Properties

Label 2900.2.j.c.2593.5
Level $2900$
Weight $2$
Character 2900.2593
Analytic conductor $23.157$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2900,2,Mod(1757,2900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2900, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2900.1757"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2900 = 2^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2900.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.1566165862\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 36x^{14} + 468x^{12} + 2844x^{10} + 8574x^{8} + 12524x^{6} + 8404x^{4} + 2324x^{2} + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 2593.5
Root \(1.27711i\) of defining polynomial
Character \(\chi\) \(=\) 2900.2593
Dual form 2900.2.j.c.1757.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.277113i q^{3} +(3.60863 - 3.60863i) q^{7} +2.92321 q^{9} +(-2.44164 - 2.44164i) q^{11} +(-2.78793 + 2.78793i) q^{13} +3.19850 q^{17} +(-1.44164 + 1.44164i) q^{19} +(1.00000 + 1.00000i) q^{21} +(4.00813 + 4.00813i) q^{23} +1.64140i q^{27} +(5.17735 - 1.48157i) q^{29} +(6.13742 + 6.13742i) q^{31} +(0.676611 - 0.676611i) q^{33} -2.11132i q^{37} +(-0.772573 - 0.772573i) q^{39} +(4.61899 - 4.61899i) q^{41} -0.0110648i q^{43} +6.65198i q^{47} -19.0445i q^{49} +0.886345i q^{51} +(-6.26354 - 6.26354i) q^{53} +(-0.399497 - 0.399497i) q^{57} -9.31477i q^{59} +(0.963137 + 0.963137i) q^{61} +(10.5488 - 10.5488i) q^{63} +(0.532522 + 0.532522i) q^{67} +(-1.11071 + 1.11071i) q^{69} +5.92321i q^{71} -6.67410 q^{73} -17.6220 q^{77} +(0.521498 - 0.521498i) q^{79} +8.31477 q^{81} +(1.78549 + 1.78549i) q^{83} +(0.410562 + 1.43471i) q^{87} +(2.73571 - 2.73571i) q^{89} +20.1213i q^{91} +(-1.70076 + 1.70076i) q^{93} -13.8692i q^{97} +(-7.13742 - 7.13742i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{9} - 4 q^{11} + 12 q^{19} + 16 q^{21} + 28 q^{29} + 28 q^{31} - 32 q^{39} - 16 q^{41} - 24 q^{61} + 72 q^{69} + 4 q^{79} + 8 q^{81} + 24 q^{89} - 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2900\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(1277\) \(1451\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.277113i 0.159991i 0.996795 + 0.0799957i \(0.0254907\pi\)
−0.996795 + 0.0799957i \(0.974509\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 3.60863 3.60863i 1.36394 1.36394i 0.495098 0.868837i \(-0.335132\pi\)
0.868837 0.495098i \(-0.164868\pi\)
\(8\) 0 0
\(9\) 2.92321 0.974403
\(10\) 0 0
\(11\) −2.44164 2.44164i −0.736182 0.736182i 0.235655 0.971837i \(-0.424277\pi\)
−0.971837 + 0.235655i \(0.924277\pi\)
\(12\) 0 0
\(13\) −2.78793 + 2.78793i −0.773234 + 0.773234i −0.978670 0.205437i \(-0.934139\pi\)
0.205437 + 0.978670i \(0.434139\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.19850 0.775749 0.387875 0.921712i \(-0.373209\pi\)
0.387875 + 0.921712i \(0.373209\pi\)
\(18\) 0 0
\(19\) −1.44164 + 1.44164i −0.330735 + 0.330735i −0.852865 0.522131i \(-0.825137\pi\)
0.522131 + 0.852865i \(0.325137\pi\)
\(20\) 0 0
\(21\) 1.00000 + 1.00000i 0.218218 + 0.218218i
\(22\) 0 0
\(23\) 4.00813 + 4.00813i 0.835753 + 0.835753i 0.988297 0.152544i \(-0.0487465\pi\)
−0.152544 + 0.988297i \(0.548746\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.64140i 0.315887i
\(28\) 0 0
\(29\) 5.17735 1.48157i 0.961410 0.275120i
\(30\) 0 0
\(31\) 6.13742 + 6.13742i 1.10231 + 1.10231i 0.994131 + 0.108182i \(0.0345030\pi\)
0.108182 + 0.994131i \(0.465497\pi\)
\(32\) 0 0
\(33\) 0.676611 0.676611i 0.117783 0.117783i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.11132i 0.347099i −0.984825 0.173550i \(-0.944476\pi\)
0.984825 0.173550i \(-0.0555237\pi\)
\(38\) 0 0
\(39\) −0.772573 0.772573i −0.123711 0.123711i
\(40\) 0 0
\(41\) 4.61899 4.61899i 0.721365 0.721365i −0.247518 0.968883i \(-0.579615\pi\)
0.968883 + 0.247518i \(0.0796150\pi\)
\(42\) 0 0
\(43\) 0.0110648i 0.00168737i −1.00000 0.000843687i \(-0.999731\pi\)
1.00000 0.000843687i \(-0.000268554\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.65198i 0.970290i 0.874434 + 0.485145i \(0.161233\pi\)
−0.874434 + 0.485145i \(0.838767\pi\)
\(48\) 0 0
\(49\) 19.0445i 2.72064i
\(50\) 0 0
\(51\) 0.886345i 0.124113i
\(52\) 0 0
\(53\) −6.26354 6.26354i −0.860364 0.860364i 0.131016 0.991380i \(-0.458176\pi\)
−0.991380 + 0.131016i \(0.958176\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −0.399497 0.399497i −0.0529147 0.0529147i
\(58\) 0 0
\(59\) 9.31477i 1.21268i −0.795206 0.606340i \(-0.792637\pi\)
0.795206 0.606340i \(-0.207363\pi\)
\(60\) 0 0
\(61\) 0.963137 + 0.963137i 0.123317 + 0.123317i 0.766072 0.642755i \(-0.222209\pi\)
−0.642755 + 0.766072i \(0.722209\pi\)
\(62\) 0 0
\(63\) 10.5488 10.5488i 1.32902 1.32902i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0.532522 + 0.532522i 0.0650579 + 0.0650579i 0.738887 0.673829i \(-0.235352\pi\)
