(167\) 9.43845i 0.730369i −0.930935 0.365184i \(-0.881006\pi\)
0.930935 0.365184i \(-0.118994\pi\)
\(168\) 0 0
\(169\) −8.12311 + 10.1496i −0.624854 + 0.780741i
\(170\) 0 0
\(171\) 22.5616i 1.72533i
\(172\) 0 0
\(173\) 17.3693 1.32056 0.660282 0.751017i \(-0.270437\pi\)
0.660282 + 0.751017i \(0.270437\pi\)
\(174\) 0 0
\(175\) 5.56155i 0.420414i
\(176\) 0 0
\(177\) 38.3735i 2.88433i
\(178\) 0 0
\(179\) −8.32467 −0.622215 −0.311108 0.950375i \(-0.600700\pi\)
−0.311108 + 0.950375i \(0.600700\pi\)
\(180\) 0 0
\(181\) −15.8078 −1.17498 −0.587491 0.809231i \(-0.699884\pi\)
−0.587491 + 0.809231i \(0.699884\pi\)
\(182\) 0 0
\(183\) −1.11252 −0.0822399
\(184\) 0 0
\(185\) 12.8769 0.946728
\(186\) 0 0
\(187\) 17.3693i 1.27017i
\(188\) 0 0
\(189\) 1.11252i 0.0809239i
\(190\) 0 0
\(191\) 2.84978 0.206203 0.103101 0.994671i \(-0.467123\pi\)
0.103101 + 0.994671i \(0.467123\pi\)
\(192\) 0 0
\(193\) 25.9988i 1.87144i 0.352748 + 0.935719i \(0.385247\pi\)
−0.352748 + 0.935719i \(0.614753\pi\)
\(194\) 0 0
\(195\) −26.7990 + 12.8769i −1.91912 + 0.922134i
\(196\) 0 0
\(197\) 24.2616i 1.72857i 0.503006 + 0.864283i \(0.332227\pi\)
−0.503006 + 0.864283i \(0.667773\pi\)
\(198\) 0 0
\(199\) 12.9994 0.921504 0.460752 0.887529i \(-0.347580\pi\)
0.460752 + 0.887529i \(0.347580\pi\)
\(200\) 0 0
\(201\) 1.73726i 0.122537i
\(202\) 0 0
\(203\) 5.43845i 0.381704i
\(204\) 0 0
\(205\) 8.24621 0.575940
\(206\) 0 0
\(207\) 2.44970 0.170266
\(208\) 0 0
\(209\) 36.4924 2.52423
\(210\) 0 0
\(211\) 18.4743 1.27182 0.635912 0.771762i \(-0.280624\pi\)
0.635912 + 0.771762i \(0.280624\pi\)
\(212\) 0 0
\(213\) 15.8492i 1.08597i
\(214\) 0 0
\(215\) 27.0540i 1.84507i
\(216\) 0 0
\(217\) 1.00000 0.0678844
\(218\) 0 0
\(219\) 11.0691i 0.747983i
\(220\) 0 0
\(221\) −4.87689 10.1496i −0.328055 0.682739i
\(222\) 0 0
\(223\) 5.00000i 0.334825i 0.985887 + 0.167412i \(0.0535411\pi\)
−0.985887 + 0.167412i \(0.946459\pi\)
\(224\) 0 0
\(225\) −19.1231 −1.27487
\(226\) 0 0
\(227\) 15.6155i 1.03644i −0.855248 0.518220i \(-0.826595\pi\)
0.855248 0.518220i \(-0.173405\pi\)
\(228\) 0 0
\(229\) 16.6493i 1.10022i −0.835092 0.550110i \(-0.814586\pi\)
0.835092 0.550110i \(-0.185414\pi\)
\(230\) 0 0
\(231\) −14.1119 −0.928497
\(232\) 0 0
\(233\) −7.00000 −0.458585 −0.229293 0.973358i \(-0.573641\pi\)
−0.229293 + 0.973358i \(0.573641\pi\)
\(234\) 0 0
\(235\) −40.1985 −2.62226
\(236\) 0 0
\(237\) −14.6847 −0.953871
\(238\) 0 0
\(239\) 4.87689i 0.315460i 0.987482 + 0.157730i \(0.0504176\pi\)
−0.987482 + 0.157730i \(0.949582\pi\)
\(240\) 0 0
\(241\) 6.89978i 0.444454i −0.974995 0.222227i \(-0.928667\pi\)
0.974995 0.222227i \(-0.0713326\pi\)
\(242\) 0 0
\(243\) −22.3489 −1.43368
\(244\) 0 0
\(245\) 3.24985i 0.207626i
\(246\) 0 0
\(247\) 21.3241 10.2462i 1.35682 0.651951i
\(248\) 0 0
\(249\) 8.72475i 0.552908i
\(250\) 0 0
\(251\) −5.38719 −0.340036 −0.170018 0.985441i \(-0.554383\pi\)
−0.170018 + 0.985441i \(0.554383\pi\)
\(252\) 0 0
\(253\) 3.96230i 0.249108i
\(254\) 0 0
\(255\) 25.7538i 1.61276i
\(256\) 0 0
\(257\) 23.6155 1.47310 0.736548 0.676385i \(-0.236455\pi\)
0.736548 + 0.676385i \(0.236455\pi\)
\(258\) 0 0
\(259\) 3.96230 0.246205
\(260\) 0 0
\(261\) 18.6998 1.15749
\(262\) 0 0
\(263\) 24.9740 1.53996 0.769982 0.638066i \(-0.220265\pi\)
0.769982 + 0.638066i \(0.220265\pi\)
\(264\) 0 0
\(265\) 27.8238i 1.70920i
\(266\) 0 0
