Properties

Label 2900.2.s.c.157.5
Level $2900$
Weight $2$
Character 2900.157
Analytic conductor $23.157$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2900,2,Mod(157,2900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2900, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2900.157"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2900 = 2^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2900.s (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.1566165862\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 36x^{14} + 468x^{12} + 2844x^{10} + 8574x^{8} + 12524x^{6} + 8404x^{4} + 2324x^{2} + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 157.5
Root \(-0.722887i\) of defining polynomial
Character \(\chi\) \(=\) 2900.157
Dual form 2900.2.s.c.1293.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.277113 q^{3} +(3.60863 + 3.60863i) q^{7} -2.92321 q^{9} +(-2.44164 - 2.44164i) q^{11} +(2.78793 + 2.78793i) q^{13} +3.19850i q^{17} +(1.44164 - 1.44164i) q^{19} +(1.00000 + 1.00000i) q^{21} +(4.00813 - 4.00813i) q^{23} -1.64140 q^{27} +(-5.17735 + 1.48157i) q^{29} +(6.13742 + 6.13742i) q^{31} +(-0.676611 - 0.676611i) q^{33} +2.11132 q^{37} +(0.772573 + 0.772573i) q^{39} +(4.61899 - 4.61899i) q^{41} -0.0110648 q^{43} -6.65198 q^{47} +19.0445i q^{49} +0.886345i q^{51} +(-6.26354 + 6.26354i) q^{53} +(0.399497 - 0.399497i) q^{57} +9.31477i q^{59} +(0.963137 + 0.963137i) q^{61} +(-10.5488 - 10.5488i) q^{63} +(-0.532522 + 0.532522i) q^{67} +(1.11071 - 1.11071i) q^{69} +5.92321i q^{71} +6.67410i q^{73} -17.6220i q^{77} +(-0.521498 + 0.521498i) q^{79} +8.31477 q^{81} +(1.78549 - 1.78549i) q^{83} +(-1.43471 + 0.410562i) q^{87} +(-2.73571 + 2.73571i) q^{89} +20.1213i q^{91} +(1.70076 + 1.70076i) q^{93} +13.8692 q^{97} +(7.13742 + 7.13742i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{9} - 4 q^{11} - 12 q^{19} + 16 q^{21} - 28 q^{29} + 28 q^{31} + 32 q^{39} - 16 q^{41} - 24 q^{61} - 72 q^{69} - 4 q^{79} + 8 q^{81} - 24 q^{89} + 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2900\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(1277\) \(1451\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.277113 0.159991 0.0799957 0.996795i \(-0.474509\pi\)
0.0799957 + 0.996795i \(0.474509\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 3.60863 + 3.60863i 1.36394 + 1.36394i 0.868837 + 0.495098i \(0.164868\pi\)
0.495098 + 0.868837i \(0.335132\pi\)
\(8\) 0 0
\(9\) −2.92321 −0.974403
\(10\) 0 0
\(11\) −2.44164 2.44164i −0.736182 0.736182i 0.235655 0.971837i \(-0.424277\pi\)
−0.971837 + 0.235655i \(0.924277\pi\)
\(12\) 0 0
\(13\) 2.78793 + 2.78793i 0.773234 + 0.773234i 0.978670 0.205437i \(-0.0658615\pi\)
−0.205437 + 0.978670i \(0.565861\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.19850i 0.775749i 0.921712 + 0.387875i \(0.126791\pi\)
−0.921712 + 0.387875i \(0.873209\pi\)
\(18\) 0 0
\(19\) 1.44164 1.44164i 0.330735 0.330735i −0.522131 0.852865i \(-0.674863\pi\)
0.852865 + 0.522131i \(0.174863\pi\)
\(20\) 0 0
\(21\) 1.00000 + 1.00000i 0.218218 + 0.218218i
\(22\) 0 0
\(23\) 4.00813 4.00813i 0.835753 0.835753i −0.152544 0.988297i \(-0.548746\pi\)
0.988297 + 0.152544i \(0.0487465\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −1.64140 −0.315887
\(28\) 0 0
\(29\) −5.17735 + 1.48157i −0.961410 + 0.275120i
\(30\) 0 0
\(31\) 6.13742 + 6.13742i 1.10231 + 1.10231i 0.994131 + 0.108182i \(0.0345030\pi\)
0.108182 + 0.994131i \(0.465497\pi\)
\(32\) 0 0
\(33\) −0.676611 0.676611i −0.117783 0.117783i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.11132 0.347099 0.173550 0.984825i \(-0.444476\pi\)
0.173550 + 0.984825i \(0.444476\pi\)
\(38\) 0 0
\(39\) 0.772573 + 0.772573i 0.123711 + 0.123711i
\(40\) 0 0
\(41\) 4.61899 4.61899i 0.721365 0.721365i −0.247518 0.968883i \(-0.579615\pi\)
0.968883 + 0.247518i \(0.0796150\pi\)
\(42\) 0 0
\(43\) −0.0110648 −0.00168737 −0.000843687 1.00000i \(-0.500269\pi\)
−0.000843687 1.00000i \(0.500269\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −6.65198 −0.970290 −0.485145 0.874434i \(-0.661233\pi\)
−0.485145 + 0.874434i \(0.661233\pi\)
\(48\) 0 0
\(49\) 19.0445i 2.72064i
\(50\) 0 0
\(51\) 0.886345i 0.124113i
\(52\) 0 0
\(53\) −6.26354 + 6.26354i −0.860364 + 0.860364i −0.991380 0.131016i \(-0.958176\pi\)
0.131016 + 0.991380i \(0.458176\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0.399497 0.399497i 0.0529147 0.0529147i
\(58\) 0 0
\(59\) 9.31477i 1.21268i 0.795206 + 0.606340i \(0.207363\pi\)
−0.795206 + 0.606340i \(0.792637\pi\)
\(60\) 0 0
\(61\) 0.963137 + 0.963137i 0.123317 + 0.123317i 0.766072 0.642755i \(-0.222209\pi\)
−0.642755 + 0.766072i \(0.722209\pi\)
\(62\) 0 0
\(63\) −10.5488 10.5488i −1.32902 1.32902i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −0.532522 + 0.532522i −0.0650579 + 0.0650579i −0.738887 0.673829i \(-0.764648\pi\)