−0.673829 + 0.738887i \(0.735352\pi\)
\(68\) 0 0
\(69\) −1.11071 + 1.11071i −0.133713 + 0.133713i
\(70\) 0 0
\(71\) 5.92321i 0.702955i 0.936196 + 0.351478i \(0.114321\pi\)
−0.936196 + 0.351478i \(0.885679\pi\)
\(72\) 0 0
\(73\) −6.67410 −0.781145 −0.390572 0.920572i \(-0.627723\pi\)
−0.390572 + 0.920572i \(0.627723\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −17.6220 −2.00821
\(78\) 0 0
\(79\) 0.521498 0.521498i 0.0586731 0.0586731i −0.677161 0.735834i \(-0.736790\pi\)
0.735834 + 0.677161i \(0.236790\pi\)
\(80\) 0 0
\(81\) 8.31477 0.923863
\(82\) 0 0
\(83\) 1.78549 + 1.78549i 0.195983 + 0.195983i 0.798275 0.602293i \(-0.205746\pi\)
−0.602293 + 0.798275i \(0.705746\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0.410562 + 1.43471i 0.0440169 + 0.153817i
\(88\) 0 0
\(89\) 2.73571 2.73571i 0.289985 0.289985i −0.547089 0.837074i \(-0.684264\pi\)
0.837074 + 0.547089i \(0.184264\pi\)
\(90\) 0 0
\(91\) 20.1213i 2.10928i
\(92\) 0 0
\(93\) −1.70076 + 1.70076i −0.176361 + 0.176361i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 13.8692i 1.40821i −0.710097 0.704104i \(-0.751349\pi\)
0.710097 0.704104i \(-0.248651\pi\)
\(98\) 0 0
\(99\) −7.13742 7.13742i −0.717338 0.717338i
\(100\) 0 0
\(101\) −4.57906 4.57906i −0.455634 0.455634i 0.441586 0.897219i \(-0.354416\pi\)
−0.897219 + 0.441586i \(0.854416\pi\)
\(102\) 0 0
\(103\) −5.84234 5.84234i −0.575663 0.575663i 0.358042 0.933705i \(-0.383444\pi\)
−0.933705 + 0.358042i \(0.883444\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.99707 + 5.99707i −0.579759 + 0.579759i −0.934837 0.355078i \(-0.884454\pi\)
0.355078 + 0.934837i \(0.384454\pi\)
\(108\) 0 0
\(109\) 16.6529 1.59506 0.797529 0.603280i \(-0.206140\pi\)
0.797529 + 0.603280i \(0.206140\pi\)
\(110\) 0 0
\(111\) 0.585075 0.0555329
\(112\) 0 0
\(113\) −11.0432 −1.03886 −0.519430 0.854513i \(-0.673856\pi\)
−0.519430 + 0.854513i \(0.673856\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −8.14971 + 8.14971i −0.753441 + 0.753441i
\(118\) 0 0
\(119\) 11.5422 11.5422i 1.05807 1.05807i
\(120\) 0 0
\(121\) 0.923208i 0.0839280i
\(122\) 0 0
\(123\) 1.27998 + 1.27998i 0.115412 + 0.115412i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −10.6086 −0.941359 −0.470679 0.882304i \(-0.655991\pi\)
−0.470679 + 0.882304i \(0.655991\pi\)
\(128\) 0 0
\(129\) 0.00306622 0.000269965
\(130\) 0 0
\(131\) 11.0207 11.0207i 0.962883 0.962883i −0.0364523 0.999335i \(-0.511606\pi\)
0.999335 + 0.0364523i \(0.0116057\pi\)
\(132\) 0 0
\(133\) 10.4047i 0.902202i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 15.7035 1.34164 0.670818 0.741622i \(-0.265943\pi\)
0.670818 + 0.741622i \(0.265943\pi\)
\(138\) 0 0
\(139\) 3.76656i 0.319475i 0.987160 + 0.159738i \(0.0510648\pi\)
−0.987160 + 0.159738i \(0.948935\pi\)
\(140\) 0 0
\(141\) −1.84335 −0.155238
\(142\) 0 0
\(143\) 13.6143 1.13848
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 5.27747 0.435279
\(148\) 0 0
\(149\) 1.92627 0.157807 0.0789033 0.996882i \(-0.474858\pi\)
0.0789033 + 0.996882i \(0.474858\pi\)
\(150\) 0 0
\(151\) 5.33507i 0.434162i −0.976154 0.217081i \(-0.930346\pi\)
0.976154 0.217081i \(-0.0696535\pi\)
\(152\) 0 0
\(153\) 9.34987 0.755892
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 3.55991i 0.284112i −0.989859 0.142056i \(-0.954629\pi\)
0.989859 0.142056i \(-0.0453713\pi\)
\(158\) 0 0
\(159\) 1.73571 1.73571i 0.137651 0.137651i
\(160\) 0 0
\(161\) 28.9277 2.27983
\(162\) 0 0
\(163\) −24.0811 −1.88618 −0.943090 0.332538i \(-0.892095\pi\)
−0.943090 + 0.332538i \(0.892095\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 5.11658 + 5.11658i 0.395933 + 0.395933i 0.876796 0.480863i \(-0.159676\pi\)
−0.480863 + 0.876796i \(0.659676\pi\)
\(168\) 0 0
\(169\) 2.54515i 0.195781i
\(170\) 0 0
\(171\) −4.21421 + 4.21421i −0.322269 + 0.322269i
\(172\) 0 0
\(173\) 9.99414 9.99414i 0.759840 0.759840i −0.216453 0.976293i \(-0.569449\pi\)
0.976293 + 0.216453i \(0.0694488\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 2.58125 0.194018
\(178\) 0 0
\(179\) 10.7297 0.801975 0.400988 0.916083i \(-0.368667\pi\)
0.400988 + 0.916083i \(0.368667\pi\)
\(180\) 0 0
\(181\) 11.3148 0.841020 0.420510 0.907288i \(-0.361851\pi\)
0.420510 + 0.907288i \(0.361851\pi\)
\(182\) 0 0
\(183\) −0.266898 + 0.266898i −0.0197297 + 0.0197297i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −7.80957 7.80957i −0.571093 0.571093i
\(188\) 0 0
\(189\) 5.92321 + 5.92321i 0.430850 + 0.430850i
\(190\) 0 0
\(191\) −5.24813 5.24813i −0.379741 0.379741i 0.491268 0.871009i \(-0.336534\pi\)
−0.871009 + 0.491268i \(0.836534\pi\)
\(192\) 0 0
\(193\) 26.2256i 1.88776i 0.330284 + 0.943882i \(0.392856\pi\)