\(267\) 8.24621i 0.504660i
\(268\) 0 0
\(269\) −3.31534 −0.202140 −0.101070 0.994879i \(-0.532227\pi\)
−0.101070 + 0.994879i \(0.532227\pi\)
\(270\) 0 0
\(271\) 16.6847i 1.01352i −0.862087 0.506760i \(-0.830843\pi\)
0.862087 0.506760i \(-0.169157\pi\)
\(272\) 0 0
\(273\) −8.24621 + 3.96230i −0.499083 + 0.239809i
\(274\) 0 0
\(275\) 30.9309i 1.86520i
\(276\) 0 0
\(277\) −1.68466 −0.101221 −0.0506107 0.998718i \(-0.516117\pi\)
−0.0506107 + 0.998718i \(0.516117\pi\)
\(278\) 0 0
\(279\) 3.43845i 0.205854i
\(280\) 0 0
\(281\) 20.2993i 1.21095i 0.795863 + 0.605477i \(0.207017\pi\)
−0.795863 + 0.605477i \(0.792983\pi\)
\(282\) 0 0
\(283\) 10.4620 0.621902 0.310951 0.950426i \(-0.399353\pi\)
0.310951 + 0.950426i \(0.399353\pi\)
\(284\) 0 0
\(285\) 54.1080 3.20508
\(286\) 0 0
\(287\) 2.53741 0.149779
\(288\) 0 0
\(289\) −7.24621 −0.426248
\(290\) 0 0
\(291\) 27.5616i 1.61569i
\(292\) 0 0
\(293\) 16.2493i 0.949293i −0.880177 0.474646i \(-0.842576\pi\)
0.880177 0.474646i \(-0.157424\pi\)
\(294\) 0 0
\(295\) 49.1479 2.86150
\(296\) 0 0
\(297\) 6.18734i 0.359026i
\(298\) 0 0
\(299\) 1.11252 + 2.31534i 0.0643387 + 0.133900i
\(300\) 0 0
\(301\) 8.32467i 0.479826i
\(302\) 0 0
\(303\) −22.6613 −1.30186
\(304\) 0 0
\(305\) 1.42489i 0.0815889i
\(306\) 0 0
\(307\) 4.56155i 0.260342i 0.991492 + 0.130171i \(0.0415526\pi\)
−0.991492 + 0.130171i \(0.958447\pi\)
\(308\) 0 0
\(309\) 16.4924 0.938221
\(310\) 0 0
\(311\) 16.6493 0.944098 0.472049 0.881572i \(-0.343515\pi\)
0.472049 + 0.881572i \(0.343515\pi\)
\(312\) 0 0
\(313\) 1.12311 0.0634817 0.0317408 0.999496i \(-0.489895\pi\)
0.0317408 + 0.999496i \(0.489895\pi\)
\(314\) 0 0
\(315\) −11.1745 −0.629609
\(316\) 0 0
\(317\) 11.2622i 0.632546i 0.948668 + 0.316273i \(0.102432\pi\)
−0.948668 + 0.316273i \(0.897568\pi\)
\(318\) 0 0
\(319\) 30.2462i 1.69346i
\(320\) 0 0
\(321\) 45.8617 2.55975
\(322\) 0 0
\(323\) 20.4924i 1.14023i
\(324\) 0 0
\(325\) −8.68466 18.0742i −0.481738 1.00258i
\(326\) 0 0
\(327\) 29.3693i 1.62413i
\(328\) 0 0
\(329\) −12.3693 −0.681943
\(330\) 0 0
\(331\) 14.6847i 0.807142i −0.914948 0.403571i \(-0.867769\pi\)
0.914948 0.403571i \(-0.132231\pi\)
\(332\) 0 0
\(333\) 13.6242i 0.746599i
\(334\) 0 0
\(335\) −2.22504 −0.121567
\(336\) 0 0
\(337\) 25.7386 1.40207 0.701036 0.713126i \(-0.252721\pi\)
0.701036 + 0.713126i \(0.252721\pi\)
\(338\) 0 0
\(339\) 44.3854 2.41069
\(340\) 0 0
\(341\) 5.56155 0.301175
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) 5.87497i 0.316298i
\(346\) 0 0
\(347\) −15.8492 −0.850829 −0.425415 0.904999i \(-0.639872\pi\)
−0.425415 + 0.904999i \(0.639872\pi\)
\(348\) 0 0
\(349\) 6.89978i 0.369337i −0.982801 0.184668i \(-0.940879\pi\)
0.982801 0.184668i \(-0.0591211\pi\)
\(350\) 0 0
\(351\) 1.73726 + 3.61553i 0.0927280 + 0.192983i
\(352\) 0 0
\(353\) 4.76245i 0.253480i 0.991936 + 0.126740i \(0.0404513\pi\)
−0.991936 + 0.126740i \(0.959549\pi\)
\(354\) 0 0
\(355\) 20.2993 1.07737
\(356\) 0 0
\(357\) 7.92460i 0.419414i
\(358\) 0 0
\(359\) 4.00000i 0.211112i −0.994413 0.105556i \(-0.966338\pi\)
0.994413 0.105556i \(-0.0336622\pi\)
\(360\) 0 0
\(361\) −24.0540 −1.26600
\(362\) 0 0
\(363\) −50.5728 −2.65438
\(364\) 0 0
\(365\) −14.1771 −0.742062
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 8.72475i 0.454192i
\(370\) 0 0
\(371\) 8.56155i 0.444494i
\(372\) 0 0
