Properties

Label 2900.2.c.a.349.1
Level $2900$
Weight $2$
Character 2900.349
Analytic conductor $23.157$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2900,2,Mod(349,2900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2900, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2900.349"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2900 = 2^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2900.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,0,0,-12,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.1566165862\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 116)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 349.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 2900.349
Dual form 2900.2.c.a.349.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000i q^{3} -4.00000i q^{7} -6.00000 q^{9} -1.00000 q^{11} -3.00000i q^{13} -2.00000i q^{17} -4.00000 q^{19} -12.0000 q^{21} -6.00000i q^{23} +9.00000i q^{27} +1.00000 q^{29} +9.00000 q^{31} +3.00000i q^{33} +8.00000i q^{37} -9.00000 q^{39} -8.00000 q^{41} -5.00000i q^{43} +7.00000i q^{47} -9.00000 q^{49} -6.00000 q^{51} -5.00000i q^{53} +12.0000i q^{57} +10.0000 q^{59} +10.0000 q^{61} +24.0000i q^{63} -8.00000i q^{67} -18.0000 q^{69} -2.00000 q^{71} +4.00000i q^{77} +1.00000 q^{79} +9.00000 q^{81} +6.00000i q^{83} -3.00000i q^{87} -12.0000 q^{89} -12.0000 q^{91} -27.0000i q^{93} +6.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 12 q^{9} - 2 q^{11} - 8 q^{19} - 24 q^{21} + 2 q^{29} + 18 q^{31} - 18 q^{39} - 16 q^{41} - 18 q^{49} - 12 q^{51} + 20 q^{59} + 20 q^{61} - 36 q^{69} - 4 q^{71} + 2 q^{79} + 18 q^{81} - 24 q^{89}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2900\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(1277\) \(1451\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 3.00000i − 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 4.00000i − 1.51186i −0.654654 0.755929i \(-0.727186\pi\)
0.654654 0.755929i \(-0.272814\pi\)
\(8\) 0 0
\(9\) −6.00000 −2.00000
\(10\) 0 0
\(11\) −1.00000 −0.301511 −0.150756 0.988571i \(-0.548171\pi\)
−0.150756 + 0.988571i \(0.548171\pi\)
\(12\) 0 0
\(13\) − 3.00000i − 0.832050i −0.909353 0.416025i \(-0.863423\pi\)
0.909353 0.416025i \(-0.136577\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 2.00000i − 0.485071i −0.970143 0.242536i \(-0.922021\pi\)
0.970143 0.242536i \(-0.0779791\pi\)
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) −12.0000 −2.61861
\(22\) 0 0
\(23\) − 6.00000i − 1.25109i −0.780189 0.625543i \(-0.784877\pi\)
0.780189 0.625543i \(-0.215123\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 9.00000i 1.73205i
\(28\) 0 0
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) 9.00000 1.61645 0.808224 0.588875i \(-0.200429\pi\)
0.808224 + 0.588875i \(0.200429\pi\)
\(32\) 0 0
\(33\) 3.00000i 0.522233i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 8.00000i 1.31519i 0.753371 + 0.657596i \(0.228427\pi\)
−0.753371 + 0.657596i \(0.771573\pi\)
\(38\) 0 0
\(39\) −9.00000 −1.44115
\(40\) 0 0
\(41\) −8.00000 −1.24939 −0.624695 0.780869i \(-0.714777\pi\)
−0.624695 + 0.780869i \(0.714777\pi\)
\(42\) 0 0
\(43\) − 5.00000i − 0.762493i −0.924473 0.381246i \(-0.875495\pi\)
0.924473 0.381246i \(-0.124505\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 7.00000i 1.02105i 0.859861 + 0.510527i \(0.170550\pi\)
−0.859861 + 0.510527i \(0.829450\pi\)
\(48\) 0 0
\(49\) −9.00000 −1.28571
\(50\) 0 0
\(51\) −6.00000 −0.840168
\(52\) 0 0
\(53\) − 5.00000i − 0.686803i −0.939189 0.343401i \(-0.888421\pi\)
0.939189 0.343401i \(-0.111579\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 12.0000i 1.58944i
\(58\) 0 0
\(59\) 10.0000 1.30189 0.650945 0.759125i \(-0.274373\pi\)
0.650945 + 0.759125i \(0.274373\pi\)
\(60\) 0 0
\(61\) 10.0000 1.28037 0.640184 0.768221i \(-0.278858\pi\)
0.640184 + 0.768221i \(0.278858\pi\)
\(62\) 0 0
\(63\) 24.0000i 3.02372i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 8.00000i − 0.977356i −0.872464 0.488678i \(-0.837479\pi\)