−0.330284 + 0.943882i \(0.607144\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.89925 2.89925i 0.206563 0.206563i −0.596242 0.802805i \(-0.703340\pi\)
0.802805 + 0.596242i \(0.203340\pi\)
\(198\) 0 0
\(199\) 18.1243i 1.28480i −0.766370 0.642400i \(-0.777939\pi\)
0.766370 0.642400i \(-0.222061\pi\)
\(200\) 0 0
\(201\) −0.147569 + 0.147569i −0.0104087 + 0.0104087i
\(202\) 0 0
\(203\) 13.3367 24.0296i 0.936054 1.68655i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 11.7166 + 11.7166i 0.814360 + 0.814360i
\(208\) 0 0
\(209\) 7.03993 0.486962
\(210\) 0 0
\(211\) −13.4048 + 13.4048i −0.922823 + 0.922823i −0.997228 0.0744052i \(-0.976294\pi\)
0.0744052 + 0.997228i \(0.476294\pi\)
\(212\) 0 0
\(213\) −1.64140 −0.112467
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 44.2954 3.00697
\(218\) 0 0
\(219\) 1.84948i 0.124976i
\(220\) 0 0
\(221\) −8.91719 + 8.91719i −0.599835 + 0.599835i
\(222\) 0 0
\(223\) 10.9483 + 10.9483i 0.733151 + 0.733151i 0.971243 0.238091i \(-0.0765218\pi\)
−0.238091 + 0.971243i \(0.576522\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 9.95648 9.95648i 0.660835 0.660835i −0.294742 0.955577i \(-0.595234\pi\)
0.955577 + 0.294742i \(0.0952337\pi\)
\(228\) 0 0
\(229\) −14.4255 14.4255i −0.953262 0.953262i 0.0456931 0.998956i \(-0.485450\pi\)
−0.998956 + 0.0456931i \(0.985450\pi\)
\(230\) 0 0
\(231\) 4.88328i 0.321296i
\(232\) 0 0
\(233\) 18.6682 + 18.6682i 1.22300 + 1.22300i 0.966561 + 0.256436i \(0.0825483\pi\)
0.256436 + 0.966561i \(0.417452\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0.144514 + 0.144514i 0.00938719 + 0.00938719i
\(238\) 0 0
\(239\) 20.9277i 1.35370i −0.736119 0.676852i \(-0.763344\pi\)
0.736119 0.676852i \(-0.236656\pi\)
\(240\) 0 0
\(241\) 15.6130i 1.00572i −0.864368 0.502860i \(-0.832281\pi\)
0.864368 0.502860i \(-0.167719\pi\)
\(242\) 0 0
\(243\) 7.22833i 0.463698i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 8.03839i 0.511471i
\(248\) 0 0
\(249\) −0.494782 + 0.494782i −0.0313556 + 0.0313556i
\(250\) 0 0
\(251\) 18.8272 + 18.8272i 1.18836 + 1.18836i 0.977520 + 0.210841i \(0.0676203\pi\)
0.210841 + 0.977520i \(0.432380\pi\)
\(252\) 0 0
\(253\) 19.5728i 1.23053i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −10.4538 + 10.4538i −0.652093 + 0.652093i −0.953497 0.301404i \(-0.902545\pi\)
0.301404 + 0.953497i \(0.402545\pi\)
\(258\) 0 0
\(259\) −7.61899 7.61899i −0.473421 0.473421i
\(260\) 0 0
\(261\) 15.1345 4.33093i 0.936800 0.268078i
\(262\) 0 0
\(263\) 27.1953i 1.67694i 0.544951 + 0.838468i \(0.316548\pi\)
−0.544951 + 0.838468i \(0.683452\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0.758102 + 0.758102i 0.0463951 + 0.0463951i
\(268\) 0 0
\(269\) −5.99693 5.99693i −0.365640 0.365640i 0.500245 0.865884i \(-0.333243\pi\)
−0.865884 + 0.500245i \(0.833243\pi\)
\(270\) 0 0
\(271\) 2.62607 2.62607i 0.159522 0.159522i −0.622833 0.782355i \(-0.714018\pi\)
0.782355 + 0.622833i \(0.214018\pi\)
\(272\) 0 0
\(273\) −5.57587 −0.337467
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −15.8258 + 15.8258i −0.950882 + 0.950882i −0.998849 0.0479667i \(-0.984726\pi\)
0.0479667 + 0.998849i \(0.484726\pi\)
\(278\) 0 0
\(279\) 17.9410 + 17.9410i 1.07410 + 1.07410i
\(280\) 0 0
\(281\) −14.8004 −0.882915 −0.441458 0.897282i \(-0.645538\pi\)
−0.441458 + 0.897282i \(0.645538\pi\)
\(282\) 0 0
\(283\) −12.3338 + 12.3338i −0.733171 + 0.733171i −0.971247 0.238075i \(-0.923483\pi\)
0.238075 + 0.971247i \(0.423483\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 33.3365i 1.96779i
\(288\) 0 0
\(289\) −6.76962 −0.398213
\(290\) 0 0
\(291\) 3.84335 0.225301
\(292\) 0 0
\(293\) 12.7829i 0.746786i −0.927673 0.373393i \(-0.878194\pi\)
0.927673 0.373393i \(-0.121806\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 4.00771 4.00771i 0.232551 0.232551i
\(298\) 0 0
\(299\) −22.3488 −1.29246
\(300\) 0 0
\(301\) −0.0399290 0.0399290i −0.00230147 0.00230147i
\(302\) 0 0
\(303\) 1.26892 1.26892i 0.0728975 0.0728975i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −29.7438 −1.69757 −0.848785 0.528739i \(-0.822665\pi\)
−0.848785 + 0.528739i \(0.822665\pi\)
\(308\) 0 0
\(309\) 1.61899 1.61899i 0.0921011 0.0921011i
\(310\) 0 0
\(311\) 13.8303 + 13.8303i 0.784242 + 0.784242i 0.980544 0.196302i \(-0.0628932\pi\)
−0.196302 + 0.980544i \(0.562893\pi\)
\(312\) 0 0
\(313\) 2.25584 + 2.25584i 0.127507 + 0.127507i 0.767981 0.640473i \(-0.221262\pi\)
−0.640473 + 0.767981i \(0.721262\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9.51848i 0.534611i 0.963612 + 0.267305i \(0.0861333\pi\)
−0.963612 + 0.267305i \(0.913867\pi\)
\(318\) 0 0
\(319\) −16.2587 9.02377i −0.910311 0.505234i
\(320\) 0 0
\(321\) −1.66187 1.66187i −0.0927564 0.0927564i
\(322\) 0 0
\(323\) −4.61108 + 4.61108i −0.256567 + 0.256567i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 4.61474i 0.255196i