\(373\) −30.4924 −1.57884 −0.789419 0.613855i \(-0.789618\pi\)
−0.789419 + 0.613855i \(0.789618\pi\)
\(374\) 0 0
\(375\) 4.63068i 0.239127i
\(376\) 0 0
\(377\) 8.49242 + 17.6742i 0.437382 + 0.910266i
\(378\) 0 0
\(379\) 5.12311i 0.263156i −0.991306 0.131578i \(-0.957996\pi\)
0.991306 0.131578i \(-0.0420044\pi\)
\(380\) 0 0
\(381\) −2.82292 −0.144623
\(382\) 0 0
\(383\) 30.4384i 1.55533i 0.628678 + 0.777666i \(0.283597\pi\)
−0.628678 + 0.777666i \(0.716403\pi\)
\(384\) 0 0
\(385\) 18.0742i 0.921148i
\(386\) 0 0
\(387\) −28.6239 −1.45504
\(388\) 0 0
\(389\) 3.75379 0.190325 0.0951623 0.995462i \(-0.469663\pi\)
0.0951623 + 0.995462i \(0.469663\pi\)
\(390\) 0 0
\(391\) −2.22504 −0.112525
\(392\) 0 0
\(393\) −9.26137 −0.467174
\(394\) 0 0
\(395\) 18.8078i 0.946321i
\(396\) 0 0
\(397\) 19.8992i 0.998712i −0.866397 0.499356i \(-0.833570\pi\)
0.866397 0.499356i \(-0.166430\pi\)
\(398\) 0 0
\(399\) 16.6493 0.833510
\(400\) 0 0
\(401\) 12.9994i 0.649160i −0.945858 0.324580i \(-0.894777\pi\)
0.945858 0.324580i \(-0.105223\pi\)
\(402\) 0 0
\(403\) 3.24985 1.56155i 0.161887 0.0777865i
\(404\) 0 0
\(405\) 24.3493i 1.20993i
\(406\) 0 0
\(407\) 22.0365 1.09231
\(408\) 0 0
\(409\) 12.5993i 0.622997i 0.950247 + 0.311499i \(0.100831\pi\)
−0.950247 + 0.311499i \(0.899169\pi\)
\(410\) 0 0
\(411\) 49.4773i 2.44053i
\(412\) 0 0
\(413\) 15.1231 0.744159
\(414\) 0 0
\(415\) −11.1745 −0.548532
\(416\) 0 0
\(417\) 58.7386 2.87644
\(418\) 0 0
\(419\) −14.1119 −0.689413 −0.344707 0.938710i \(-0.612022\pi\)
−0.344707 + 0.938710i \(0.612022\pi\)
\(420\) 0 0
\(421\) 19.1868i 0.935105i 0.883965 + 0.467553i \(0.154864\pi\)
−0.883965 + 0.467553i \(0.845136\pi\)
\(422\) 0 0
\(423\) 42.5312i 2.06794i
\(424\) 0 0
\(425\) 17.3693 0.842536
\(426\) 0 0
\(427\) 0.438447i 0.0212179i
\(428\) 0 0
\(429\) −45.8617 + 22.0365i −2.21423 + 1.06393i
\(430\) 0 0
\(431\) 38.7386i 1.86597i −0.359910 0.932987i \(-0.617192\pi\)
0.359910 0.932987i \(-0.382808\pi\)
\(432\) 0 0
\(433\) 7.61553 0.365979 0.182989 0.983115i \(-0.441423\pi\)
0.182989 + 0.983115i \(0.441423\pi\)
\(434\) 0 0
\(435\) 44.8466i 2.15023i
\(436\) 0 0
\(437\) 4.67474i 0.223623i
\(438\) 0 0
\(439\) −36.1485 −1.72527 −0.862636 0.505825i \(-0.831188\pi\)
−0.862636 + 0.505825i \(0.831188\pi\)
\(440\) 0 0
\(441\) −3.43845 −0.163736
\(442\) 0 0
\(443\) −27.8238 −1.32195 −0.660974 0.750409i \(-0.729857\pi\)
−0.660974 + 0.750409i \(0.729857\pi\)
\(444\) 0 0
\(445\) −10.5616 −0.500666
\(446\) 0 0
\(447\) 35.8078i 1.69365i
\(448\) 0 0
\(449\) 14.4243i 0.680725i 0.940294 + 0.340363i \(0.110550\pi\)
−0.940294 + 0.340363i \(0.889450\pi\)
\(450\) 0 0
\(451\) 14.1119 0.664505
\(452\) 0 0
\(453\) 12.3747i 0.581413i
\(454\) 0 0
\(455\) −5.07482 10.5616i −0.237911 0.495133i
\(456\) 0 0
\(457\) 6.49971i 0.304044i 0.988377 + 0.152022i \(0.0485784\pi\)
−0.988377 + 0.152022i \(0.951422\pi\)
\(458\) 0 0
\(459\) −3.47452 −0.162177
\(460\) 0 0
\(461\) 39.7984i 1.85360i 0.375560 + 0.926798i \(0.377450\pi\)
−0.375560 + 0.926798i \(0.622550\pi\)
\(462\) 0 0
\(463\) 0.876894i 0.0407527i 0.999792 + 0.0203764i \(0.00648645\pi\)
−0.999792 + 0.0203764i \(0.993514\pi\)
\(464\) 0 0
\(465\) 8.24621 0.382409
\(466\) 0 0
\(467\) −26.7990 −1.24011 −0.620055 0.784559i \(-0.712890\pi\)
−0.620055 + 0.784559i \(0.712890\pi\)
\(468\) 0 0
\(469\) −0.684658 −0.0316146
\(470\) 0 0
\(471\) 3.33756 0.153787
\(472\) 0 0