0.872464 0.488678i \(-0.162521\pi\)
\(68\) 0 0
\(69\) −18.0000 −2.16695
\(70\) 0 0
\(71\) −2.00000 −0.237356 −0.118678 0.992933i \(-0.537866\pi\)
−0.118678 + 0.992933i \(0.537866\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.00000i 0.455842i
\(78\) 0 0
\(79\) 1.00000 0.112509 0.0562544 0.998416i \(-0.482084\pi\)
0.0562544 + 0.998416i \(0.482084\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) 6.00000i 0.658586i 0.944228 + 0.329293i \(0.106810\pi\)
−0.944228 + 0.329293i \(0.893190\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 3.00000i − 0.321634i
\(88\) 0 0
\(89\) −12.0000 −1.27200 −0.635999 0.771690i \(-0.719412\pi\)
−0.635999 + 0.771690i \(0.719412\pi\)
\(90\) 0 0
\(91\) −12.0000 −1.25794
\(92\) 0 0
\(93\) − 27.0000i − 2.79977i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 6.00000 0.603023
\(100\) 0 0
\(101\) −4.00000 −0.398015 −0.199007 0.979998i \(-0.563772\pi\)
−0.199007 + 0.979998i \(0.563772\pi\)
\(102\) 0 0
\(103\) 6.00000i 0.591198i 0.955312 + 0.295599i \(0.0955191\pi\)
−0.955312 + 0.295599i \(0.904481\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.00000i 0.773389i 0.922208 + 0.386695i \(0.126383\pi\)
−0.922208 + 0.386695i \(0.873617\pi\)
\(108\) 0 0
\(109\) 5.00000 0.478913 0.239457 0.970907i \(-0.423031\pi\)
0.239457 + 0.970907i \(0.423031\pi\)
\(110\) 0 0
\(111\) 24.0000 2.27798
\(112\) 0 0
\(113\) − 6.00000i − 0.564433i −0.959351 0.282216i \(-0.908930\pi\)
0.959351 0.282216i \(-0.0910696\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 18.0000i 1.66410i
\(118\) 0 0
\(119\) −8.00000 −0.733359
\(120\) 0 0
\(121\) −10.0000 −0.909091
\(122\) 0 0
\(123\) 24.0000i 2.16401i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 8.00000i 0.709885i 0.934888 + 0.354943i \(0.115500\pi\)
−0.934888 + 0.354943i \(0.884500\pi\)
\(128\) 0 0
\(129\) −15.0000 −1.32068
\(130\) 0 0
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 0 0
\(133\) 16.0000i 1.38738i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 4.00000i − 0.341743i −0.985293 0.170872i \(-0.945342\pi\)
0.985293 0.170872i \(-0.0546583\pi\)
\(138\) 0 0
\(139\) 18.0000 1.52674 0.763370 0.645961i \(-0.223543\pi\)
0.763370 + 0.645961i \(0.223543\pi\)
\(140\) 0 0
\(141\) 21.0000 1.76852
\(142\) 0 0
\(143\) 3.00000i 0.250873i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 27.0000i 2.22692i
\(148\) 0 0
\(149\) −9.00000 −0.737309 −0.368654 0.929567i \(-0.620181\pi\)
−0.368654 + 0.929567i \(0.620181\pi\)
\(150\) 0 0
\(151\) 4.00000 0.325515 0.162758 0.986666i \(-0.447961\pi\)
0.162758 + 0.986666i \(0.447961\pi\)
\(152\) 0 0
\(153\) 12.0000i 0.970143i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 4.00000i − 0.319235i −0.987179 0.159617i \(-0.948974\pi\)
0.987179 0.159617i \(-0.0510260\pi\)
\(158\) 0 0
\(159\) −15.0000 −1.18958
\(160\) 0 0
\(161\) −24.0000 −1.89146
\(162\) 0 0
\(163\) 7.00000i 0.548282i 0.961689 + 0.274141i \(0.0883936\pi\)
−0.961689 + 0.274141i \(0.911606\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 2.00000i − 0.154765i −0.997001 0.0773823i \(-0.975344\pi\)
0.997001 0.0773823i \(-0.0246562\pi\)
\(168\) 0 0
\(169\) 4.00000 0.307692
\(170\) 0 0
\(171\) 24.0000 1.83533
\(172\) 0 0
\(173\) − 2.00000i − 0.152057i −0.997106 0.0760286i \(-0.975776\pi\)
0.997106 0.0760286i \(-0.0242240\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 30.0000i − 2.25494i
\(178\) 0 0
\(179\) −10.0000 −0.747435 −0.373718 0.927543i \(-0.621917\pi\)
−0.373718 + 0.927543i \(0.621917\pi\)
\(180\) 0 0
\(181\) 17.0000 1.26360 0.631800 0.775131i \(-0.282316\pi\)
0.631800 + 0.775131i \(0.282316\pi\)
\(182\) 0 0
\(183\) − 30.0000i − 2.21766i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 2.00000i 0.146254i
\(188\) 0 0
\(189\) 36.0000 2.61861
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) − 8.00000i − 0.575853i −0.957653 0.287926i \(-0.907034\pi\)