\(328\) 0 0
\(329\) 24.0045 + 24.0045i 1.32341 + 1.32341i
\(330\) 0 0
\(331\) −21.5660 + 21.5660i −1.18537 + 1.18537i −0.207040 + 0.978332i \(0.566383\pi\)
−0.978332 + 0.207040i \(0.933617\pi\)
\(332\) 0 0
\(333\) 6.17184i 0.338215i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 3.82596i 0.208413i −0.994556 0.104207i \(-0.966770\pi\)
0.994556 0.104207i \(-0.0332303\pi\)
\(338\) 0 0
\(339\) 3.06022i 0.166209i
\(340\) 0 0
\(341\) 29.9707i 1.62301i
\(342\) 0 0
\(343\) −43.4641 43.4641i −2.34684 2.34684i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −2.51125 2.51125i −0.134811 0.134811i 0.636481 0.771292i \(-0.280389\pi\)
−0.771292 + 0.636481i \(0.780389\pi\)
\(348\) 0 0
\(349\) 29.3592i 1.57156i 0.618504 + 0.785782i \(0.287739\pi\)
−0.618504 + 0.785782i \(0.712261\pi\)
\(350\) 0 0
\(351\) −4.57611 4.57611i −0.244255 0.244255i
\(352\) 0 0
\(353\) 21.8065 21.8065i 1.16064 1.16064i 0.176310 0.984335i \(-0.443584\pi\)
0.984335 0.176310i \(-0.0564160\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 3.19850 + 3.19850i 0.169282 + 0.169282i
\(358\) 0 0
\(359\) −0.291005 + 0.291005i −0.0153586 + 0.0153586i −0.714744 0.699386i \(-0.753457\pi\)
0.699386 + 0.714744i \(0.253457\pi\)
\(360\) 0 0
\(361\) 14.8434i 0.781229i
\(362\) 0 0
\(363\) −0.255833 −0.0134278
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −21.6841 −1.13190 −0.565952 0.824439i \(-0.691491\pi\)
−0.565952 + 0.824439i \(0.691491\pi\)
\(368\) 0 0
\(369\) 13.5023 13.5023i 0.702900 0.702900i
\(370\) 0 0
\(371\) −45.2057 −2.34696
\(372\) 0 0
\(373\) 3.53778 + 3.53778i 0.183179 + 0.183179i 0.792740 0.609560i \(-0.208654\pi\)
−0.609560 + 0.792740i \(0.708654\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −10.3036 + 18.5646i −0.530662 + 0.956127i
\(378\) 0 0
\(379\) −11.4921 + 11.4921i −0.590311 + 0.590311i −0.937715 0.347405i \(-0.887063\pi\)
0.347405 + 0.937715i \(0.387063\pi\)
\(380\) 0 0
\(381\) 2.93978i 0.150609i
\(382\) 0 0
\(383\) −12.1791 + 12.1791i −0.622324 + 0.622324i −0.946125 0.323801i \(-0.895039\pi\)
0.323801 + 0.946125i \(0.395039\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0.0323449i 0.00164418i
\(388\) 0 0
\(389\) 24.4729 + 24.4729i 1.24082 + 1.24082i 0.959659 + 0.281166i \(0.0907210\pi\)
0.281166 + 0.959659i \(0.409279\pi\)
\(390\) 0 0
\(391\) 12.8200 + 12.8200i 0.648335 + 0.648335i
\(392\) 0 0
\(393\) 3.05398 + 3.05398i 0.154053 + 0.154053i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −13.9748 + 13.9748i −0.701376 + 0.701376i −0.964706 0.263330i \(-0.915179\pi\)
0.263330 + 0.964706i \(0.415179\pi\)
\(398\) 0 0
\(399\) −2.88328 −0.144345
\(400\) 0 0
\(401\) −22.3930 −1.11825 −0.559127 0.829082i \(-0.688864\pi\)
−0.559127 + 0.829082i \(0.688864\pi\)
\(402\) 0 0
\(403\) −34.2214 −1.70469
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −5.15509 + 5.15509i −0.255528 + 0.255528i
\(408\) 0 0
\(409\) −15.6559 + 15.6559i −0.774132 + 0.774132i −0.978826 0.204694i \(-0.934380\pi\)
0.204694 + 0.978826i \(0.434380\pi\)
\(410\) 0 0
\(411\) 4.35163i 0.214650i
\(412\) 0 0
\(413\) −33.6136 33.6136i −1.65402 1.65402i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −1.04376 −0.0511133
\(418\) 0 0
\(419\) −26.4993 −1.29458 −0.647288 0.762245i \(-0.724097\pi\)
−0.647288 + 0.762245i \(0.724097\pi\)
\(420\) 0 0
\(421\) −3.05048 + 3.05048i −0.148671 + 0.148671i −0.777524 0.628853i \(-0.783525\pi\)
0.628853 + 0.777524i \(0.283525\pi\)
\(422\) 0 0
\(423\) 19.4451i 0.945454i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 6.95122 0.336393
\(428\) 0 0
\(429\) 3.77269i 0.182147i
\(430\) 0 0
\(431\) 21.8141 1.05075 0.525374 0.850871i \(-0.323925\pi\)
0.525374 + 0.850871i \(0.323925\pi\)
\(432\) 0 0
\(433\) 37.4314 1.79884 0.899419 0.437087i \(-0.143990\pi\)
0.899419 + 0.437087i \(0.143990\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −11.5566 −0.552825
\(438\) 0 0
\(439\) −12.4315 −0.593323 −0.296661 0.954983i \(-0.595873\pi\)
−0.296661 + 0.954983i \(0.595873\pi\)
\(440\) 0 0
\(441\) 55.6709i 2.65100i
\(442\) 0 0
\(443\) 31.2763 1.48598 0.742990 0.669302i \(-0.233407\pi\)
0.742990 + 0.669302i \(0.233407\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0.533796i 0.0252477i
\(448\) 0 0
\(449\) −14.4685 + 14.4685i −0.682809 + 0.682809i −0.960632 0.277823i \(-0.910387\pi\)
0.277823 + 0.960632i \(0.410387\pi\)
\(450\) 0 0
\(451\) −22.5558 −1.06211
\(452\) 0 0
\(453\) 1.47842 0.0694621
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −13.8971 13.8971i −0.650079 0.650079i 0.302933 0.953012i \(-0.402034\pi\)
−0.953012 + 0.302933i \(0.902034\pi\)
\(458\) 0 0
\(459\) 5.25001i 0.245049i
\(460\) 0 0
\(461\) 25.7402 25.7402i 1.19884 1.19884i 0.224330 0.974513i \(-0.427981\pi\)
0.974513 0.224330i \(-0.0720192\pi\)
\(462\) 0 0