0.673829 + 0.738887i \(0.264648\pi\)
\(68\) 0 0
\(69\) 1.11071 1.11071i 0.133713 0.133713i
\(70\) 0 0
\(71\) 5.92321i 0.702955i 0.936196 + 0.351478i \(0.114321\pi\)
−0.936196 + 0.351478i \(0.885679\pi\)
\(72\) 0 0
\(73\) 6.67410i 0.781145i 0.920572 + 0.390572i \(0.127723\pi\)
−0.920572 + 0.390572i \(0.872277\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 17.6220i 2.00821i
\(78\) 0 0
\(79\) −0.521498 + 0.521498i −0.0586731 + 0.0586731i −0.735834 0.677161i \(-0.763210\pi\)
0.677161 + 0.735834i \(0.263210\pi\)
\(80\) 0 0
\(81\) 8.31477 0.923863
\(82\) 0 0
\(83\) 1.78549 1.78549i 0.195983 0.195983i −0.602293 0.798275i \(-0.705746\pi\)
0.798275 + 0.602293i \(0.205746\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −1.43471 + 0.410562i −0.153817 + 0.0440169i
\(88\) 0 0
\(89\) −2.73571 + 2.73571i −0.289985 + 0.289985i −0.837074 0.547089i \(-0.815736\pi\)
0.547089 + 0.837074i \(0.315736\pi\)
\(90\) 0 0
\(91\) 20.1213i 2.10928i
\(92\) 0 0
\(93\) 1.70076 + 1.70076i 0.176361 + 0.176361i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 13.8692 1.40821 0.704104 0.710097i \(-0.251349\pi\)
0.704104 + 0.710097i \(0.251349\pi\)
\(98\) 0 0
\(99\) 7.13742 + 7.13742i 0.717338 + 0.717338i
\(100\) 0 0
\(101\) −4.57906 4.57906i −0.455634 0.455634i 0.441586 0.897219i \(-0.354416\pi\)
−0.897219 + 0.441586i \(0.854416\pi\)
\(102\) 0 0
\(103\) −5.84234 + 5.84234i −0.575663 + 0.575663i −0.933705 0.358042i \(-0.883444\pi\)
0.358042 + 0.933705i \(0.383444\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.99707 5.99707i −0.579759 0.579759i 0.355078 0.934837i \(-0.384454\pi\)
−0.934837 + 0.355078i \(0.884454\pi\)
\(108\) 0 0
\(109\) −16.6529 −1.59506 −0.797529 0.603280i \(-0.793860\pi\)
−0.797529 + 0.603280i \(0.793860\pi\)
\(110\) 0 0
\(111\) 0.585075 0.0555329
\(112\) 0 0
\(113\) 11.0432i 1.03886i 0.854513 + 0.519430i \(0.173856\pi\)
−0.854513 + 0.519430i \(0.826144\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −8.14971 8.14971i −0.753441 0.753441i
\(118\) 0 0
\(119\) −11.5422 + 11.5422i −1.05807 + 1.05807i
\(120\) 0 0
\(121\) 0.923208i 0.0839280i
\(122\) 0 0
\(123\) 1.27998 1.27998i 0.115412 0.115412i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 10.6086i 0.941359i −0.882304 0.470679i \(-0.844009\pi\)
0.882304 0.470679i \(-0.155991\pi\)
\(128\) 0 0
\(129\) −0.00306622 −0.000269965
\(130\) 0 0
\(131\) 11.0207 11.0207i 0.962883 0.962883i −0.0364523 0.999335i \(-0.511606\pi\)
0.999335 + 0.0364523i \(0.0116057\pi\)
\(132\) 0 0
\(133\) 10.4047 0.902202
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 15.7035i 1.34164i 0.741622 + 0.670818i \(0.234057\pi\)
−0.741622 + 0.670818i \(0.765943\pi\)
\(138\) 0 0
\(139\) 3.76656i 0.319475i −0.987160 0.159738i \(-0.948935\pi\)
0.987160 0.159738i \(-0.0510648\pi\)
\(140\) 0 0
\(141\) −1.84335 −0.155238
\(142\) 0 0
\(143\) 13.6143i 1.13848i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 5.27747i 0.435279i
\(148\) 0 0
\(149\) −1.92627 −0.157807 −0.0789033 0.996882i \(-0.525142\pi\)
−0.0789033 + 0.996882i \(0.525142\pi\)
\(150\) 0 0
\(151\) 5.33507i 0.434162i −0.976154 0.217081i \(-0.930346\pi\)
0.976154 0.217081i \(-0.0696535\pi\)
\(152\) 0 0
\(153\) 9.34987i 0.755892i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 3.55991 0.284112 0.142056 0.989859i \(-0.454629\pi\)
0.142056 + 0.989859i \(0.454629\pi\)
\(158\) 0 0
\(159\) −1.73571 + 1.73571i −0.137651 + 0.137651i
\(160\) 0 0
\(161\) 28.9277 2.27983
\(162\) 0 0
\(163\) 24.0811i 1.88618i 0.332538 + 0.943090i \(0.392095\pi\)
−0.332538 + 0.943090i \(0.607905\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.11658 + 5.11658i −0.395933 + 0.395933i −0.876796 0.480863i \(-0.840324\pi\)
0.480863 + 0.876796i \(0.340324\pi\)
\(168\) 0 0
\(169\) 2.54515i 0.195781i
\(170\) 0 0
\(171\) −4.21421 + 4.21421i −0.322269 + 0.322269i
\(172\) 0 0
\(173\) −9.99414 9.99414i −0.759840 0.759840i 0.216453 0.976293i \(-0.430551\pi\)
−0.976293 + 0.216453i \(0.930551\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 2.58125i 0.194018i
\(178\) 0 0
\(179\) −10.7297 −0.801975 −0.400988 0.916083i \(-0.631333\pi\)
−0.400988 + 0.916083i \(0.631333\pi\)
\(180\) 0 0
\(181\) 11.3148 0.841020 0.420510 0.907288i \(-0.361851\pi\)
0.420510 + 0.907288i \(0.361851\pi\)
\(182\) 0 0
\(183\) 0.266898 + 0.266898i 0.0197297 + 0.0197297i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 7.80957 7.80957i 0.571093 0.571093i
\(188\) 0 0
\(189\) −5.92321 5.92321i −0.430850 0.430850i
\(190\) 0 0
\(191\) −5.24813 5.24813i −0.379741 0.379741i 0.491268 0.871009i \(-0.336534\pi\)
−0.871009 + 0.491268i \(0.836534\pi\)
\(192\) 0 0
\(193\) 26.2256 1.88776 0.943882 0.330284i \(-0.107144\pi\)