0.957653 0.287926i \(-0.0929658\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 26.0000i − 1.85242i −0.377004 0.926212i \(-0.623046\pi\)
0.377004 0.926212i \(-0.376954\pi\)
\(198\) 0 0
\(199\) 20.0000 1.41776 0.708881 0.705328i \(-0.249200\pi\)
0.708881 + 0.705328i \(0.249200\pi\)
\(200\) 0 0
\(201\) −24.0000 −1.69283
\(202\) 0 0
\(203\) − 4.00000i − 0.280745i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 36.0000i 2.50217i
\(208\) 0 0
\(209\) 4.00000 0.276686
\(210\) 0 0
\(211\) −13.0000 −0.894957 −0.447478 0.894295i \(-0.647678\pi\)
−0.447478 + 0.894295i \(0.647678\pi\)
\(212\) 0 0
\(213\) 6.00000i 0.411113i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 36.0000i − 2.44384i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −6.00000 −0.403604
\(222\) 0 0
\(223\) 14.0000i 0.937509i 0.883328 + 0.468755i \(0.155297\pi\)
−0.883328 + 0.468755i \(0.844703\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 30.0000i − 1.99117i −0.0938647 0.995585i \(-0.529922\pi\)
0.0938647 0.995585i \(-0.470078\pi\)
\(228\) 0 0
\(229\) −20.0000 −1.32164 −0.660819 0.750546i \(-0.729791\pi\)
−0.660819 + 0.750546i \(0.729791\pi\)
\(230\) 0 0
\(231\) 12.0000 0.789542
\(232\) 0 0
\(233\) 23.0000i 1.50678i 0.657574 + 0.753390i \(0.271583\pi\)
−0.657574 + 0.753390i \(0.728417\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 3.00000i − 0.194871i
\(238\) 0 0
\(239\) 22.0000 1.42306 0.711531 0.702655i \(-0.248002\pi\)
0.711531 + 0.702655i \(0.248002\pi\)
\(240\) 0 0
\(241\) 17.0000 1.09507 0.547533 0.836784i \(-0.315567\pi\)
0.547533 + 0.836784i \(0.315567\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 12.0000i 0.763542i
\(248\) 0 0
\(249\) 18.0000 1.14070
\(250\) 0 0
\(251\) −31.0000 −1.95670 −0.978351 0.206951i \(-0.933646\pi\)
−0.978351 + 0.206951i \(0.933646\pi\)
\(252\) 0 0
\(253\) 6.00000i 0.377217i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 27.0000i 1.68421i 0.539311 + 0.842107i \(0.318685\pi\)
−0.539311 + 0.842107i \(0.681315\pi\)
\(258\) 0 0
\(259\) 32.0000 1.98838
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) 0 0
\(263\) 13.0000i 0.801614i 0.916162 + 0.400807i \(0.131270\pi\)
−0.916162 + 0.400807i \(0.868730\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 36.0000i 2.20316i
\(268\) 0 0
\(269\) −14.0000 −0.853595 −0.426798 0.904347i \(-0.640358\pi\)
−0.426798 + 0.904347i \(0.640358\pi\)
\(270\) 0 0
\(271\) −5.00000 −0.303728 −0.151864 0.988401i \(-0.548528\pi\)
−0.151864 + 0.988401i \(0.548528\pi\)
\(272\) 0 0
\(273\) 36.0000i 2.17882i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 10.0000i 0.600842i 0.953807 + 0.300421i \(0.0971271\pi\)
−0.953807 + 0.300421i \(0.902873\pi\)
\(278\) 0 0
\(279\) −54.0000 −3.23290
\(280\) 0 0
\(281\) −1.00000 −0.0596550 −0.0298275 0.999555i \(-0.509496\pi\)
−0.0298275 + 0.999555i \(0.509496\pi\)
\(282\) 0 0
\(283\) − 6.00000i − 0.356663i −0.983970 0.178331i \(-0.942930\pi\)
0.983970 0.178331i \(-0.0570699\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 32.0000i 1.88890i
\(288\) 0 0
\(289\) 13.0000 0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2.00000i 0.116841i 0.998292 + 0.0584206i \(0.0186065\pi\)
−0.998292 + 0.0584206i \(0.981394\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 9.00000i − 0.522233i
\(298\) 0 0
\(299\) −18.0000 −1.04097
\(300\) 0 0
\(301\) −20.0000 −1.15278
\(302\) 0 0
\(303\) 12.0000i 0.689382i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 7.00000i − 0.399511i −0.979846 0.199756i \(-0.935985\pi\)
0.979846 0.199756i \(-0.0640148\pi\)
\(308\) 0 0
\(309\) 18.0000 1.02398
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 1.00000i 0.0565233i 0.999601 + 0.0282617i \(0.00899717\pi\)
−0.999601 + 0.0282617i \(0.991003\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 18.0000i − 1.01098i −0.862832 0.505490i \(-0.831312\pi\)
0.862832 0.505490i \(-0.168688\pi\)
\(318\) 0 0
\(319\) −1.00000 −0.0559893
\(320\) 0 0
\(321\) 24.0000 1.33955
\(322\) 0 0
\(323\) 8.00000i 0.445132i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 15.0000i − 0.829502i