\(463\) 27.0353 27.0353i 1.25644 1.25644i 0.303654 0.952783i \(-0.401793\pi\)
0.952783 0.303654i \(-0.0982065\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 19.3698 0.896327 0.448164 0.893952i \(-0.352078\pi\)
0.448164 + 0.893952i \(0.352078\pi\)
\(468\) 0 0
\(469\) 3.84335 0.177469
\(470\) 0 0
\(471\) 0.986499 0.0454555
\(472\) 0 0
\(473\) −0.0270164 + 0.0270164i −0.00124221 + 0.00124221i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −18.3096 18.3096i −0.838341 0.838341i
\(478\) 0 0
\(479\) 14.4756 + 14.4756i 0.661405 + 0.661405i 0.955711 0.294306i \(-0.0950886\pi\)
−0.294306 + 0.955711i \(0.595089\pi\)
\(480\) 0 0
\(481\) 5.88623 + 5.88623i 0.268389 + 0.268389i
\(482\) 0 0
\(483\) 8.01626i 0.364753i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −8.15950 + 8.15950i −0.369742 + 0.369742i −0.867383 0.497641i \(-0.834200\pi\)
0.497641 + 0.867383i \(0.334200\pi\)
\(488\) 0 0
\(489\) 6.67320i 0.301773i
\(490\) 0 0
\(491\) −3.52898 + 3.52898i −0.159261 + 0.159261i −0.782239 0.622978i \(-0.785922\pi\)
0.622978 + 0.782239i \(0.285922\pi\)
\(492\) 0 0
\(493\) 16.5597 4.73879i 0.745813 0.213424i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 21.3747 + 21.3747i 0.958786 + 0.958786i
\(498\) 0 0
\(499\) 35.0662 1.56978 0.784890 0.619635i \(-0.212719\pi\)
0.784890 + 0.619635i \(0.212719\pi\)
\(500\) 0 0
\(501\) −1.41787 + 1.41787i −0.0633459 + 0.0633459i
\(502\) 0 0
\(503\) −32.0156 −1.42751 −0.713753 0.700398i \(-0.753006\pi\)
−0.713753 + 0.700398i \(0.753006\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.705294 0.0313232
\(508\) 0 0
\(509\) 7.30864i 0.323950i −0.986795 0.161975i \(-0.948214\pi\)
0.986795 0.161975i \(-0.0517863\pi\)
\(510\) 0 0
\(511\) −24.0844 + 24.0844i −1.06543 + 1.06543i
\(512\) 0 0
\(513\) −2.36631 2.36631i −0.104475 0.104475i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 16.2417 16.2417i 0.714310 0.714310i
\(518\) 0 0
\(519\) 2.76951 + 2.76951i 0.121568 + 0.121568i
\(520\) 0 0
\(521\) 27.1673i 1.19022i −0.803644 0.595111i \(-0.797108\pi\)
0.803644 0.595111i \(-0.202892\pi\)
\(522\) 0 0
\(523\) 25.4884 + 25.4884i 1.11453 + 1.11453i 0.992530 + 0.122000i \(0.0389307\pi\)
0.122000 + 0.992530i \(0.461069\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 19.6305 + 19.6305i 0.855119 + 0.855119i
\(528\) 0 0
\(529\) 9.13022i 0.396966i
\(530\) 0 0
\(531\) 27.2290i 1.18164i
\(532\) 0 0
\(533\) 25.7549i 1.11557i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 2.97334i 0.128309i
\(538\) 0 0
\(539\) −46.4997 + 46.4997i −2.00288 + 2.00288i
\(540\) 0 0
\(541\) −9.20112 9.20112i −0.395587 0.395587i 0.481086 0.876673i \(-0.340242\pi\)
−0.876673 + 0.481086i \(0.840242\pi\)
\(542\) 0 0
\(543\) 3.13547i 0.134556i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −1.30742 + 1.30742i −0.0559014 + 0.0559014i −0.734505 0.678603i \(-0.762586\pi\)
0.678603 + 0.734505i \(0.262586\pi\)
\(548\) 0 0
\(549\) 2.81545 + 2.81545i 0.120161 + 0.120161i
\(550\) 0 0
\(551\) −5.32799 + 9.59976i −0.226980 + 0.408964i
\(552\) 0 0
\(553\) 3.76379i 0.160053i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −8.07074 8.07074i −0.341968 0.341968i 0.515139 0.857107i \(-0.327740\pi\)
−0.857107 + 0.515139i \(0.827740\pi\)
\(558\) 0 0
\(559\) 0.0308481 + 0.0308481i 0.00130473 + 0.00130473i
\(560\) 0 0
\(561\) 2.16414 2.16414i 0.0913699 0.0913699i
\(562\) 0 0
\(563\) −18.3375 −0.772834 −0.386417 0.922324i \(-0.626287\pi\)
−0.386417 + 0.922324i \(0.626287\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 30.0050 30.0050i 1.26009 1.26009i
\(568\) 0 0
\(569\) −3.84028 3.84028i −0.160993 0.160993i 0.622013 0.783007i \(-0.286315\pi\)
−0.783007 + 0.622013i \(0.786315\pi\)
\(570\) 0 0
\(571\) −19.1966 −0.803352 −0.401676 0.915782i \(-0.631572\pi\)
−0.401676 + 0.915782i \(0.631572\pi\)
\(572\) 0 0
\(573\) 1.45433 1.45433i 0.0607553 0.0607553i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 12.0899i 0.503310i −0.967817 0.251655i \(-0.919025\pi\)
0.967817 0.251655i \(-0.0809748\pi\)
\(578\) 0 0
\(579\) −7.26747 −0.302026
\(580\) 0 0
\(581\) 12.8863 0.534616
\(582\) 0 0
\(583\) 30.5866i 1.26677i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 29.8093 29.8093i 1.23036 1.23036i 0.266539 0.963824i \(-0.414120\pi\)
0.963824 0.266539i \(-0.0858801\pi\)
\(588\) 0 0
\(589\) −17.6959 −0.729147
\(590\) 0 0
\(591\) 0.803421 + 0.803421i 0.0330483 + 0.0330483i
\(592\) 0 0
\(593\) −26.4315 + 26.4315i −1.08541 + 1.08541i −0.0894166 + 0.995994i \(0.528500\pi\)
−0.995994 + 0.0894166i \(0.971500\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 5.02249 0.205557
\(598\) 0 0
\(599\) −18.8303 + 18.8303i −0.769383 + 0.769383i −0.977998 0.208615i \(-0.933105\pi\)
0.208615 + 0.977998i \(0.433105\pi\)
\(600\) 0 0
\(601\) −3.65892 3.65892i −0.149250 0.149250i 0.628533 0.777783i \(-0.283656\pi\)
