Properties

Label 2-2912-13.12-c1-0-31
Degree $2$
Conductor $2912$
Sign $-0.433 - 0.901i$
Analytic cond. $23.2524$
Root an. cond. $4.82207$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.53·3-s + 3.24i·5-s + i·7-s + 3.43·9-s + 5.56i·11-s + (1.56 + 3.24i)13-s + 8.24i·15-s − 3.12·17-s − 6.56i·19-s + 2.53i·21-s + 0.712·23-s − 5.56·25-s + 1.11·27-s + 5.43·29-s i·31-s + ⋯
L(s)  = 1  + 1.46·3-s + 1.45i·5-s + 0.377i·7-s + 1.14·9-s + 1.67i·11-s + (0.433 + 0.901i)13-s + 2.12i·15-s − 0.757·17-s − 1.50i·19-s + 0.553i·21-s + 0.148·23-s − 1.11·25-s + 0.214·27-s + 1.00·29-s − 0.179i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.433 - 0.901i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.433 - 0.901i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2912\)    =    \(2^{5} \cdot 7 \cdot 13\)
Sign: $-0.433 - 0.901i$
Analytic conductor: \(23.2524\)
Root analytic conductor: \(4.82207\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2912} (1793, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2912,\ (\ :1/2),\ -0.433 - 0.901i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.908436064\)
\(L(\frac12)\) \(\approx\) \(2.908436064\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - iT \)
13 \( 1 + (-1.56 - 3.24i)T \)
good3 \( 1 - 2.53T + 3T^{2} \)
5 \( 1 - 3.24iT - 5T^{2} \)
11 \( 1 - 5.56iT - 11T^{2} \)
17 \( 1 + 3.12T + 17T^{2} \)
19 \( 1 + 6.56iT - 19T^{2} \)
23 \( 1 - 0.712T + 23T^{2} \)
29 \( 1 - 5.43T + 29T^{2} \)
31 \( 1 + iT - 31T^{2} \)
37 \( 1 + 3.96iT - 37T^{2} \)
41 \( 1 + 2.53iT - 41T^{2} \)
43 \( 1 + 8.32T + 43T^{2} \)
47 \( 1 - 12.3iT - 47T^{2} \)
53 \( 1 - 8.56T + 53T^{2} \)
59 \( 1 + 15.1iT - 59T^{2} \)
61 \( 1 + 0.438T + 61T^{2} \)
67 \( 1 - 0.684iT - 67T^{2} \)
71 \( 1 + 6.24iT - 71T^{2} \)
73 \( 1 - 4.36iT - 73T^{2} \)
79 \( 1 + 5.78T + 79T^{2} \)
83 \( 1 - 3.43iT - 83T^{2} \)
89 \( 1 - 3.24iT - 89T^{2} \)
97 \( 1 - 10.8iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.099174648845752820100788749680, −8.294260925037773003022807807062, −7.37988537238451368549496649007, −6.91631057109768729820638799195, −6.38684579258925969946961140194, −4.84770562036463343617975939818, −4.13202362628340645716404788559, −3.16300986965443370878252203453, −2.42834979379312375283624004187, −1.95782080608979883288479210764, 0.73426931225127635186087817402, 1.66678699457499472510570491811, 2.98514536262083547939295943461, 3.59987791150738233791428845361, 4.39854816495217984999610400013, 5.42426592346885675820673932877, 6.11173243377844602152282719737, 7.31785031573234665102542172409, 8.302518015025354977905207958528, 8.503656676832341839770428784772

Graph of the $Z$-function along the critical line