0.943882 + 0.330284i \(0.107144\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.89925 + 2.89925i 0.206563 + 0.206563i 0.802805 0.596242i \(-0.203340\pi\)
−0.596242 + 0.802805i \(0.703340\pi\)
\(198\) 0 0
\(199\) 18.1243i 1.28480i 0.766370 + 0.642400i \(0.222061\pi\)
−0.766370 + 0.642400i \(0.777939\pi\)
\(200\) 0 0
\(201\) −0.147569 + 0.147569i −0.0104087 + 0.0104087i
\(202\) 0 0
\(203\) −24.0296 13.3367i −1.68655 0.936054i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −11.7166 + 11.7166i −0.814360 + 0.814360i
\(208\) 0 0
\(209\) −7.03993 −0.486962
\(210\) 0 0
\(211\) −13.4048 + 13.4048i −0.922823 + 0.922823i −0.997228 0.0744052i \(-0.976294\pi\)
0.0744052 + 0.997228i \(0.476294\pi\)
\(212\) 0 0
\(213\) 1.64140i 0.112467i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 44.2954i 3.00697i
\(218\) 0 0
\(219\) 1.84948i 0.124976i
\(220\) 0 0
\(221\) −8.91719 + 8.91719i −0.599835 + 0.599835i
\(222\) 0 0
\(223\) 10.9483 10.9483i 0.733151 0.733151i −0.238091 0.971243i \(-0.576522\pi\)
0.971243 + 0.238091i \(0.0765218\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 9.95648 + 9.95648i 0.660835 + 0.660835i 0.955577 0.294742i \(-0.0952337\pi\)
−0.294742 + 0.955577i \(0.595234\pi\)
\(228\) 0 0
\(229\) 14.4255 + 14.4255i 0.953262 + 0.953262i 0.998956 0.0456931i \(-0.0145496\pi\)
−0.0456931 + 0.998956i \(0.514550\pi\)
\(230\) 0 0
\(231\) 4.88328i 0.321296i
\(232\) 0 0
\(233\) 18.6682 18.6682i 1.22300 1.22300i 0.256436 0.966561i \(-0.417452\pi\)
0.966561 0.256436i \(-0.0825483\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −0.144514 + 0.144514i −0.00938719 + 0.00938719i
\(238\) 0 0
\(239\) 20.9277i 1.35370i 0.736119 + 0.676852i \(0.236656\pi\)
−0.736119 + 0.676852i \(0.763344\pi\)
\(240\) 0 0
\(241\) 15.6130i 1.00572i −0.864368 0.502860i \(-0.832281\pi\)
0.864368 0.502860i \(-0.167719\pi\)
\(242\) 0 0
\(243\) 7.22833 0.463698
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 8.03839 0.511471
\(248\) 0 0
\(249\) 0.494782 0.494782i 0.0313556 0.0313556i
\(250\) 0 0
\(251\) 18.8272 + 18.8272i 1.18836 + 1.18836i 0.977520 + 0.210841i \(0.0676203\pi\)
0.210841 + 0.977520i \(0.432380\pi\)
\(252\) 0 0
\(253\) −19.5728 −1.23053
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −10.4538 10.4538i −0.652093 0.652093i 0.301404 0.953497i \(-0.402545\pi\)
−0.953497 + 0.301404i \(0.902545\pi\)
\(258\) 0 0
\(259\) 7.61899 + 7.61899i 0.473421 + 0.473421i
\(260\) 0 0
\(261\) 15.1345 4.33093i 0.936800 0.268078i
\(262\) 0 0
\(263\) 27.1953 1.67694 0.838468 0.544951i \(-0.183452\pi\)
0.838468 + 0.544951i \(0.183452\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −0.758102 + 0.758102i −0.0463951 + 0.0463951i
\(268\) 0 0
\(269\) 5.99693 + 5.99693i 0.365640 + 0.365640i 0.865884 0.500245i \(-0.166757\pi\)
−0.500245 + 0.865884i \(0.666757\pi\)
\(270\) 0 0
\(271\) 2.62607 2.62607i 0.159522 0.159522i −0.622833 0.782355i \(-0.714018\pi\)
0.782355 + 0.622833i \(0.214018\pi\)
\(272\) 0 0
\(273\) 5.57587i 0.337467i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −15.8258 15.8258i −0.950882 0.950882i 0.0479667 0.998849i \(-0.484726\pi\)
−0.998849 + 0.0479667i \(0.984726\pi\)
\(278\) 0 0
\(279\) −17.9410 17.9410i −1.07410 1.07410i
\(280\) 0 0
\(281\) −14.8004 −0.882915 −0.441458 0.897282i \(-0.645538\pi\)
−0.441458 + 0.897282i \(0.645538\pi\)
\(282\) 0 0
\(283\) 12.3338 + 12.3338i 0.733171 + 0.733171i 0.971247 0.238075i \(-0.0765165\pi\)
−0.238075 + 0.971247i \(0.576517\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 33.3365 1.96779
\(288\) 0 0
\(289\) 6.76962 0.398213
\(290\) 0 0
\(291\) 3.84335 0.225301
\(292\) 0 0
\(293\) −12.7829 −0.746786 −0.373393 0.927673i \(-0.621806\pi\)
−0.373393 + 0.927673i \(0.621806\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 4.00771 + 4.00771i 0.232551 + 0.232551i
\(298\) 0 0
\(299\) 22.3488 1.29246
\(300\) 0 0
\(301\) −0.0399290 0.0399290i −0.00230147 0.00230147i
\(302\) 0 0
\(303\) −1.26892 1.26892i −0.0728975 0.0728975i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 29.7438i 1.69757i −0.528739 0.848785i \(-0.677335\pi\)
0.528739 0.848785i \(-0.322665\pi\)
\(308\) 0 0
\(309\) −1.61899 + 1.61899i −0.0921011 + 0.0921011i
\(310\) 0 0
\(311\) 13.8303 + 13.8303i 0.784242 + 0.784242i 0.980544 0.196302i \(-0.0628932\pi\)
−0.196302 + 0.980544i \(0.562893\pi\)
\(312\) 0 0
\(313\) 2.25584 2.25584i 0.127507 0.127507i −0.640473 0.767981i \(-0.721262\pi\)
0.767981 + 0.640473i \(0.221262\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −9.51848 −0.534611 −0.267305 0.963612i \(-0.586133\pi\)
−0.267305 + 0.963612i \(0.586133\pi\)
\(318\) 0 0
\(319\) 16.2587 + 9.02377i 0.910311 + 0.505234i
\(320\) 0 0
\(321\) −1.66187 1.66187i −0.0927564 0.0927564i
\(322\) 0 0
\(323\) 4.61108 + 4.61108i 0.256567 + 0.256567i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −4.61474 −0.255196