\(328\) 0 0
\(329\) 28.0000 1.54369
\(330\) 0 0
\(331\) 3.00000 0.164895 0.0824475 0.996595i \(-0.473726\pi\)
0.0824475 + 0.996595i \(0.473726\pi\)
\(332\) 0 0
\(333\) − 48.0000i − 2.63038i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 14.0000i 0.762629i 0.924445 + 0.381314i \(0.124528\pi\)
−0.924445 + 0.381314i \(0.875472\pi\)
\(338\) 0 0
\(339\) −18.0000 −0.977626
\(340\) 0 0
\(341\) −9.00000 −0.487377
\(342\) 0 0
\(343\) 8.00000i 0.431959i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6.00000i 0.322097i 0.986947 + 0.161048i \(0.0514875\pi\)
−0.986947 + 0.161048i \(0.948512\pi\)
\(348\) 0 0
\(349\) −35.0000 −1.87351 −0.936754 0.349990i \(-0.886185\pi\)
−0.936754 + 0.349990i \(0.886185\pi\)
\(350\) 0 0
\(351\) 27.0000 1.44115
\(352\) 0 0
\(353\) 22.0000i 1.17094i 0.810693 + 0.585471i \(0.199090\pi\)
−0.810693 + 0.585471i \(0.800910\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 24.0000i 1.27021i
\(358\) 0 0
\(359\) −3.00000 −0.158334 −0.0791670 0.996861i \(-0.525226\pi\)
−0.0791670 + 0.996861i \(0.525226\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) 30.0000i 1.57459i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 20.0000i − 1.04399i −0.852948 0.521996i \(-0.825188\pi\)
0.852948 0.521996i \(-0.174812\pi\)
\(368\) 0 0
\(369\) 48.0000 2.49878
\(370\) 0 0
\(371\) −20.0000 −1.03835
\(372\) 0 0
\(373\) − 19.0000i − 0.983783i −0.870657 0.491891i \(-0.836306\pi\)
0.870657 0.491891i \(-0.163694\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 3.00000i − 0.154508i
\(378\) 0 0
\(379\) −32.0000 −1.64373 −0.821865 0.569683i \(-0.807066\pi\)
−0.821865 + 0.569683i \(0.807066\pi\)
\(380\) 0 0
\(381\) 24.0000 1.22956
\(382\) 0 0
\(383\) − 16.0000i − 0.817562i −0.912633 0.408781i \(-0.865954\pi\)
0.912633 0.408781i \(-0.134046\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 30.0000i 1.52499i
\(388\) 0 0
\(389\) −4.00000 −0.202808 −0.101404 0.994845i \(-0.532333\pi\)
−0.101404 + 0.994845i \(0.532333\pi\)
\(390\) 0 0
\(391\) −12.0000 −0.606866
\(392\) 0 0
\(393\) − 36.0000i − 1.81596i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 13.0000i − 0.652451i −0.945292 0.326226i \(-0.894223\pi\)
0.945292 0.326226i \(-0.105777\pi\)
\(398\) 0 0
\(399\) 48.0000 2.40301
\(400\) 0 0
\(401\) −5.00000 −0.249688 −0.124844 0.992176i \(-0.539843\pi\)
−0.124844 + 0.992176i \(0.539843\pi\)
\(402\) 0 0
\(403\) − 27.0000i − 1.34497i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 8.00000i − 0.396545i
\(408\) 0 0
\(409\) 26.0000 1.28562 0.642809 0.766027i \(-0.277769\pi\)
0.642809 + 0.766027i \(0.277769\pi\)
\(410\) 0 0
\(411\) −12.0000 −0.591916
\(412\) 0 0
\(413\) − 40.0000i − 1.96827i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 54.0000i − 2.64439i
\(418\) 0 0
\(419\) −10.0000 −0.488532 −0.244266 0.969708i \(-0.578547\pi\)
−0.244266 + 0.969708i \(0.578547\pi\)
\(420\) 0 0
\(421\) 2.00000 0.0974740 0.0487370 0.998812i \(-0.484480\pi\)
0.0487370 + 0.998812i \(0.484480\pi\)
\(422\) 0 0
\(423\) − 42.0000i − 2.04211i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 40.0000i − 1.93574i
\(428\) 0 0
\(429\) 9.00000 0.434524
\(430\) 0 0
\(431\) −14.0000 −0.674356 −0.337178 0.941441i \(-0.609472\pi\)
−0.337178 + 0.941441i \(0.609472\pi\)
\(432\) 0 0
\(433\) − 28.0000i − 1.34559i −0.739827 0.672797i \(-0.765093\pi\)
0.739827 0.672797i \(-0.234907\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 24.0000i 1.14808i
\(438\) 0 0
\(439\) −22.0000 −1.05000 −0.525001 0.851101i \(-0.675935\pi\)
−0.525001 + 0.851101i \(0.675935\pi\)
\(440\) 0 0
\(441\) 54.0000 2.57143
\(442\) 0 0
\(443\) − 12.0000i − 0.570137i −0.958507 0.285069i \(-0.907984\pi\)
0.958507 0.285069i \(-0.0920164\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 27.0000i 1.27706i
\(448\) 0 0
\(449\) −22.0000 −1.03824 −0.519122 0.854700i \(-0.673741\pi\)
−0.519122 + 0.854700i \(0.673741\pi\)
\(450\) 0 0
\(451\) 8.00000 0.376705
\(452\) 0 0