−0.777783 + 0.628533i \(0.783656\pi\)
\(602\) 0 0
\(603\) 1.55667 + 1.55667i 0.0633926 + 0.0633926i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 18.0591i 0.732998i 0.930419 + 0.366499i \(0.119444\pi\)
−0.930419 + 0.366499i \(0.880556\pi\)
\(608\) 0 0
\(609\) 6.65892 + 3.69578i 0.269833 + 0.149761i
\(610\) 0 0
\(611\) −18.5453 18.5453i −0.750261 0.750261i
\(612\) 0 0
\(613\) 23.9236 23.9236i 0.966265 0.966265i −0.0331846 0.999449i \(-0.510565\pi\)
0.999449 + 0.0331846i \(0.0105649\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 27.9182i 1.12394i −0.827157 0.561971i \(-0.810043\pi\)
0.827157 0.561971i \(-0.189957\pi\)
\(618\) 0 0
\(619\) 5.79033 + 5.79033i 0.232733 + 0.232733i 0.813832 0.581100i \(-0.197377\pi\)
−0.581100 + 0.813832i \(0.697377\pi\)
\(620\) 0 0
\(621\) −6.57894 + 6.57894i −0.264004 + 0.264004i
\(622\) 0 0
\(623\) 19.7444i 0.791041i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 1.95086i 0.0779097i
\(628\) 0 0
\(629\) 6.75306i 0.269262i
\(630\) 0 0
\(631\) 20.9105i 0.832435i 0.909265 + 0.416217i \(0.136644\pi\)
−0.909265 + 0.416217i \(0.863356\pi\)
\(632\) 0 0
\(633\) −3.71464 3.71464i −0.147644 0.147644i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 53.0947 + 53.0947i 2.10369 + 2.10369i
\(638\) 0 0
\(639\) 17.3148i 0.684962i
\(640\) 0 0
\(641\) 27.6469 + 27.6469i 1.09199 + 1.09199i 0.995316 + 0.0966700i \(0.0308191\pi\)
0.0966700 + 0.995316i \(0.469181\pi\)
\(642\) 0 0
\(643\) 21.3853 21.3853i 0.843355 0.843355i −0.145939 0.989294i \(-0.546620\pi\)
0.989294 + 0.145939i \(0.0466202\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −8.24380 8.24380i −0.324097 0.324097i 0.526239 0.850337i \(-0.323602\pi\)
−0.850337 + 0.526239i \(0.823602\pi\)
\(648\) 0 0
\(649\) −22.7433 + 22.7433i −0.892753 + 0.892753i
\(650\) 0 0
\(651\) 12.2748i 0.481089i
\(652\) 0 0
\(653\) −10.6077 −0.415112 −0.207556 0.978223i \(-0.566551\pi\)
−0.207556 + 0.978223i \(0.566551\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −19.5098 −0.761150
\(658\) 0 0
\(659\) −24.6028 + 24.6028i −0.958390 + 0.958390i −0.999168 0.0407781i \(-0.987016\pi\)
0.0407781 + 0.999168i \(0.487016\pi\)
\(660\) 0 0
\(661\) −33.5482 −1.30487 −0.652437 0.757843i \(-0.726253\pi\)
−0.652437 + 0.757843i \(0.726253\pi\)
\(662\) 0 0
\(663\) −2.47107 2.47107i −0.0959685 0.0959685i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 26.6898 + 14.8132i 1.03343 + 0.573568i
\(668\) 0 0
\(669\) −3.03391 + 3.03391i −0.117298 + 0.117298i
\(670\) 0 0
\(671\) 4.70327i 0.181568i
\(672\) 0 0
\(673\) −25.9698 + 25.9698i −1.00106 + 1.00106i −0.00106328 + 0.999999i \(0.500338\pi\)
−0.999999 + 0.00106328i \(0.999662\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 29.8421i 1.14693i −0.819232 0.573463i \(-0.805600\pi\)
0.819232 0.573463i \(-0.194400\pi\)
\(678\) 0 0
\(679\) −50.0490 50.0490i −1.92070 1.92070i
\(680\) 0 0
\(681\) 2.75907 + 2.75907i 0.105728 + 0.105728i
\(682\) 0 0
\(683\) 3.23127 + 3.23127i 0.123641 + 0.123641i 0.766220 0.642579i \(-0.222135\pi\)
−0.642579 + 0.766220i \(0.722135\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 3.99749 3.99749i 0.152514 0.152514i
\(688\) 0 0
\(689\) 34.9247 1.33052
\(690\) 0 0
\(691\) −7.74933 −0.294798 −0.147399 0.989077i \(-0.547090\pi\)
−0.147399 + 0.989077i \(0.547090\pi\)
\(692\) 0 0
\(693\) −51.5127 −1.95680
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 14.7738 14.7738i 0.559598 0.559598i
\(698\) 0 0
\(699\) −5.17322 + 5.17322i −0.195669 + 0.195669i
\(700\) 0 0
\(701\) 51.8645i 1.95889i −0.201703 0.979447i \(-0.564648\pi\)
0.201703 0.979447i \(-0.435352\pi\)
\(702\) 0 0
\(703\) 3.04377 + 3.04377i 0.114798 + 0.114798i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −33.0483 −1.24291
\(708\) 0 0
\(709\) 15.5301 0.583243 0.291622 0.956534i \(-0.405805\pi\)
0.291622 + 0.956534i \(0.405805\pi\)
\(710\) 0 0
\(711\) 1.52445 1.52445i 0.0571712 0.0571712i
\(712\) 0 0
\(713\) 49.1992i 1.84252i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 5.79936 0.216581
\(718\) 0 0
\(719\) 34.1182i 1.27239i −0.771527 0.636197i \(-0.780507\pi\)
0.771527 0.636197i \(-0.219493\pi\)
\(720\) 0 0
\(721\) −42.1657 −1.57033
\(722\) 0 0
\(723\) 4.32656 0.160907
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −44.2814 −1.64231 −0.821153 0.570708i \(-0.806669\pi\)
−0.821153 + 0.570708i \(0.806669\pi\)
\(728\) 0 0
\(729\) 22.9412 0.849676
\(730\) 0 0
\(731\) 0.0353909i 0.00130898i
\(732\) 0 0
\(733\) 10.2144 0.377278 0.188639 0.982047i \(-0.439592\pi\)
0.188639 + 0.982047i \(0.439592\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.60045i 0.0957889i
\(738\) 0 0
\(739\) −31.1111 + 31.1111i −1.14444 + 1.14444i −0.156812 + 0.987628i \(0.550122\pi\)
−0.987628 + 0.156812i \(0.949878\pi\)
\(740\) 0 0
\(741\) 2.22754 0.0818309