\(328\) 0 0
\(329\) −24.0045 24.0045i −1.32341 1.32341i
\(330\) 0 0
\(331\) −21.5660 + 21.5660i −1.18537 + 1.18537i −0.207040 + 0.978332i \(0.566383\pi\)
−0.978332 + 0.207040i \(0.933617\pi\)
\(332\) 0 0
\(333\) −6.17184 −0.338215
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 3.82596 0.208413 0.104207 0.994556i \(-0.466770\pi\)
0.104207 + 0.994556i \(0.466770\pi\)
\(338\) 0 0
\(339\) 3.06022i 0.166209i
\(340\) 0 0
\(341\) 29.9707i 1.62301i
\(342\) 0 0
\(343\) −43.4641 + 43.4641i −2.34684 + 2.34684i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.51125 2.51125i 0.134811 0.134811i −0.636481 0.771292i \(-0.719611\pi\)
0.771292 + 0.636481i \(0.219611\pi\)
\(348\) 0 0
\(349\) 29.3592i 1.57156i −0.618504 0.785782i \(-0.712261\pi\)
0.618504 0.785782i \(-0.287739\pi\)
\(350\) 0 0
\(351\) −4.57611 4.57611i −0.244255 0.244255i
\(352\) 0 0
\(353\) −21.8065 21.8065i −1.16064 1.16064i −0.984335 0.176310i \(-0.943584\pi\)
−0.176310 0.984335i \(-0.556416\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −3.19850 + 3.19850i −0.169282 + 0.169282i
\(358\) 0 0
\(359\) 0.291005 0.291005i 0.0153586 0.0153586i −0.699386 0.714744i \(-0.746543\pi\)
0.714744 + 0.699386i \(0.246543\pi\)
\(360\) 0 0
\(361\) 14.8434i 0.781229i
\(362\) 0 0
\(363\) 0.255833i 0.0134278i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 21.6841i 1.13190i −0.824439 0.565952i \(-0.808509\pi\)
0.824439 0.565952i \(-0.191491\pi\)
\(368\) 0 0
\(369\) −13.5023 + 13.5023i −0.702900 + 0.702900i
\(370\) 0 0
\(371\) −45.2057 −2.34696
\(372\) 0 0
\(373\) 3.53778 3.53778i 0.183179 0.183179i −0.609560 0.792740i \(-0.708654\pi\)
0.792740 + 0.609560i \(0.208654\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −18.5646 10.3036i −0.956127 0.530662i
\(378\) 0 0
\(379\) 11.4921 11.4921i 0.590311 0.590311i −0.347405 0.937715i \(-0.612937\pi\)
0.937715 + 0.347405i \(0.112937\pi\)
\(380\) 0 0
\(381\) 2.93978i 0.150609i
\(382\) 0 0
\(383\) 12.1791 + 12.1791i 0.622324 + 0.622324i 0.946125 0.323801i \(-0.104961\pi\)
−0.323801 + 0.946125i \(0.604961\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0.0323449 0.00164418
\(388\) 0 0
\(389\) −24.4729 24.4729i −1.24082 1.24082i −0.959659 0.281166i \(-0.909279\pi\)
−0.281166 0.959659i \(-0.590721\pi\)
\(390\) 0 0
\(391\) 12.8200 + 12.8200i 0.648335 + 0.648335i
\(392\) 0 0
\(393\) 3.05398 3.05398i 0.154053 0.154053i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −13.9748 13.9748i −0.701376 0.701376i 0.263330 0.964706i \(-0.415179\pi\)
−0.964706 + 0.263330i \(0.915179\pi\)
\(398\) 0 0
\(399\) 2.88328 0.144345
\(400\) 0 0
\(401\) −22.3930 −1.11825 −0.559127 0.829082i \(-0.688864\pi\)
−0.559127 + 0.829082i \(0.688864\pi\)
\(402\) 0 0
\(403\) 34.2214i 1.70469i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −5.15509 5.15509i −0.255528 0.255528i
\(408\) 0 0
\(409\) 15.6559 15.6559i 0.774132 0.774132i −0.204694 0.978826i \(-0.565620\pi\)
0.978826 + 0.204694i \(0.0656199\pi\)
\(410\) 0 0
\(411\) 4.35163i 0.214650i
\(412\) 0 0
\(413\) −33.6136 + 33.6136i −1.65402 + 1.65402i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1.04376i 0.0511133i
\(418\) 0 0
\(419\) 26.4993 1.29458 0.647288 0.762245i \(-0.275903\pi\)
0.647288 + 0.762245i \(0.275903\pi\)
\(420\) 0 0
\(421\) −3.05048 + 3.05048i −0.148671 + 0.148671i −0.777524 0.628853i \(-0.783525\pi\)
0.628853 + 0.777524i \(0.283525\pi\)
\(422\) 0 0
\(423\) 19.4451 0.945454
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 6.95122i 0.336393i
\(428\) 0 0
\(429\) 3.77269i 0.182147i
\(430\) 0 0
\(431\) 21.8141 1.05075 0.525374 0.850871i \(-0.323925\pi\)
0.525374 + 0.850871i \(0.323925\pi\)
\(432\) 0 0
\(433\) 37.4314i 1.79884i −0.437087 0.899419i \(-0.643990\pi\)
0.437087 0.899419i \(-0.356010\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 11.5566i 0.552825i
\(438\) 0 0
\(439\) 12.4315 0.593323 0.296661 0.954983i \(-0.404127\pi\)
0.296661 + 0.954983i \(0.404127\pi\)
\(440\) 0 0
\(441\) 55.6709i 2.65100i
\(442\) 0 0
\(443\) 31.2763i 1.48598i −0.669302 0.742990i \(-0.733407\pi\)
0.669302 0.742990i \(-0.266593\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −0.533796 −0.0252477
\(448\) 0 0
\(449\) 14.4685 14.4685i 0.682809 0.682809i −0.277823 0.960632i \(-0.589613\pi\)
0.960632 + 0.277823i \(0.0896128\pi\)
\(450\) 0 0
\(451\) −22.5558 −1.06211
\(452\) 0 0
\(453\) 1.47842i 0.0694621i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 13.8971 13.8971i 0.650079 0.650079i −0.302933 0.953012i \(-0.597966\pi\)
0.953012 + 0.302933i \(0.0979657\pi\)
\(458\) 0 0
\(459\) 5.25001i 0.245049i
\(460\) 0 0
\(461\) 25.7402 25.7402i 1.19884 1.19884i 0.224330 0.974513i \(-0.427981\pi\)
0.974513 0.224330i \(-0.0720192\pi\)
\(462\) 0 0