\(453\) − 12.0000i − 0.563809i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 38.0000i − 1.77757i −0.458329 0.888783i \(-0.651552\pi\)
0.458329 0.888783i \(-0.348448\pi\)
\(458\) 0 0
\(459\) 18.0000 0.840168
\(460\) 0 0
\(461\) −42.0000 −1.95614 −0.978068 0.208288i \(-0.933211\pi\)
−0.978068 + 0.208288i \(0.933211\pi\)
\(462\) 0 0
\(463\) − 10.0000i − 0.464739i −0.972628 0.232370i \(-0.925352\pi\)
0.972628 0.232370i \(-0.0746479\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 13.0000i 0.601568i 0.953692 + 0.300784i \(0.0972484\pi\)
−0.953692 + 0.300784i \(0.902752\pi\)
\(468\) 0 0
\(469\) −32.0000 −1.47762
\(470\) 0 0
\(471\) −12.0000 −0.552931
\(472\) 0 0
\(473\) 5.00000i 0.229900i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 30.0000i 1.37361i
\(478\) 0 0
\(479\) 17.0000 0.776750 0.388375 0.921501i \(-0.373037\pi\)
0.388375 + 0.921501i \(0.373037\pi\)
\(480\) 0 0
\(481\) 24.0000 1.09431
\(482\) 0 0
\(483\) 72.0000i 3.27611i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 32.0000i − 1.45006i −0.688718 0.725029i \(-0.741826\pi\)
0.688718 0.725029i \(-0.258174\pi\)
\(488\) 0 0
\(489\) 21.0000 0.949653
\(490\) 0 0
\(491\) 17.0000 0.767199 0.383600 0.923499i \(-0.374684\pi\)
0.383600 + 0.923499i \(0.374684\pi\)
\(492\) 0 0
\(493\) − 2.00000i − 0.0900755i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 8.00000i 0.358849i
\(498\) 0 0
\(499\) −10.0000 −0.447661 −0.223831 0.974628i \(-0.571856\pi\)
−0.223831 + 0.974628i \(0.571856\pi\)
\(500\) 0 0
\(501\) −6.00000 −0.268060
\(502\) 0 0
\(503\) 23.0000i 1.02552i 0.858532 + 0.512760i \(0.171377\pi\)
−0.858532 + 0.512760i \(0.828623\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 12.0000i − 0.532939i
\(508\) 0 0
\(509\) −15.0000 −0.664863 −0.332432 0.943127i \(-0.607869\pi\)
−0.332432 + 0.943127i \(0.607869\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) − 36.0000i − 1.58944i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 7.00000i − 0.307860i
\(518\) 0 0
\(519\) −6.00000 −0.263371
\(520\) 0 0
\(521\) 39.0000 1.70862 0.854311 0.519763i \(-0.173980\pi\)
0.854311 + 0.519763i \(0.173980\pi\)
\(522\) 0 0
\(523\) − 20.0000i − 0.874539i −0.899331 0.437269i \(-0.855946\pi\)
0.899331 0.437269i \(-0.144054\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 18.0000i − 0.784092i
\(528\) 0 0
\(529\) −13.0000 −0.565217
\(530\) 0 0
\(531\) −60.0000 −2.60378
\(532\) 0 0
\(533\) 24.0000i 1.03956i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 30.0000i 1.29460i
\(538\) 0 0
\(539\) 9.00000 0.387657
\(540\) 0 0
\(541\) 40.0000 1.71973 0.859867 0.510518i \(-0.170546\pi\)
0.859867 + 0.510518i \(0.170546\pi\)
\(542\) 0 0
\(543\) − 51.0000i − 2.18862i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 8.00000i 0.342055i 0.985266 + 0.171028i \(0.0547087\pi\)
−0.985266 + 0.171028i \(0.945291\pi\)
\(548\) 0 0
\(549\) −60.0000 −2.56074
\(550\) 0 0
\(551\) −4.00000 −0.170406
\(552\) 0 0
\(553\) − 4.00000i − 0.170097i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 42.0000i − 1.77960i −0.456354 0.889799i \(-0.650845\pi\)
0.456354 0.889799i \(-0.349155\pi\)
\(558\) 0 0
\(559\) −15.0000 −0.634432
\(560\) 0 0
\(561\) 6.00000 0.253320
\(562\) 0 0
\(563\) − 33.0000i − 1.39078i −0.718631 0.695392i \(-0.755231\pi\)
0.718631 0.695392i \(-0.244769\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 36.0000i − 1.51186i
\(568\) 0 0
\(569\) 18.0000 0.754599 0.377300 0.926091i \(-0.376853\pi\)
0.377300 + 0.926091i \(0.376853\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 14.0000i 0.582828i 0.956597 + 0.291414i \(0.0941257\pi\)
−0.956597 + 0.291414i \(0.905874\pi\)
\(578\) 0 0
\(579\) −24.0000 −0.997406
\(580\) 0 0
\(581\) 24.0000 0.995688
\(582\) 0 0
\(583\) 5.00000i 0.207079i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 42.0000i − 1.73353i −0.498721 0.866763i \(-0.666197\pi\)
0.498721 0.866763i \(-0.333803\pi\)
\(588\) 0 0
\(589\) −36.0000 −1.48335
\(590\) 0 0
\(591\) −78.0000 −3.20849
\(592\) 0 0