\(473\) 46.2981i 2.12879i
\(474\) 0 0
\(475\) 36.4924i 1.67439i
\(476\) 0 0
\(477\) 29.4384 1.34789
\(478\) 0 0
\(479\) 13.3002i 0.607701i 0.952720 + 0.303851i \(0.0982723\pi\)
−0.952720 + 0.303851i \(0.901728\pi\)
\(480\) 0 0
\(481\) 12.8769 6.18734i 0.587136 0.282118i
\(482\) 0 0
\(483\) 1.80776i 0.0822561i
\(484\) 0 0
\(485\) −35.3002 −1.60290
\(486\) 0 0
\(487\) 23.3693i 1.05896i −0.848321 0.529482i \(-0.822386\pi\)
0.848321 0.529482i \(-0.177614\pi\)
\(488\) 0 0
\(489\) 49.1479i 2.22254i
\(490\) 0 0
\(491\) −2.22504 −0.100415 −0.0502073 0.998739i \(-0.515988\pi\)
−0.0502073 + 0.998739i \(0.515988\pi\)
\(492\) 0 0
\(493\) −16.9848 −0.764959
\(494\) 0 0
\(495\) −62.1473 −2.79331
\(496\) 0 0
\(497\) 6.24621 0.280181
\(498\) 0 0
\(499\) 3.56155i 0.159437i −0.996817 0.0797185i \(-0.974598\pi\)
0.996817 0.0797185i \(-0.0254021\pi\)
\(500\) 0 0
\(501\) 23.9492i 1.06997i
\(502\) 0 0
\(503\) 31.8738 1.42118 0.710591 0.703605i \(-0.248428\pi\)
0.710591 + 0.703605i \(0.248428\pi\)
\(504\) 0 0
\(505\) 29.0240i 1.29155i
\(506\) 0 0
\(507\) −20.6116 + 25.7538i −0.915395 + 1.14377i
\(508\) 0 0
\(509\) 30.0488i 1.33189i −0.746000 0.665946i \(-0.768028\pi\)
0.746000 0.665946i \(-0.231972\pi\)
\(510\) 0 0
\(511\) −4.36237 −0.192980
\(512\) 0 0
\(513\) 7.29986i 0.322297i
\(514\) 0 0
\(515\) 21.1231i 0.930795i
\(516\) 0 0
\(517\) −68.7926 −3.02550
\(518\) 0 0
\(519\) 44.0731 1.93459
\(520\) 0 0
\(521\) −7.36932 −0.322856 −0.161428 0.986885i \(-0.551610\pi\)
−0.161428 + 0.986885i \(0.551610\pi\)
\(522\) 0 0
\(523\) 6.18734 0.270553 0.135277 0.990808i \(-0.456808\pi\)
0.135277 + 0.990808i \(0.456808\pi\)
\(524\) 0 0
\(525\) 14.1119i 0.615895i
\(526\) 0 0
\(527\) 3.12311i 0.136045i
\(528\) 0 0
\(529\) −22.4924 −0.977931
\(530\) 0 0
\(531\) 52.0000i 2.25661i
\(532\) 0 0
\(533\) 8.24621 3.96230i 0.357183 0.171626i
\(534\) 0 0
\(535\) 58.7386i 2.53949i
\(536\) 0 0
\(537\) −21.1231 −0.911529
\(538\) 0 0
\(539\) 5.56155i 0.239553i
\(540\) 0 0
\(541\) 21.7242i 0.933995i 0.884259 + 0.466997i \(0.154664\pi\)
−0.884259 + 0.466997i \(0.845336\pi\)
\(542\) 0 0
\(543\) −40.1108 −1.72132
\(544\) 0 0
\(545\) −37.6155 −1.61127
\(546\) 0 0
\(547\) 19.8992 0.850828 0.425414 0.904999i \(-0.360128\pi\)
0.425414 + 0.904999i \(0.360128\pi\)
\(548\) 0 0
\(549\) −1.50758 −0.0643418
\(550\) 0 0
\(551\) 35.6847i 1.52022i
\(552\) 0 0
\(553\) 5.78726i 0.246099i
\(554\) 0 0
\(555\) 32.6740 1.38693
\(556\) 0 0
\(557\) 36.4608i 1.54490i −0.635078 0.772448i \(-0.719032\pi\)
0.635078 0.772448i \(-0.280968\pi\)
\(558\) 0 0
\(559\) −12.9994 27.0540i −0.549817 1.14426i
\(560\) 0 0
\(561\) 44.0731i 1.86077i
\(562\) 0 0
\(563\) 16.9617 0.714851 0.357426 0.933942i \(-0.383655\pi\)
0.357426 + 0.933942i \(0.383655\pi\)
\(564\) 0 0
\(565\) 56.8478i 2.39161i
\(566\) 0 0
\(567\) 7.49242i 0.314652i
\(568\) 0 0
\(569\) 33.1080 1.38796 0.693979 0.719995i \(-0.255856\pi\)
0.693979 + 0.719995i \(0.255856\pi\)
\(570\) 0 0
\(571\) 6.89978 0.288747 0.144373 0.989523i \(-0.453883\pi\)
0.144373 + 0.989523i \(0.453883\pi\)
\(572\) 0 0
\(573\) 7.23106 0.302082
\(574\) 0 0
\(575\) −3.96230 −0.165239
\(576\) 0 0
\(577\) 44.8732i 1.86810i −0.357147 0.934048i \(-0.616250\pi\)
0.357147 0.934048i \(-0.383750\pi\)
\(578\) 0 0
\(579\) 65.9697i 2.74161i
\(580\) 0 0
\(581\) −3.43845 −0.142651
\(582\) 0 0
\(583\) 47.6155i 1.97203i
\(584\) 0 0