\(463\) −27.0353 27.0353i −1.25644 1.25644i −0.952783 0.303654i \(-0.901793\pi\)
−0.303654 0.952783i \(-0.598207\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 19.3698i 0.896327i 0.893952 + 0.448164i \(0.147922\pi\)
−0.893952 + 0.448164i \(0.852078\pi\)
\(468\) 0 0
\(469\) −3.84335 −0.177469
\(470\) 0 0
\(471\) 0.986499 0.0454555
\(472\) 0 0
\(473\) 0.0270164 + 0.0270164i 0.00124221 + 0.00124221i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 18.3096 18.3096i 0.838341 0.838341i
\(478\) 0 0
\(479\) −14.4756 14.4756i −0.661405 0.661405i 0.294306 0.955711i \(-0.404911\pi\)
−0.955711 + 0.294306i \(0.904911\pi\)
\(480\) 0 0
\(481\) 5.88623 + 5.88623i 0.268389 + 0.268389i
\(482\) 0 0
\(483\) 8.01626 0.364753
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −8.15950 8.15950i −0.369742 0.369742i 0.497641 0.867383i \(-0.334200\pi\)
−0.867383 + 0.497641i \(0.834200\pi\)
\(488\) 0 0
\(489\) 6.67320i 0.301773i
\(490\) 0 0
\(491\) −3.52898 + 3.52898i −0.159261 + 0.159261i −0.782239 0.622978i \(-0.785922\pi\)
0.622978 + 0.782239i \(0.285922\pi\)
\(492\) 0 0
\(493\) −4.73879 16.5597i −0.213424 0.745813i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −21.3747 + 21.3747i −0.958786 + 0.958786i
\(498\) 0 0
\(499\) −35.0662 −1.56978 −0.784890 0.619635i \(-0.787281\pi\)
−0.784890 + 0.619635i \(0.787281\pi\)
\(500\) 0 0
\(501\) −1.41787 + 1.41787i −0.0633459 + 0.0633459i
\(502\) 0 0
\(503\) 32.0156i 1.42751i 0.700398 + 0.713753i \(0.253006\pi\)
−0.700398 + 0.713753i \(0.746994\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.705294i 0.0313232i
\(508\) 0 0
\(509\) 7.30864i 0.323950i 0.986795 + 0.161975i \(0.0517863\pi\)
−0.986795 + 0.161975i \(0.948214\pi\)
\(510\) 0 0
\(511\) −24.0844 + 24.0844i −1.06543 + 1.06543i
\(512\) 0 0
\(513\) −2.36631 + 2.36631i −0.104475 + 0.104475i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 16.2417 + 16.2417i 0.714310 + 0.714310i
\(518\) 0 0
\(519\) −2.76951 2.76951i −0.121568 0.121568i
\(520\) 0 0
\(521\) 27.1673i 1.19022i −0.803644 0.595111i \(-0.797108\pi\)
0.803644 0.595111i \(-0.202892\pi\)
\(522\) 0 0
\(523\) 25.4884 25.4884i 1.11453 1.11453i 0.122000 0.992530i \(-0.461069\pi\)
0.992530 0.122000i \(-0.0389307\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −19.6305 + 19.6305i −0.855119 + 0.855119i
\(528\) 0 0
\(529\) 9.13022i 0.396966i
\(530\) 0 0
\(531\) 27.2290i 1.18164i
\(532\) 0 0
\(533\) 25.7549 1.11557
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −2.97334 −0.128309
\(538\) 0 0
\(539\) 46.4997 46.4997i 2.00288 2.00288i
\(540\) 0 0
\(541\) −9.20112 9.20112i −0.395587 0.395587i 0.481086 0.876673i \(-0.340242\pi\)
−0.876673 + 0.481086i \(0.840242\pi\)
\(542\) 0 0
\(543\) 3.13547 0.134556
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −1.30742 1.30742i −0.0559014 0.0559014i 0.678603 0.734505i \(-0.262586\pi\)
−0.734505 + 0.678603i \(0.762586\pi\)
\(548\) 0 0
\(549\) −2.81545 2.81545i −0.120161 0.120161i
\(550\) 0 0
\(551\) −5.32799 + 9.59976i −0.226980 + 0.408964i
\(552\) 0 0
\(553\) −3.76379 −0.160053
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 8.07074 8.07074i 0.341968 0.341968i −0.515139 0.857107i \(-0.672260\pi\)
0.857107 + 0.515139i \(0.172260\pi\)
\(558\) 0 0
\(559\) −0.0308481 0.0308481i −0.00130473 0.00130473i
\(560\) 0 0
\(561\) 2.16414 2.16414i 0.0913699 0.0913699i
\(562\) 0 0
\(563\) 18.3375i 0.772834i 0.922324 + 0.386417i \(0.126287\pi\)
−0.922324 + 0.386417i \(0.873713\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 30.0050 + 30.0050i 1.26009 + 1.26009i
\(568\) 0 0
\(569\) 3.84028 + 3.84028i 0.160993 + 0.160993i 0.783007 0.622013i \(-0.213685\pi\)
−0.622013 + 0.783007i \(0.713685\pi\)
\(570\) 0 0
\(571\) −19.1966 −0.803352 −0.401676 0.915782i \(-0.631572\pi\)
−0.401676 + 0.915782i \(0.631572\pi\)
\(572\) 0 0
\(573\) −1.45433 1.45433i −0.0607553 0.0607553i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 12.0899 0.503310 0.251655 0.967817i \(-0.419025\pi\)
0.251655 + 0.967817i \(0.419025\pi\)
\(578\) 0 0
\(579\) 7.26747 0.302026
\(580\) 0 0
\(581\) 12.8863 0.534616
\(582\) 0 0
\(583\) 30.5866 1.26677
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 29.8093 + 29.8093i 1.23036 + 1.23036i 0.963824 + 0.266539i \(0.0858801\pi\)
0.266539 + 0.963824i \(0.414120\pi\)
\(588\) 0 0
\(589\) 17.6959 0.729147
\(590\) 0 0
\(591\) 0.803421 + 0.803421i 0.0330483 + 0.0330483i
\(592\) 0 0
\(593\) 26.4315 + 26.4315i 1.08541 + 1.08541i 0.995994 + 0.0894166i \(0.0285003\pi\)
0.0894166 + 0.995994i \(0.471500\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 5.02249i 0.205557i
\(598\) 0 0
\(599\) 18.8303 18.8303i 0.769383 0.769383i −0.208615 0.977998i \(-0.566895\pi\)
0.977998 + 0.208615i \(0.0668954\pi\)
\(600\) 0 0
\(601\) −3.65892 3.65892i −0.149250 0.149250i 0.628533 0.777783i \(-0.283656\pi\)