\(593\) − 29.0000i − 1.19089i −0.803397 0.595444i \(-0.796976\pi\)
0.803397 0.595444i \(-0.203024\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 60.0000i − 2.45564i
\(598\) 0 0
\(599\) −7.00000 −0.286012 −0.143006 0.989722i \(-0.545677\pi\)
−0.143006 + 0.989722i \(0.545677\pi\)
\(600\) 0 0
\(601\) −28.0000 −1.14214 −0.571072 0.820900i \(-0.693472\pi\)
−0.571072 + 0.820900i \(0.693472\pi\)
\(602\) 0 0
\(603\) 48.0000i 1.95471i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 47.0000i − 1.90767i −0.300329 0.953836i \(-0.597097\pi\)
0.300329 0.953836i \(-0.402903\pi\)
\(608\) 0 0
\(609\) −12.0000 −0.486265
\(610\) 0 0
\(611\) 21.0000 0.849569
\(612\) 0 0
\(613\) − 21.0000i − 0.848182i −0.905620 0.424091i \(-0.860594\pi\)
0.905620 0.424091i \(-0.139406\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 36.0000i 1.44931i 0.689114 + 0.724653i \(0.258000\pi\)
−0.689114 + 0.724653i \(0.742000\pi\)
\(618\) 0 0
\(619\) 41.0000 1.64793 0.823965 0.566641i \(-0.191757\pi\)
0.823965 + 0.566641i \(0.191757\pi\)
\(620\) 0 0
\(621\) 54.0000 2.16695
\(622\) 0 0
\(623\) 48.0000i 1.92308i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 12.0000i − 0.479234i
\(628\) 0 0
\(629\) 16.0000 0.637962
\(630\) 0 0
\(631\) −14.0000 −0.557331 −0.278666 0.960388i \(-0.589892\pi\)
−0.278666 + 0.960388i \(0.589892\pi\)
\(632\) 0 0
\(633\) 39.0000i 1.55011i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 27.0000i 1.06978i
\(638\) 0 0
\(639\) 12.0000 0.474713
\(640\) 0 0
\(641\) 42.0000 1.65890 0.829450 0.558581i \(-0.188654\pi\)
0.829450 + 0.558581i \(0.188654\pi\)
\(642\) 0 0
\(643\) − 16.0000i − 0.630978i −0.948929 0.315489i \(-0.897831\pi\)
0.948929 0.315489i \(-0.102169\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 22.0000i − 0.864909i −0.901656 0.432455i \(-0.857648\pi\)
0.901656 0.432455i \(-0.142352\pi\)
\(648\) 0 0
\(649\) −10.0000 −0.392534
\(650\) 0 0
\(651\) −108.000 −4.23285
\(652\) 0 0
\(653\) 4.00000i 0.156532i 0.996933 + 0.0782660i \(0.0249384\pi\)
−0.996933 + 0.0782660i \(0.975062\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 15.0000 0.584317 0.292159 0.956370i \(-0.405627\pi\)
0.292159 + 0.956370i \(0.405627\pi\)
\(660\) 0 0
\(661\) −38.0000 −1.47803 −0.739014 0.673690i \(-0.764708\pi\)
−0.739014 + 0.673690i \(0.764708\pi\)
\(662\) 0 0
\(663\) 18.0000i 0.699062i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 6.00000i − 0.232321i
\(668\) 0 0
\(669\) 42.0000 1.62381
\(670\) 0 0
\(671\) −10.0000 −0.386046
\(672\) 0 0
\(673\) 25.0000i 0.963679i 0.876259 + 0.481840i \(0.160031\pi\)
−0.876259 + 0.481840i \(0.839969\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6.00000i 0.230599i 0.993331 + 0.115299i \(0.0367827\pi\)
−0.993331 + 0.115299i \(0.963217\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −90.0000 −3.44881
\(682\) 0 0
\(683\) 8.00000i 0.306111i 0.988218 + 0.153056i \(0.0489114\pi\)
−0.988218 + 0.153056i \(0.951089\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 60.0000i 2.28914i
\(688\) 0 0
\(689\) −15.0000 −0.571454
\(690\) 0 0
\(691\) −8.00000 −0.304334 −0.152167 0.988355i \(-0.548625\pi\)
−0.152167 + 0.988355i \(0.548625\pi\)
\(692\) 0 0
\(693\) − 24.0000i − 0.911685i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 16.0000i 0.606043i
\(698\) 0 0
\(699\) 69.0000 2.60982
\(700\) 0 0
\(701\) −35.0000 −1.32193 −0.660966 0.750416i \(-0.729853\pi\)
−0.660966 + 0.750416i \(0.729853\pi\)
\(702\) 0 0
\(703\) − 32.0000i − 1.20690i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 16.0000i 0.601742i
\(708\) 0 0
\(709\) −29.0000 −1.08912 −0.544559 0.838723i \(-0.683303\pi\)
−0.544559 + 0.838723i \(0.683303\pi\)
\(710\) 0 0
\(711\) −6.00000 −0.225018
\(712\) 0 0
\(713\) − 54.0000i − 2.02232i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 66.0000i − 2.46482i
\(718\) 0 0
\(719\) −6.00000 −0.223762 −0.111881 0.993722i \(-0.535688\pi\)
−0.111881 + 0.993722i \(0.535688\pi\)
\(720\) 0 0
\(721\) 24.0000 0.893807
\(722\) 0 0