\(585\) −36.3153 + 17.4495i −1.50145 + 0.721448i
\(586\) 0 0
\(587\) 37.0540i 1.52938i −0.644398 0.764691i \(-0.722892\pi\)
0.644398 0.764691i \(-0.277108\pi\)
\(588\) 0 0
\(589\) −6.56155 −0.270364
\(590\) 0 0
\(591\) 61.5616i 2.53230i
\(592\) 0 0
\(593\) 12.5993i 0.517393i 0.965959 + 0.258696i \(0.0832929\pi\)
−0.965959 + 0.258696i \(0.916707\pi\)
\(594\) 0 0
\(595\) 10.1496 0.416095
\(596\) 0 0
\(597\) 32.9848 1.34998
\(598\) 0 0
\(599\) −18.7867 −0.767603 −0.383801 0.923416i \(-0.625385\pi\)
−0.383801 + 0.923416i \(0.625385\pi\)
\(600\) 0 0
\(601\) 5.75379 0.234702 0.117351 0.993091i \(-0.462560\pi\)
0.117351 + 0.993091i \(0.462560\pi\)
\(602\) 0 0
\(603\) 2.35416i 0.0958689i
\(604\) 0 0
\(605\) 64.7724i 2.63337i
\(606\) 0 0
\(607\) 5.87497 0.238458 0.119229 0.992867i \(-0.461958\pi\)
0.119229 + 0.992867i \(0.461958\pi\)
\(608\) 0 0
\(609\) 13.7996i 0.559187i
\(610\) 0 0
\(611\) −40.1985 + 19.3153i −1.62626 + 0.781415i
\(612\) 0 0
\(613\) 30.7613i 1.24244i −0.783638 0.621218i \(-0.786638\pi\)
0.783638 0.621218i \(-0.213362\pi\)
\(614\) 0 0
\(615\) 20.9240 0.843738
\(616\) 0 0
\(617\) 13.7996i 0.555550i −0.960646 0.277775i \(-0.910403\pi\)
0.960646 0.277775i \(-0.0895969\pi\)
\(618\) 0 0
\(619\) 7.50758i 0.301755i −0.988552 0.150878i \(-0.951790\pi\)
0.988552 0.150878i \(-0.0482099\pi\)
\(620\) 0 0
\(621\) 0.792609 0.0318063
\(622\) 0 0
\(623\) −3.24985 −0.130203
\(624\) 0 0
\(625\) −21.8769 −0.875076
\(626\) 0 0
\(627\) 92.5962 3.69794
\(628\) 0 0
\(629\) 12.3747i 0.493411i
\(630\) 0 0
\(631\) 26.8769i 1.06995i 0.844867 + 0.534976i \(0.179679\pi\)
−0.844867 + 0.534976i \(0.820321\pi\)
\(632\) 0 0
\(633\) 46.8769 1.86319
\(634\) 0 0
\(635\) 3.61553i 0.143478i
\(636\) 0 0
\(637\) −1.56155 3.24985i −0.0618710 0.128764i
\(638\) 0 0
\(639\) 21.4773i 0.849628i
\(640\) 0 0
\(641\) 30.6155 1.20924 0.604620 0.796514i \(-0.293325\pi\)
0.604620 + 0.796514i \(0.293325\pi\)
\(642\) 0 0
\(643\) 11.6155i 0.458072i 0.973418 + 0.229036i \(0.0735573\pi\)
−0.973418 + 0.229036i \(0.926443\pi\)
\(644\) 0 0
\(645\) 68.6470i 2.70297i
\(646\) 0 0
\(647\) −35.5237 −1.39658 −0.698291 0.715814i \(-0.746056\pi\)
−0.698291 + 0.715814i \(0.746056\pi\)
\(648\) 0 0
\(649\) 84.1080 3.30153
\(650\) 0 0
\(651\) 2.53741 0.0994489
\(652\) 0 0
\(653\) 19.3693 0.757980 0.378990 0.925401i \(-0.376271\pi\)
0.378990 + 0.925401i \(0.376271\pi\)
\(654\) 0 0
\(655\) 11.8617i 0.463477i
\(656\) 0 0
\(657\) 14.9998i 0.585198i
\(658\) 0 0
\(659\) 35.1237 1.36822 0.684112 0.729377i \(-0.260190\pi\)
0.684112 + 0.729377i \(0.260190\pi\)
\(660\) 0 0
\(661\) 31.4737i 1.22419i 0.790786 + 0.612093i \(0.209672\pi\)
−0.790786 + 0.612093i \(0.790328\pi\)
\(662\) 0 0
\(663\) −12.3747 25.7538i −0.480593 1.00019i
\(664\) 0 0
\(665\) 21.3241i 0.826913i
\(666\) 0 0
\(667\) 3.87459 0.150025
\(668\) 0 0
\(669\) 12.6870i 0.490510i
\(670\) 0 0
\(671\) 2.43845i 0.0941352i
\(672\) 0 0
\(673\) 47.1080 1.81588 0.907939 0.419102i \(-0.137655\pi\)
0.907939 + 0.419102i \(0.137655\pi\)
\(674\) 0 0
\(675\) −6.18734 −0.238151
\(676\) 0 0
\(677\) −17.8078 −0.684408 −0.342204 0.939626i \(-0.611173\pi\)
−0.342204 + 0.939626i \(0.611173\pi\)
\(678\) 0 0
\(679\) −10.8621 −0.416848
\(680\) 0 0
\(681\) 39.6230i 1.51836i
\(682\) 0 0
\(683\) 12.0540i 0.461233i −0.973045 0.230616i \(-0.925926\pi\)
0.973045 0.230616i \(-0.0740742\pi\)