−0.777783 + 0.628533i \(0.783656\pi\)
\(602\) 0 0
\(603\) 1.55667 1.55667i 0.0633926 0.0633926i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −18.0591 −0.732998 −0.366499 0.930419i \(-0.619444\pi\)
−0.366499 + 0.930419i \(0.619444\pi\)
\(608\) 0 0
\(609\) −6.65892 3.69578i −0.269833 0.149761i
\(610\) 0 0
\(611\) −18.5453 18.5453i −0.750261 0.750261i
\(612\) 0 0
\(613\) −23.9236 23.9236i −0.966265 0.966265i 0.0331846 0.999449i \(-0.489435\pi\)
−0.999449 + 0.0331846i \(0.989435\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 27.9182 1.12394 0.561971 0.827157i \(-0.310043\pi\)
0.561971 + 0.827157i \(0.310043\pi\)
\(618\) 0 0
\(619\) −5.79033 5.79033i −0.232733 0.232733i 0.581100 0.813832i \(-0.302623\pi\)
−0.813832 + 0.581100i \(0.802623\pi\)
\(620\) 0 0
\(621\) −6.57894 + 6.57894i −0.264004 + 0.264004i
\(622\) 0 0
\(623\) −19.7444 −0.791041
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −1.95086 −0.0779097
\(628\) 0 0
\(629\) 6.75306i 0.269262i
\(630\) 0 0
\(631\) 20.9105i 0.832435i 0.909265 + 0.416217i \(0.136644\pi\)
−0.909265 + 0.416217i \(0.863356\pi\)
\(632\) 0 0
\(633\) −3.71464 + 3.71464i −0.147644 + 0.147644i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −53.0947 + 53.0947i −2.10369 + 2.10369i
\(638\) 0 0
\(639\) 17.3148i 0.684962i
\(640\) 0 0
\(641\) 27.6469 + 27.6469i 1.09199 + 1.09199i 0.995316 + 0.0966700i \(0.0308191\pi\)
0.0966700 + 0.995316i \(0.469181\pi\)
\(642\) 0 0
\(643\) −21.3853 21.3853i −0.843355 0.843355i 0.145939 0.989294i \(-0.453380\pi\)
−0.989294 + 0.145939i \(0.953380\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 8.24380 8.24380i 0.324097 0.324097i −0.526239 0.850337i \(-0.676398\pi\)
0.850337 + 0.526239i \(0.176398\pi\)
\(648\) 0 0
\(649\) 22.7433 22.7433i 0.892753 0.892753i
\(650\) 0 0
\(651\) 12.2748i 0.481089i
\(652\) 0 0
\(653\) 10.6077i 0.415112i 0.978223 + 0.207556i \(0.0665510\pi\)
−0.978223 + 0.207556i \(0.933449\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 19.5098i 0.761150i
\(658\) 0 0
\(659\) 24.6028 24.6028i 0.958390 0.958390i −0.0407781 0.999168i \(-0.512984\pi\)
0.999168 + 0.0407781i \(0.0129837\pi\)
\(660\) 0 0
\(661\) −33.5482 −1.30487 −0.652437 0.757843i \(-0.726253\pi\)
−0.652437 + 0.757843i \(0.726253\pi\)
\(662\) 0 0
\(663\) −2.47107 + 2.47107i −0.0959685 + 0.0959685i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −14.8132 + 26.6898i −0.573568 + 1.03343i
\(668\) 0 0
\(669\) 3.03391 3.03391i 0.117298 0.117298i
\(670\) 0 0
\(671\) 4.70327i 0.181568i
\(672\) 0 0
\(673\) 25.9698 + 25.9698i 1.00106 + 1.00106i 0.999999 + 0.00106328i \(0.000338452\pi\)
0.00106328 + 0.999999i \(0.499662\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 29.8421 1.14693 0.573463 0.819232i \(-0.305600\pi\)
0.573463 + 0.819232i \(0.305600\pi\)
\(678\) 0 0
\(679\) 50.0490 + 50.0490i 1.92070 + 1.92070i
\(680\) 0 0
\(681\) 2.75907 + 2.75907i 0.105728 + 0.105728i
\(682\) 0 0
\(683\) 3.23127 3.23127i 0.123641 0.123641i −0.642579 0.766220i \(-0.722135\pi\)
0.766220 + 0.642579i \(0.222135\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 3.99749 + 3.99749i 0.152514 + 0.152514i
\(688\) 0 0
\(689\) −34.9247 −1.33052
\(690\) 0 0
\(691\) −7.74933 −0.294798 −0.147399 0.989077i \(-0.547090\pi\)
−0.147399 + 0.989077i \(0.547090\pi\)
\(692\) 0 0
\(693\) 51.5127i 1.95680i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 14.7738 + 14.7738i 0.559598 + 0.559598i
\(698\) 0 0
\(699\) 5.17322 5.17322i 0.195669 0.195669i
\(700\) 0 0
\(701\) 51.8645i 1.95889i −0.201703 0.979447i \(-0.564648\pi\)
0.201703 0.979447i \(-0.435352\pi\)
\(702\) 0 0
\(703\) 3.04377 3.04377i 0.114798 0.114798i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 33.0483i 1.24291i
\(708\) 0 0
\(709\) −15.5301 −0.583243 −0.291622 0.956534i \(-0.594195\pi\)
−0.291622 + 0.956534i \(0.594195\pi\)
\(710\) 0 0
\(711\) 1.52445 1.52445i 0.0571712 0.0571712i
\(712\) 0 0
\(713\) 49.1992 1.84252
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 5.79936i 0.216581i
\(718\) 0 0
\(719\) 34.1182i 1.27239i 0.771527 + 0.636197i \(0.219493\pi\)
−0.771527 + 0.636197i \(0.780507\pi\)
\(720\) 0 0
\(721\) −42.1657 −1.57033
\(722\) 0 0
\(723\) 4.32656i 0.160907i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 44.2814i 1.64231i −0.570708 0.821153i \(-0.693331\pi\)
0.570708 0.821153i \(-0.306669\pi\)
\(728\) 0 0
\(729\) −22.9412 −0.849676
\(730\) 0 0
\(731\) 0.0353909i 0.00130898i
\(732\) 0 0
\(733\) 10.2144i 0.377278i −0.982047 0.188639i \(-0.939592\pi\)
0.982047 0.188639i \(-0.0604075\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.60045 0.0957889
\(738\) 0 0
\(739\) 31.1111 31.1111i 1.14444 1.14444i 0.156812 0.987628i \(-0.449878\pi\)
0.987628 0.156812i \(-0.0501218\pi\)
\(740\) 0 0
\(741\) 2.22754 0.0818309