\(723\) − 51.0000i − 1.89671i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 32.0000i − 1.18681i −0.804902 0.593407i \(-0.797782\pi\)
0.804902 0.593407i \(-0.202218\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) 0 0
\(731\) −10.0000 −0.369863
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8.00000i 0.294684i
\(738\) 0 0
\(739\) −1.00000 −0.0367856 −0.0183928 0.999831i \(-0.505855\pi\)
−0.0183928 + 0.999831i \(0.505855\pi\)
\(740\) 0 0
\(741\) 36.0000 1.32249
\(742\) 0 0
\(743\) 8.00000i 0.293492i 0.989174 + 0.146746i \(0.0468799\pi\)
−0.989174 + 0.146746i \(0.953120\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 36.0000i − 1.31717i
\(748\) 0 0
\(749\) 32.0000 1.16925
\(750\) 0 0
\(751\) 44.0000 1.60558 0.802791 0.596260i \(-0.203347\pi\)
0.802791 + 0.596260i \(0.203347\pi\)
\(752\) 0 0
\(753\) 93.0000i 3.38911i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 34.0000i 1.23575i 0.786276 + 0.617876i \(0.212006\pi\)
−0.786276 + 0.617876i \(0.787994\pi\)
\(758\) 0 0
\(759\) 18.0000 0.653359
\(760\) 0 0
\(761\) −14.0000 −0.507500 −0.253750 0.967270i \(-0.581664\pi\)
−0.253750 + 0.967270i \(0.581664\pi\)
\(762\) 0 0
\(763\) − 20.0000i − 0.724049i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 30.0000i − 1.08324i
\(768\) 0 0
\(769\) −6.00000 −0.216366 −0.108183 0.994131i \(-0.534503\pi\)
−0.108183 + 0.994131i \(0.534503\pi\)
\(770\) 0 0
\(771\) 81.0000 2.91714
\(772\) 0 0
\(773\) 36.0000i 1.29483i 0.762138 + 0.647415i \(0.224150\pi\)
−0.762138 + 0.647415i \(0.775850\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 96.0000i − 3.44398i
\(778\) 0 0
\(779\) 32.0000 1.14652
\(780\) 0 0
\(781\) 2.00000 0.0715656
\(782\) 0 0
\(783\) 9.00000i 0.321634i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 14.0000i 0.499046i 0.968369 + 0.249523i \(0.0802738\pi\)
−0.968369 + 0.249523i \(0.919726\pi\)
\(788\) 0 0
\(789\) 39.0000 1.38844
\(790\) 0 0
\(791\) −24.0000 −0.853342
\(792\) 0 0
\(793\) − 30.0000i − 1.06533i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 30.0000i 1.06265i 0.847167 + 0.531327i \(0.178307\pi\)
−0.847167 + 0.531327i \(0.821693\pi\)
\(798\) 0 0
\(799\) 14.0000 0.495284
\(800\) 0 0
\(801\) 72.0000 2.54399
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 42.0000i 1.47847i
\(808\) 0 0
\(809\) 36.0000 1.26569 0.632846 0.774277i \(-0.281886\pi\)
0.632846 + 0.774277i \(0.281886\pi\)
\(810\) 0 0
\(811\) −24.0000 −0.842754 −0.421377 0.906886i \(-0.638453\pi\)
−0.421377 + 0.906886i \(0.638453\pi\)
\(812\) 0 0
\(813\) 15.0000i 0.526073i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 20.0000i 0.699711i
\(818\) 0 0
\(819\) 72.0000 2.51588
\(820\) 0 0
\(821\) −43.0000 −1.50071 −0.750355 0.661035i \(-0.770118\pi\)
−0.750355 + 0.661035i \(0.770118\pi\)
\(822\) 0 0
\(823\) 32.0000i 1.11545i 0.830026 + 0.557725i \(0.188326\pi\)
−0.830026 + 0.557725i \(0.811674\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 13.0000i 0.452054i 0.974121 + 0.226027i \(0.0725738\pi\)
−0.974121 + 0.226027i \(0.927426\pi\)
\(828\) 0 0
\(829\) −14.0000 −0.486240 −0.243120 0.969996i \(-0.578171\pi\)
−0.243120 + 0.969996i \(0.578171\pi\)
\(830\) 0 0
\(831\) 30.0000 1.04069
\(832\) 0 0
\(833\) 18.0000i 0.623663i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 81.0000i 2.79977i
\(838\) 0 0
\(839\) −9.00000 −0.310715 −0.155357 0.987858i \(-0.549653\pi\)
−0.155357 + 0.987858i \(0.549653\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) 3.00000i 0.103325i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 40.0000i 1.37442i
\(848\) 0 0
\(849\) −18.0000 −0.617758
\(850\) 0 0
\(851\) 48.0000 1.64542
\(852\) 0 0
\(853\) − 42.0000i − 1.43805i −0.694983 0.719026i \(-0.744588\pi\)
0.694983 0.719026i \(-0.255412\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 49.0000i − 1.67381i −0.547350 0.836904i \(-0.684363\pi\)
0.547350 0.836904i \(-0.315637\pi\)
\(858\) 0 0
\(859\) −9.00000 −0.307076 −0.153538 0.988143i \(-0.549067\pi\)
−0.153538 + 0.988143i \(0.549067\pi\)