\(684\) 0 0
\(685\) 63.3693 2.42122
\(686\) 0 0
\(687\) 42.2462i 1.61179i
\(688\) 0 0
\(689\) 13.3693 + 27.8238i 0.509330 + 1.06000i
\(690\) 0 0
\(691\) 37.5464i 1.42833i −0.699976 0.714166i \(-0.746806\pi\)
0.699976 0.714166i \(-0.253194\pi\)
\(692\) 0 0
\(693\) −19.1231 −0.726427
\(694\) 0 0
\(695\) 75.2311i 2.85368i
\(696\) 0 0
\(697\) 7.92460i 0.300166i
\(698\) 0 0
\(699\) −17.7619 −0.671816
\(700\) 0 0
\(701\) 33.5464 1.26703 0.633515 0.773730i \(-0.281611\pi\)
0.633515 + 0.773730i \(0.281611\pi\)
\(702\) 0 0
\(703\) −25.9988 −0.980565
\(704\) 0 0
\(705\) −102.000 −3.84154
\(706\) 0 0
\(707\) 8.93087i 0.335880i
\(708\) 0 0
\(709\) 34.4112i 1.29234i 0.763193 + 0.646170i \(0.223630\pi\)
−0.763193 + 0.646170i \(0.776370\pi\)
\(710\) 0 0
\(711\) −19.8992 −0.746278
\(712\) 0 0
\(713\) 0.712445i 0.0266813i
\(714\) 0 0
\(715\) −28.2239 58.7386i −1.05551 2.19670i
\(716\) 0 0
\(717\) 12.3747i 0.462141i
\(718\) 0 0
\(719\) −42.6482 −1.59051 −0.795254 0.606276i \(-0.792663\pi\)
−0.795254 + 0.606276i \(0.792663\pi\)
\(720\) 0 0
\(721\) 6.49971i 0.242062i
\(722\) 0 0
\(723\) 17.5076i 0.651114i
\(724\) 0 0
\(725\) −30.2462 −1.12332
\(726\) 0 0
\(727\) 27.4237 1.01709 0.508545 0.861036i \(-0.330184\pi\)
0.508545 + 0.861036i \(0.330184\pi\)
\(728\) 0 0
\(729\) −34.2311 −1.26782
\(730\) 0 0
\(731\) 25.9988 0.961602
\(732\) 0 0
\(733\) 18.4743i 0.682364i −0.939997 0.341182i \(-0.889173\pi\)
0.939997 0.341182i \(-0.110827\pi\)
\(734\) 0 0
\(735\) 8.24621i 0.304166i
\(736\) 0 0
\(737\) −3.80776 −0.140261
\(738\) 0 0
\(739\) 28.6307i 1.05320i −0.850114 0.526598i \(-0.823467\pi\)
0.850114 0.526598i \(-0.176533\pi\)
\(740\) 0 0
\(741\) 54.1080 25.9988i 1.98771 0.955091i
\(742\) 0 0
\(743\) 12.2462i 0.449270i 0.974443 + 0.224635i \(0.0721190\pi\)
−0.974443 + 0.224635i \(0.927881\pi\)
\(744\) 0 0
\(745\) −45.8617 −1.68024
\(746\) 0 0
\(747\) 11.8229i 0.432578i
\(748\) 0 0
\(749\) 18.0742i 0.660418i
\(750\) 0 0
\(751\) −22.4366 −0.818724 −0.409362 0.912372i \(-0.634249\pi\)
−0.409362 + 0.912372i \(0.634249\pi\)
\(752\) 0 0
\(753\) −13.6695 −0.498144
\(754\) 0 0
\(755\) −15.8492 −0.576811
\(756\) 0 0
\(757\) −2.31534 −0.0841525 −0.0420763 0.999114i \(-0.513397\pi\)
−0.0420763 + 0.999114i \(0.513397\pi\)
\(758\) 0 0
\(759\) 10.0540i 0.364936i
\(760\) 0 0
\(761\) 41.1356i 1.49116i −0.666414 0.745582i \(-0.732172\pi\)
0.666414 0.745582i \(-0.267828\pi\)
\(762\) 0 0
\(763\) −11.5745 −0.419026
\(764\) 0 0
\(765\) 34.8990i 1.26178i
\(766\) 0 0
\(767\) 49.1479 23.6155i 1.77463 0.852707i
\(768\) 0 0
\(769\) 19.5868i 0.706319i 0.935563 + 0.353160i \(0.114893\pi\)
−0.935563 + 0.353160i \(0.885107\pi\)
\(770\) 0 0
\(771\) 59.9223 2.15805
\(772\) 0 0
\(773\) 40.4231i 1.45392i −0.686680 0.726960i \(-0.740933\pi\)
0.686680 0.726960i \(-0.259067\pi\)
\(774\) 0 0
\(775\) 5.56155i 0.199777i
\(776\) 0 0
\(777\) 10.0540 0.360684
\(778\) 0 0
\(779\) −16.6493 −0.596525
\(780\) 0 0
\(781\) 34.7386 1.24305
\(782\) 0 0
\(783\) 6.05038 0.216223
\(784\) 0 0
\(785\) 4.27467i 0.152569i
\(786\) 0 0
\(787\) 54.4233i 1.93998i −0.243143 0.969990i \(-0.578178\pi\)
0.243143 0.969990i \(-0.421822\pi\)
\(788\) 0 0
\(789\) 63.3693 2.25601
\(790\) 0 0
\(791\) 17.4924i 0.621959i
\(792\) 0 0
\(793\) −0.684658 1.42489i −0.0243129 0.0505993i
\(794\) 0 0
\(795\) 70.6004i 2.50394i
\(796\) 0 0
\(797\) −3.31534 −0.117435 −0.0587177 0.998275i \(-0.518701\pi\)