\(742\) 0 0
\(743\) 7.80384i 0.286295i 0.989701 + 0.143148i \(0.0457223\pi\)
−0.989701 + 0.143148i \(0.954278\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −5.21935 + 5.21935i −0.190966 + 0.190966i
\(748\) 0 0
\(749\) 43.2824i 1.58151i
\(750\) 0 0
\(751\) −24.6059 + 24.6059i −0.897882 + 0.897882i −0.995249 0.0973668i \(-0.968958\pi\)
0.0973668 + 0.995249i \(0.468958\pi\)
\(752\) 0 0
\(753\) 5.21726 + 5.21726i 0.190128 + 0.190128i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 5.07696i 0.184525i −0.995735 0.0922627i \(-0.970590\pi\)
0.995735 0.0922627i \(-0.0294100\pi\)
\(758\) 0 0
\(759\) −5.42389 −0.196875
\(760\) 0 0
\(761\) −15.5008 −0.561903 −0.280952 0.959722i \(-0.590650\pi\)
−0.280952 + 0.959722i \(0.590650\pi\)
\(762\) 0 0
\(763\) −60.0942 60.0942i −2.17556 2.17556i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −25.9690 + 25.9690i −0.937685 + 0.937685i
\(768\) 0 0
\(769\) −7.35163 7.35163i −0.265107 0.265107i 0.562018 0.827125i \(-0.310025\pi\)
−0.827125 + 0.562018i \(0.810025\pi\)
\(770\) 0 0
\(771\) −2.89690 2.89690i −0.104329 0.104329i
\(772\) 0 0
\(773\) 42.6208 1.53296 0.766482 0.642266i \(-0.222005\pi\)
0.766482 + 0.642266i \(0.222005\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 2.11132 + 2.11132i 0.0757433 + 0.0757433i
\(778\) 0 0
\(779\) 13.3178i 0.477161i
\(780\) 0 0
\(781\) 14.4623 14.4623i 0.517503 0.517503i
\(782\) 0 0
\(783\) 8.49810 2.43185i 0.303697 0.0869071i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 9.33475 9.33475i 0.332748 0.332748i −0.520881 0.853629i \(-0.674397\pi\)
0.853629 + 0.520881i \(0.174397\pi\)
\(788\) 0 0
\(789\) 7.53618 0.268295
\(790\) 0 0
\(791\) −39.8510 + 39.8510i −1.41694 + 1.41694i
\(792\) 0 0
\(793\) 5.37033i 0.190706i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 51.1951i 1.81342i −0.421752 0.906711i \(-0.638585\pi\)
0.421752 0.906711i \(-0.361415\pi\)
\(798\) 0 0
\(799\) 21.2763i 0.752702i
\(800\) 0 0
\(801\) 7.99705 7.99705i 0.282562 0.282562i
\(802\) 0 0
\(803\) 16.2958 16.2958i 0.575065 0.575065i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.66183 + 1.66183i 0.0584992 + 0.0584992i
\(808\) 0 0
\(809\) −10.8570 10.8570i −0.381711 0.381711i 0.490008 0.871718i \(-0.336994\pi\)
−0.871718 + 0.490008i \(0.836994\pi\)
\(810\) 0 0
\(811\) 1.51201i 0.0530939i −0.999648 0.0265470i \(-0.991549\pi\)
0.999648 0.0265470i \(-0.00845115\pi\)
\(812\) 0 0
\(813\) 0.727719 0.727719i 0.0255222 0.0255222i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −0.0159515 + 0.0159515i −0.000558073 + 0.000558073i
\(818\) 0 0
\(819\) 58.8186i 2.05529i
\(820\) 0 0
\(821\) 37.2198i 1.29898i 0.760370 + 0.649490i \(0.225018\pi\)
−0.760370 + 0.649490i \(0.774982\pi\)
\(822\) 0 0
\(823\) −10.8321 −0.377582 −0.188791 0.982017i \(-0.560457\pi\)
−0.188791 + 0.982017i \(0.560457\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −31.1953 −1.08477 −0.542384 0.840131i \(-0.682478\pi\)
−0.542384 + 0.840131i \(0.682478\pi\)
\(828\) 0 0
\(829\) 5.11672 5.11672i 0.177711 0.177711i −0.612646 0.790357i \(-0.709895\pi\)
0.790357 + 0.612646i \(0.209895\pi\)
\(830\) 0 0
\(831\) −4.38555 4.38555i −0.152133 0.152133i
\(832\) 0 0
\(833\) −60.9136 −2.11053
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −10.0740 10.0740i −0.348207 0.348207i
\(838\) 0 0
\(839\) −3.91306 3.91306i −0.135094 0.135094i 0.636326 0.771420i \(-0.280453\pi\)
−0.771420 + 0.636326i \(0.780453\pi\)
\(840\) 0 0
\(841\) 24.6099 15.3412i 0.848618 0.529007i
\(842\) 0 0
\(843\) −4.10137 −0.141259
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −3.33152 + 3.33152i −0.114472 + 0.114472i
\(848\) 0 0
\(849\) 3.41787 + 3.41787i 0.117301 + 0.117301i
\(850\) 0 0
\(851\) 8.46246 8.46246i 0.290089 0.290089i
\(852\) 0 0
\(853\) 19.3178i 0.661430i −0.943731 0.330715i \(-0.892710\pi\)
0.943731 0.330715i \(-0.107290\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −13.6114 13.6114i −0.464958 0.464958i 0.435318 0.900277i \(-0.356636\pi\)
−0.900277 + 0.435318i \(0.856636\pi\)
\(858\) 0 0
\(859\) 15.7934 + 15.7934i 0.538864 + 0.538864i 0.923195 0.384332i \(-0.125568\pi\)
−0.384332 + 0.923195i \(0.625568\pi\)
\(860\) 0 0
\(861\) 9.23798 0.314830
\(862\) 0 0
\(863\) −11.8939 11.8939i −0.404872 0.404872i 0.475074 0.879946i \(-0.342421\pi\)
−0.879946 + 0.475074i \(0.842421\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 1.87595 0.0637107
\(868\) 0 0
\(869\) 2.54662 0.0863881
\(870\) 0 0
\(871\) −2.96927 −0.100610
\(872\) 0 0
\(873\) −40.5427 −1.37216
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −5.15424 5.15424i −0.174046 0.174046i 0.614708 0.788755i \(-0.289274\pi\)
−0.788755 + 0.614708i \(0.789274\pi\)
\(878\) 0 0
\(879\) −3.54232 −0.119479
\(880\) 0 0
\(881\) −16.8034 16.8034i −0.566122 0.566122i 0.364918 0.931040i \(-0.381097\pi\)