\(742\) 0 0
\(743\) −7.80384 −0.286295 −0.143148 0.989701i \(-0.545722\pi\)
−0.143148 + 0.989701i \(0.545722\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 5.21935 + 5.21935i 0.190966 + 0.190966i
\(748\) 0 0
\(749\) 43.2824i 1.58151i
\(750\) 0 0
\(751\) −24.6059 + 24.6059i −0.897882 + 0.897882i −0.995249 0.0973668i \(-0.968958\pi\)
0.0973668 + 0.995249i \(0.468958\pi\)
\(752\) 0 0
\(753\) −5.21726 + 5.21726i −0.190128 + 0.190128i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −5.07696 −0.184525 −0.0922627 0.995735i \(-0.529410\pi\)
−0.0922627 + 0.995735i \(0.529410\pi\)
\(758\) 0 0
\(759\) 5.42389 0.196875
\(760\) 0 0
\(761\) −15.5008 −0.561903 −0.280952 0.959722i \(-0.590650\pi\)
−0.280952 + 0.959722i \(0.590650\pi\)
\(762\) 0 0
\(763\) 60.0942 60.0942i 2.17556 2.17556i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 25.9690 + 25.9690i 0.937685 + 0.937685i
\(768\) 0 0
\(769\) 7.35163 + 7.35163i 0.265107 + 0.265107i 0.827125 0.562018i \(-0.189975\pi\)
−0.562018 + 0.827125i \(0.689975\pi\)
\(770\) 0 0
\(771\) −2.89690 2.89690i −0.104329 0.104329i
\(772\) 0 0
\(773\) 42.6208i 1.53296i 0.642266 + 0.766482i \(0.277995\pi\)
−0.642266 + 0.766482i \(0.722005\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 2.11132 2.11132i 0.0757433 0.0757433i
\(778\) 0 0
\(779\) 13.3178i 0.477161i
\(780\) 0 0
\(781\) 14.4623 14.4623i 0.517503 0.517503i
\(782\) 0 0
\(783\) 2.43185 + 8.49810i 0.0869071 + 0.303697i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −9.33475 9.33475i −0.332748 0.332748i 0.520881 0.853629i \(-0.325603\pi\)
−0.853629 + 0.520881i \(0.825603\pi\)
\(788\) 0 0
\(789\) −7.53618 −0.268295
\(790\) 0 0
\(791\) −39.8510 + 39.8510i −1.41694 + 1.41694i
\(792\) 0 0
\(793\) −5.37033 −0.190706
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −51.1951 −1.81342 −0.906711 0.421752i \(-0.861415\pi\)
−0.906711 + 0.421752i \(0.861415\pi\)
\(798\) 0 0
\(799\) 21.2763i 0.752702i
\(800\) 0 0
\(801\) 7.99705 7.99705i 0.282562 0.282562i
\(802\) 0 0
\(803\) 16.2958 + 16.2958i 0.575065 + 0.575065i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.66183 1.66183i 0.0584992 0.0584992i
\(808\) 0 0
\(809\) 10.8570 + 10.8570i 0.381711 + 0.381711i 0.871718 0.490008i \(-0.163006\pi\)
−0.490008 + 0.871718i \(0.663006\pi\)
\(810\) 0 0
\(811\) 1.51201i 0.0530939i −0.999648 0.0265470i \(-0.991549\pi\)
0.999648 0.0265470i \(-0.00845115\pi\)
\(812\) 0 0
\(813\) 0.727719 + 0.727719i 0.0255222 + 0.0255222i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0.0159515 + 0.0159515i 0.000558073 + 0.000558073i
\(818\) 0 0
\(819\) 58.8186i 2.05529i
\(820\) 0 0
\(821\) 37.2198i 1.29898i 0.760370 + 0.649490i \(0.225018\pi\)
−0.760370 + 0.649490i \(0.774982\pi\)
\(822\) 0 0
\(823\) 10.8321i 0.377582i −0.982017 0.188791i \(-0.939543\pi\)
0.982017 0.188791i \(-0.0604569\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 31.1953i 1.08477i 0.840131 + 0.542384i \(0.182478\pi\)
−0.840131 + 0.542384i \(0.817522\pi\)
\(828\) 0 0
\(829\) −5.11672 + 5.11672i −0.177711 + 0.177711i −0.790357 0.612646i \(-0.790105\pi\)
0.612646 + 0.790357i \(0.290105\pi\)
\(830\) 0 0
\(831\) −4.38555 4.38555i −0.152133 0.152133i
\(832\) 0 0
\(833\) 60.9136i 2.11053i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −10.0740 + 10.0740i −0.348207 + 0.348207i
\(838\) 0 0
\(839\) 3.91306 + 3.91306i 0.135094 + 0.135094i 0.771420 0.636326i \(-0.219547\pi\)
−0.636326 + 0.771420i \(0.719547\pi\)
\(840\) 0 0
\(841\) 24.6099 15.3412i 0.848618 0.529007i
\(842\) 0 0
\(843\) 4.10137i 0.141259i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 3.33152 + 3.33152i 0.114472 + 0.114472i
\(848\) 0 0
\(849\) −3.41787 3.41787i −0.117301 0.117301i
\(850\) 0 0
\(851\) 8.46246 8.46246i 0.290089 0.290089i
\(852\) 0 0
\(853\) 19.3178 0.661430 0.330715 0.943731i \(-0.392710\pi\)
0.330715 + 0.943731i \(0.392710\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −13.6114 + 13.6114i −0.464958 + 0.464958i −0.900277 0.435318i \(-0.856636\pi\)
0.435318 + 0.900277i \(0.356636\pi\)
\(858\) 0 0
\(859\) −15.7934 15.7934i −0.538864 0.538864i 0.384332 0.923195i \(-0.374432\pi\)
−0.923195 + 0.384332i \(0.874432\pi\)
\(860\) 0 0
\(861\) 9.23798 0.314830
\(862\) 0 0
\(863\) 11.8939 11.8939i 0.404872 0.404872i −0.475074 0.879946i \(-0.657579\pi\)
0.879946 + 0.475074i \(0.157579\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 1.87595i 0.0637107i
\(868\) 0 0
\(869\) −2.54662 −0.0863881
\(870\) 0 0
\(871\) −2.96927 −0.100610
\(872\) 0 0
\(873\) 40.5427i 1.37216i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −5.15424 + 5.15424i −0.174046 + 0.174046i −0.788755 0.614708i \(-0.789274\pi\)
0.614708 + 0.788755i \(0.289274\pi\)
\(878\) 0 0
\(879\) 3.54232 0.119479
\(880\) 0 0
\(881\) −16.8034 16.8034i −0.566122 0.566122i 0.364918 0.931040i \(-0.381097\pi\)