−0.0587177 + 0.998275i \(0.518701\pi\)
\(798\) 0 0
\(799\) 38.6307i 1.36666i
\(800\) 0 0
\(801\) 11.1745i 0.394830i
\(802\) 0 0
\(803\) −24.2616 −0.856172
\(804\) 0 0
\(805\) −2.31534 −0.0816051
\(806\) 0 0
\(807\) −8.41238 −0.296130
\(808\) 0 0
\(809\) 27.9309 0.981997 0.490999 0.871160i \(-0.336632\pi\)
0.490999 + 0.871160i \(0.336632\pi\)
\(810\) 0 0
\(811\) 14.7386i 0.517543i −0.965939 0.258772i \(-0.916682\pi\)
0.965939 0.258772i \(-0.0833177\pi\)
\(812\) 0 0
\(813\) 42.3358i 1.48478i
\(814\) 0 0
\(815\) 62.9475 2.20495
\(816\) 0 0
\(817\) 54.6228i 1.91101i
\(818\) 0 0
\(819\) −11.1745 + 5.36932i −0.390467 + 0.187619i
\(820\) 0 0
\(821\) 31.8738i 1.11240i −0.831047 0.556202i \(-0.812258\pi\)
0.831047 0.556202i \(-0.187742\pi\)
\(822\) 0 0
\(823\) −24.2616 −0.845705 −0.422853 0.906198i \(-0.638971\pi\)
−0.422853 + 0.906198i \(0.638971\pi\)
\(824\) 0 0
\(825\) 78.4843i 2.73247i
\(826\) 0 0
\(827\) 49.1231i 1.70818i 0.520127 + 0.854089i \(0.325885\pi\)
−0.520127 + 0.854089i \(0.674115\pi\)
\(828\) 0 0
\(829\) −25.3693 −0.881113 −0.440556 0.897725i \(-0.645219\pi\)
−0.440556 + 0.897725i \(0.645219\pi\)
\(830\) 0 0
\(831\) −4.27467 −0.148287
\(832\) 0 0
\(833\) 3.12311 0.108209
\(834\) 0 0
\(835\) 30.6736 1.06150
\(836\) 0 0
\(837\) 1.11252i 0.0384543i
\(838\) 0 0
\(839\) 51.4233i 1.77533i −0.460491 0.887665i \(-0.652326\pi\)
0.460491 0.887665i \(-0.347674\pi\)
\(840\) 0 0
\(841\) 0.576708 0.0198865
\(842\) 0 0
\(843\) 51.5076i 1.77402i
\(844\) 0 0
\(845\) −32.9848 26.3989i −1.13471 0.908150i
\(846\) 0 0
\(847\) 19.9309i 0.684833i
\(848\) 0 0
\(849\) 26.5464 0.911070
\(850\) 0 0
\(851\) 2.82292i 0.0967684i
\(852\) 0 0
\(853\) 53.8226i 1.84285i 0.388554 + 0.921426i \(0.372975\pi\)
−0.388554 + 0.921426i \(0.627025\pi\)
\(854\) 0 0
\(855\) 73.3218 2.50755
\(856\) 0 0
\(857\) −40.4924 −1.38319 −0.691597 0.722283i \(-0.743093\pi\)
−0.691597 + 0.722283i \(0.743093\pi\)
\(858\) 0 0
\(859\) 19.8115 0.675959 0.337980 0.941153i \(-0.390256\pi\)
0.337980 + 0.941153i \(0.390256\pi\)
\(860\) 0 0
\(861\) 6.43845 0.219422
\(862\) 0 0
\(863\) 10.4924i 0.357166i −0.983925 0.178583i \(-0.942849\pi\)
0.983925 0.178583i \(-0.0571513\pi\)
\(864\) 0 0
\(865\) 56.4477i 1.91928i
\(866\) 0 0
\(867\) −18.3866 −0.624442
\(868\) 0 0
\(869\) 32.1862i 1.09184i
\(870\) 0 0
\(871\) −2.22504 + 1.06913i −0.0753926 + 0.0362261i
\(872\) 0 0
\(873\) 37.3487i 1.26406i
\(874\) 0 0
\(875\) 1.82496 0.0616951
\(876\) 0 0
\(877\) 23.4614i 0.792236i −0.918200 0.396118i \(-0.870357\pi\)
0.918200 0.396118i \(-0.129643\pi\)
\(878\) 0 0
\(879\) 41.2311i 1.39069i
\(880\) 0 0
\(881\) 15.3693 0.517805 0.258903 0.965903i \(-0.416639\pi\)
0.258903 + 0.965903i \(0.416639\pi\)
\(882\) 0 0
\(883\) −2.84978 −0.0959027 −0.0479513 0.998850i \(-0.515269\pi\)
−0.0479513 + 0.998850i \(0.515269\pi\)
\(884\) 0 0
\(885\) 124.708 4.19202
\(886\) 0 0
\(887\) −30.4489 −1.02237 −0.511187 0.859469i \(-0.670794\pi\)
−0.511187 + 0.859469i \(0.670794\pi\)
\(888\) 0 0
\(889\) 1.11252i 0.0373127i
\(890\) 0 0
\(891\) 41.6695i 1.39598i
\(892\) 0 0
\(893\) 81.1619 2.71598
\(894\) 0 0
\(895\) 27.0540i 0.904315i
\(896\) 0 0
\(897\) 2.82292 + 5.87497i 0.0942545 + 0.196160i
\(898\) 0 0
\(899\) 5.43845i 0.181382i
\(900\) 0 0
\(901\) −26.7386 −0.890793
\(902\) 0 0
\(903\) 21.1231i 0.702933i
\(904\) 0 0