−0.931040 + 0.364918i \(0.881097\pi\)
\(882\) 0 0
\(883\) 8.17142 + 8.17142i 0.274990 + 0.274990i 0.831105 0.556115i \(-0.187709\pi\)
−0.556115 + 0.831105i \(0.687709\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 53.1622i 1.78501i −0.451035 0.892506i \(-0.648945\pi\)
0.451035 0.892506i \(-0.351055\pi\)
\(888\) 0 0
\(889\) 38.2824 38.2824i 1.28395 1.28395i
\(890\) 0 0
\(891\) −20.3017 20.3017i −0.680132 0.680132i
\(892\) 0 0
\(893\) −9.58975 + 9.58975i −0.320909 + 0.320909i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 6.19315 0.206783
\(898\) 0 0
\(899\) −40.8686 22.6826i −1.36304 0.756506i
\(900\) 0 0
\(901\) −20.0339 20.0339i −0.667426 0.667426i
\(902\) 0 0
\(903\) −0.0110648 0.0110648i −0.000368215 0.000368215i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −46.2177 −1.53463 −0.767317 0.641268i \(-0.778409\pi\)
−0.767317 + 0.641268i \(0.778409\pi\)
\(908\) 0 0
\(909\) 13.3855 + 13.3855i 0.443971 + 0.443971i
\(910\) 0 0
\(911\) 18.8777 18.8777i 0.625445 0.625445i −0.321473 0.946919i \(-0.604178\pi\)
0.946919 + 0.321473i \(0.104178\pi\)
\(912\) 0 0
\(913\) −8.71904 −0.288558
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 79.5393 2.62662
\(918\) 0 0
\(919\) 47.2683i 1.55924i 0.626255 + 0.779618i \(0.284587\pi\)
−0.626255 + 0.779618i \(0.715413\pi\)
\(920\) 0 0
\(921\) 8.24240i 0.271596i
\(922\) 0 0
\(923\) −16.5135 + 16.5135i −0.543549 + 0.543549i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 17.0784 17.0784i 0.560928 0.560928i
\(928\) 0 0
\(929\) 13.2380i 0.434324i 0.976136 + 0.217162i \(0.0696800\pi\)
−0.976136 + 0.217162i \(0.930320\pi\)
\(930\) 0 0
\(931\) 27.4553 + 27.4553i 0.899810 + 0.899810i
\(932\) 0 0
\(933\) 3.83255 + 3.83255i 0.125472 + 0.125472i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −25.4724 + 25.4724i −0.832148 + 0.832148i −0.987810 0.155662i \(-0.950249\pi\)
0.155662 + 0.987810i \(0.450249\pi\)
\(938\) 0 0
\(939\) 0.625122 0.625122i 0.0204001 0.0204001i
\(940\) 0 0
\(941\) 23.8675i 0.778059i −0.921225 0.389029i \(-0.872810\pi\)
0.921225 0.389029i \(-0.127190\pi\)
\(942\) 0 0
\(943\) 37.0270i 1.20577i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 2.28285i 0.0741828i 0.999312 + 0.0370914i \(0.0118093\pi\)
−0.999312 + 0.0370914i \(0.988191\pi\)
\(948\) 0 0
\(949\) −18.6070 + 18.6070i −0.604007 + 0.604007i
\(950\) 0 0
\(951\) −2.63770 −0.0855331
\(952\) 0 0
\(953\) −8.45384 + 8.45384i −0.273847 + 0.273847i −0.830647 0.556800i \(-0.812029\pi\)
0.556800 + 0.830647i \(0.312029\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 4.50550 + 2.50061i 0.145642 + 0.0808331i
\(958\) 0 0
\(959\) −56.6680 + 56.6680i −1.82990 + 1.82990i
\(960\) 0 0
\(961\) 44.3359i 1.43019i
\(962\) 0 0
\(963\) 17.5307 + 17.5307i 0.564918 + 0.564918i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −27.3592 −0.879811 −0.439906 0.898044i \(-0.644988\pi\)
−0.439906 + 0.898044i \(0.644988\pi\)
\(968\) 0 0
\(969\) 1.27779 + 1.27779i 0.0410486 + 0.0410486i
\(970\) 0 0
\(971\) −19.8439 19.8439i −0.636820 0.636820i 0.312950 0.949770i \(-0.398683\pi\)
−0.949770 + 0.312950i \(0.898683\pi\)
\(972\) 0 0
\(973\) 13.5921 13.5921i 0.435744 0.435744i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −37.7220 37.7220i −1.20683 1.20683i −0.972047 0.234787i \(-0.924561\pi\)
−0.234787 0.972047i \(-0.575439\pi\)
\(978\) 0 0
\(979\) 13.3592 0.426963
\(980\) 0 0
\(981\) 48.6799 1.55423
\(982\) 0 0
\(983\) 3.04910i 0.0972510i 0.998817 + 0.0486255i \(0.0154841\pi\)
−0.998817 + 0.0486255i \(0.984516\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −6.65198 6.65198i −0.211735 0.211735i
\(988\) 0 0
\(989\) −0.0443494 + 0.0443494i −0.00141023 + 0.00141023i
\(990\) 0 0
\(991\) 4.05650i 0.128859i 0.997922 + 0.0644294i \(0.0205227\pi\)
−0.997922 + 0.0644294i \(0.979477\pi\)
\(992\) 0 0
\(993\) −5.97621 + 5.97621i −0.189649 + 0.189649i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 42.1611i 1.33526i 0.744495 + 0.667628i \(0.232690\pi\)
−0.744495 + 0.667628i \(0.767310\pi\)
\(998\) 0 0
\(999\) −3.46552 −0.109644
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2900.2.s.c.157.5 yes 16
5.2 odd 4 2900.2.j.c.2593.4 yes 16
5.3 odd 4 2900.2.j.c.2593.5 yes 16
5.4 even 2 inner 2900.2.s.c.157.4 yes 16
29.17 odd 4 2900.2.j.c.1757.4 16
145.17 even 4 inner 2900.2.s.c.1293.4 yes 16
145.104 odd 4 2900.2.j.c.1757.5 yes 16
145.133 even 4 inner 2900.2.s.c.1293.5 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2900.2.j.c.1757.4 16 29.17 odd 4
2900.2.j.c.1757.5 yes 16 145.104 odd 4
2900.2.j.c.2593.4 yes 16 5.2 odd 4
2900.2.j.c.2593.5 yes 16 5.3 odd 4
2900.2.s.c.157.4 yes 16 5.4 even 2 inner
2900.2.s.c.157.5 yes 16 1.1 even 1 trivial
2900.2.s.c.1293.4 yes 16 145.17 even 4 inner
2900.2.s.c.1293.5 yes 16 145.133 even 4 inner