−0.931040 + 0.364918i \(0.881097\pi\)
\(882\) 0 0
\(883\) −8.17142 + 8.17142i −0.274990 + 0.274990i −0.831105 0.556115i \(-0.812291\pi\)
0.556115 + 0.831105i \(0.312291\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −53.1622 −1.78501 −0.892506 0.451035i \(-0.851055\pi\)
−0.892506 + 0.451035i \(0.851055\pi\)
\(888\) 0 0
\(889\) −38.2824 + 38.2824i −1.28395 + 1.28395i
\(890\) 0 0
\(891\) −20.3017 20.3017i −0.680132 0.680132i
\(892\) 0 0
\(893\) −9.58975 9.58975i −0.320909 0.320909i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 6.19315i 0.206783i
\(898\) 0 0
\(899\) 40.8686 + 22.6826i 1.36304 + 0.756506i
\(900\) 0 0
\(901\) −20.0339 20.0339i −0.667426 0.667426i
\(902\) 0 0
\(903\) 0.0110648 0.0110648i 0.000368215 0.000368215i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 46.2177i 1.53463i 0.641268 + 0.767317i \(0.278409\pi\)
−0.641268 + 0.767317i \(0.721591\pi\)
\(908\) 0 0
\(909\) −13.3855 13.3855i −0.443971 0.443971i
\(910\) 0 0
\(911\) 18.8777 18.8777i 0.625445 0.625445i −0.321473 0.946919i \(-0.604178\pi\)
0.946919 + 0.321473i \(0.104178\pi\)
\(912\) 0 0
\(913\) 8.71904i 0.288558i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 79.5393i 2.62662i
\(918\) 0 0
\(919\) 47.2683i 1.55924i −0.626255 0.779618i \(-0.715413\pi\)
0.626255 0.779618i \(-0.284587\pi\)
\(920\) 0 0
\(921\) 8.24240i 0.271596i
\(922\) 0 0
\(923\) −16.5135 16.5135i −0.543549 0.543549i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −17.0784 17.0784i −0.560928 0.560928i
\(928\) 0 0
\(929\) 13.2380i 0.434324i −0.976136 0.217162i \(-0.930320\pi\)
0.976136 0.217162i \(-0.0696800\pi\)
\(930\) 0 0
\(931\) 27.4553 + 27.4553i 0.899810 + 0.899810i
\(932\) 0 0
\(933\) −3.83255 + 3.83255i −0.125472 + 0.125472i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 25.4724 + 25.4724i 0.832148 + 0.832148i 0.987810 0.155662i \(-0.0497512\pi\)
−0.155662 + 0.987810i \(0.549751\pi\)
\(938\) 0 0
\(939\) −0.625122 + 0.625122i −0.0204001 + 0.0204001i
\(940\) 0 0
\(941\) 23.8675i 0.778059i −0.921225 0.389029i \(-0.872810\pi\)
0.921225 0.389029i \(-0.127190\pi\)
\(942\) 0 0
\(943\) 37.0270 1.20577
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 2.28285 0.0741828 0.0370914 0.999312i \(-0.488191\pi\)
0.0370914 + 0.999312i \(0.488191\pi\)
\(948\) 0 0
\(949\) 18.6070 18.6070i 0.604007 0.604007i
\(950\) 0 0
\(951\) −2.63770 −0.0855331
\(952\) 0 0
\(953\) −8.45384 8.45384i −0.273847 0.273847i 0.556800 0.830647i \(-0.312029\pi\)
−0.830647 + 0.556800i \(0.812029\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 2.50061 4.50550i 0.0808331 0.145642i
\(958\) 0 0
\(959\) 56.6680 56.6680i 1.82990 1.82990i
\(960\) 0 0
\(961\) 44.3359i 1.43019i
\(962\) 0 0
\(963\) −17.5307 + 17.5307i −0.564918 + 0.564918i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 27.3592i 0.879811i 0.898044 + 0.439906i \(0.144988\pi\)
−0.898044 + 0.439906i \(0.855012\pi\)
\(968\) 0 0
\(969\) −1.27779 1.27779i −0.0410486 0.0410486i
\(970\) 0 0
\(971\) −19.8439 19.8439i −0.636820 0.636820i 0.312950 0.949770i \(-0.398683\pi\)
−0.949770 + 0.312950i \(0.898683\pi\)
\(972\) 0 0
\(973\) 13.5921 + 13.5921i 0.435744 + 0.435744i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −37.7220 + 37.7220i −1.20683 + 1.20683i −0.234787 + 0.972047i \(0.575439\pi\)
−0.972047 + 0.234787i \(0.924561\pi\)
\(978\) 0 0
\(979\) −13.3592 −0.426963
\(980\) 0 0
\(981\) 48.6799 1.55423
\(982\) 0 0
\(983\) −3.04910 −0.0972510 −0.0486255 0.998817i \(-0.515484\pi\)
−0.0486255 + 0.998817i \(0.515484\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −6.65198 + 6.65198i −0.211735 + 0.211735i
\(988\) 0 0
\(989\) 0.0443494 0.0443494i 0.00141023 0.00141023i
\(990\) 0 0
\(991\) 4.05650i 0.128859i 0.997922 + 0.0644294i \(0.0205227\pi\)
−0.997922 + 0.0644294i \(0.979477\pi\)
\(992\) 0 0
\(993\) −5.97621 5.97621i −0.189649 0.189649i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 42.1611 1.33526 0.667628 0.744495i \(-0.267310\pi\)
0.667628 + 0.744495i \(0.267310\pi\)
\(998\) 0 0
\(999\) 3.46552 0.109644
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2900.2.j.c.2593.5 yes 16
5.2 odd 4 2900.2.s.c.157.5 yes 16
5.3 odd 4 2900.2.s.c.157.4 yes 16
5.4 even 2 inner 2900.2.j.c.2593.4 yes 16
29.17 odd 4 2900.2.s.c.1293.5 yes 16
145.17 even 4 inner 2900.2.j.c.1757.4 16
145.104 odd 4 2900.2.s.c.1293.4 yes 16
145.133 even 4 inner 2900.2.j.c.1757.5 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2900.2.j.c.1757.4 16 145.17 even 4 inner
2900.2.j.c.1757.5 yes 16 145.133 even 4 inner
2900.2.j.c.2593.4 yes 16 5.4 even 2 inner
2900.2.j.c.2593.5 yes 16 1.1 even 1 trivial
2900.2.s.c.157.4 yes 16 5.3 odd 4
2900.2.s.c.157.5 yes 16 5.2 odd 4
2900.2.s.c.1293.4 yes 16 145.104 odd 4
2900.2.s.c.1293.5 yes 16 29.17 odd 4