\(905\) 51.3729i 1.70769i
\(906\) 0 0
\(907\) −31.4737 −1.04507 −0.522534 0.852618i \(-0.675013\pi\)
−0.522534 + 0.852618i \(0.675013\pi\)
\(908\) 0 0
\(909\) −30.7083 −1.01853
\(910\) 0 0
\(911\) 20.5239 0.679988 0.339994 0.940428i \(-0.389575\pi\)
0.339994 + 0.940428i \(0.389575\pi\)
\(912\) 0 0
\(913\) −19.1231 −0.632882
\(914\) 0 0
\(915\) 3.61553i 0.119526i
\(916\) 0 0
\(917\) 3.64993i 0.120531i
\(918\) 0 0
\(919\) −32.8109 −1.08233 −0.541166 0.840916i \(-0.682017\pi\)
−0.541166 + 0.840916i \(0.682017\pi\)
\(920\) 0 0
\(921\) 11.5745i 0.381394i
\(922\) 0 0
\(923\) 20.2993 9.75379i 0.668159 0.321050i
\(924\) 0 0
\(925\) 22.0365i 0.724557i
\(926\) 0 0
\(927\) 22.3489 0.734034
\(928\) 0 0
\(929\) 47.0106i 1.54237i −0.636613 0.771183i \(-0.719665\pi\)
0.636613 0.771183i \(-0.280335\pi\)
\(930\) 0 0
\(931\) 6.56155i 0.215046i
\(932\) 0 0
\(933\) 42.2462 1.38308
\(934\) 0 0
\(935\) 56.4477 1.84604
\(936\) 0 0
\(937\) 30.4924 0.996144 0.498072 0.867136i \(-0.334042\pi\)
0.498072 + 0.867136i \(0.334042\pi\)
\(938\) 0 0
\(939\) 2.84978 0.0929990
\(940\) 0 0
\(941\) 27.8238i 0.907030i 0.891249 + 0.453515i \(0.149830\pi\)
−0.891249 + 0.453515i \(0.850170\pi\)
\(942\) 0 0
\(943\) 1.80776i 0.0588689i
\(944\) 0 0
\(945\) −3.61553 −0.117613
\(946\) 0 0
\(947\) 27.8617i 0.905385i −0.891667 0.452692i \(-0.850464\pi\)
0.891667 0.452692i \(-0.149536\pi\)
\(948\) 0 0
\(949\) −14.1771 + 6.81208i −0.460208 + 0.221129i
\(950\) 0 0
\(951\) 28.5767i 0.926663i
\(952\) 0 0
\(953\) −27.9309 −0.904770 −0.452385 0.891823i \(-0.649427\pi\)
−0.452385 + 0.891823i \(0.649427\pi\)
\(954\) 0 0
\(955\) 9.26137i 0.299691i
\(956\) 0 0
\(957\) 76.7470i 2.48088i
\(958\) 0 0
\(959\) 19.4991 0.629660
\(960\) 0 0
\(961\) 30.0000 0.967742
\(962\) 0 0
\(963\) 62.1473 2.00267
\(964\) 0 0
\(965\) −84.4924 −2.71991
\(966\) 0 0
\(967\) 25.6155i 0.823740i 0.911243 + 0.411870i \(0.135124\pi\)
−0.911243 + 0.411870i \(0.864876\pi\)
\(968\) 0 0
\(969\) 51.9977i 1.67041i
\(970\) 0 0
\(971\) 26.3112 0.844367 0.422183 0.906510i \(-0.361264\pi\)
0.422183 + 0.906510i \(0.361264\pi\)
\(972\) 0 0
\(973\) 23.1491i 0.742125i
\(974\) 0 0
\(975\) −22.0365 45.8617i −0.705734 1.46875i
\(976\) 0 0
\(977\) 17.2741i 0.552647i 0.961065 + 0.276323i \(0.0891161\pi\)
−0.961065 + 0.276323i \(0.910884\pi\)
\(978\) 0 0
\(979\) −18.0742 −0.577655
\(980\) 0 0
\(981\) 39.7984i 1.27067i
\(982\) 0 0
\(983\) 24.9460i 0.795655i −0.917460 0.397827i \(-0.869764\pi\)
0.917460 0.397827i \(-0.130236\pi\)
\(984\) 0 0
\(985\) −78.8466 −2.51226
\(986\) 0 0
\(987\) −31.3860 −0.999028
\(988\) 0 0
\(989\) −5.93087 −0.188591
\(990\) 0 0
\(991\) 4.58704 0.145712 0.0728560 0.997342i \(-0.476789\pi\)
0.0728560 + 0.997342i \(0.476789\pi\)
\(992\) 0 0
\(993\) 37.2610i 1.18244i
\(994\) 0 0
\(995\) 42.2462i 1.33929i
\(996\) 0 0
\(997\) 39.5616 1.25293 0.626463 0.779451i \(-0.284502\pi\)
0.626463 + 0.779451i \(0.284502\pi\)
\(998\) 0 0
\(999\) 4.40814i 0.139467i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2912.2.k.g.1793.6 yes 8
4.3 odd 2 inner 2912.2.k.g.1793.4 yes 8
13.12 even 2 inner 2912.2.k.g.1793.5 yes 8
52.51 odd 2 inner 2912.2.k.g.1793.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2912.2.k.g.1793.3 8 52.51 odd 2 inner
2912.2.k.g.1793.4 yes 8 4.3 odd 2 inner
2912.2.k.g.1793.5 yes 8 13.12 even 2 inner
2912.2.k.g.1793.6 yes 8 1.1 even 1 trivial