\(860\) 0 0
\(861\) 96.0000 3.27167
\(862\) 0 0
\(863\) 54.0000i 1.83818i 0.394046 + 0.919091i \(0.371075\pi\)
−0.394046 + 0.919091i \(0.628925\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 39.0000i − 1.32451i
\(868\) 0 0
\(869\) −1.00000 −0.0339227
\(870\) 0 0
\(871\) −24.0000 −0.813209
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 29.0000i 0.979260i 0.871930 + 0.489630i \(0.162868\pi\)
−0.871930 + 0.489630i \(0.837132\pi\)
\(878\) 0 0
\(879\) 6.00000 0.202375
\(880\) 0 0
\(881\) −42.0000 −1.41502 −0.707508 0.706705i \(-0.750181\pi\)
−0.707508 + 0.706705i \(0.750181\pi\)
\(882\) 0 0
\(883\) − 24.0000i − 0.807664i −0.914833 0.403832i \(-0.867678\pi\)
0.914833 0.403832i \(-0.132322\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 55.0000i 1.84672i 0.383936 + 0.923360i \(0.374568\pi\)
−0.383936 + 0.923360i \(0.625432\pi\)
\(888\) 0 0
\(889\) 32.0000 1.07325
\(890\) 0 0
\(891\) −9.00000 −0.301511
\(892\) 0 0
\(893\) − 28.0000i − 0.936984i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 54.0000i 1.80301i
\(898\) 0 0
\(899\) 9.00000 0.300167
\(900\) 0 0
\(901\) −10.0000 −0.333148
\(902\) 0 0
\(903\) 60.0000i 1.99667i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 44.0000i − 1.46100i −0.682915 0.730498i \(-0.739288\pi\)
0.682915 0.730498i \(-0.260712\pi\)
\(908\) 0 0
\(909\) 24.0000 0.796030
\(910\) 0 0
\(911\) 51.0000 1.68971 0.844853 0.534999i \(-0.179688\pi\)
0.844853 + 0.534999i \(0.179688\pi\)
\(912\) 0 0
\(913\) − 6.00000i − 0.198571i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 48.0000i − 1.58510i
\(918\) 0 0
\(919\) 18.0000 0.593765 0.296883 0.954914i \(-0.404053\pi\)
0.296883 + 0.954914i \(0.404053\pi\)
\(920\) 0 0
\(921\) −21.0000 −0.691974
\(922\) 0 0
\(923\) 6.00000i 0.197492i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 36.0000i − 1.18240i
\(928\) 0 0
\(929\) −42.0000 −1.37798 −0.688988 0.724773i \(-0.741945\pi\)
−0.688988 + 0.724773i \(0.741945\pi\)
\(930\) 0 0
\(931\) 36.0000 1.17985
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 22.0000i 0.718709i 0.933201 + 0.359354i \(0.117003\pi\)
−0.933201 + 0.359354i \(0.882997\pi\)
\(938\) 0 0
\(939\) 3.00000 0.0979013
\(940\) 0 0
\(941\) 27.0000 0.880175 0.440087 0.897955i \(-0.354947\pi\)
0.440087 + 0.897955i \(0.354947\pi\)
\(942\) 0 0
\(943\) 48.0000i 1.56310i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 27.0000i − 0.877382i −0.898638 0.438691i \(-0.855442\pi\)
0.898638 0.438691i \(-0.144558\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −54.0000 −1.75107
\(952\) 0 0
\(953\) 3.00000i 0.0971795i 0.998819 + 0.0485898i \(0.0154727\pi\)
−0.998819 + 0.0485898i \(0.984527\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 3.00000i 0.0969762i
\(958\) 0 0
\(959\) −16.0000 −0.516667
\(960\) 0 0
\(961\) 50.0000 1.61290
\(962\) 0 0
\(963\) − 48.0000i − 1.54678i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 17.0000i − 0.546683i −0.961917 0.273342i \(-0.911871\pi\)
0.961917 0.273342i \(-0.0881289\pi\)
\(968\) 0 0
\(969\) 24.0000 0.770991
\(970\) 0 0
\(971\) −4.00000 −0.128366 −0.0641831 0.997938i \(-0.520444\pi\)
−0.0641831 + 0.997938i \(0.520444\pi\)
\(972\) 0 0
\(973\) − 72.0000i − 2.30821i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 25.0000i − 0.799821i −0.916554 0.399910i \(-0.869041\pi\)
0.916554 0.399910i \(-0.130959\pi\)
\(978\) 0 0
\(979\) 12.0000 0.383522
\(980\) 0 0
\(981\) −30.0000 −0.957826
\(982\) 0 0
\(983\) 45.0000i 1.43528i 0.696416 + 0.717639i \(0.254777\pi\)
−0.696416 + 0.717639i \(0.745223\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 84.0000i − 2.67375i
\(988\) 0 0
\(989\) −30.0000 −0.953945
\(990\) 0 0
\(991\) −34.0000 −1.08005 −0.540023 0.841650i \(-0.681584\pi\)
−0.540023 + 0.841650i \(0.681584\pi\)
\(992\) 0 0
\(993\) − 9.00000i − 0.285606i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 8.00000i 0.253363i 0.991943 + 0.126681i \(0.0404325\pi\)
−0.991943 + 0.126681i \(0.959567\pi\)
\(998\) 0 0
\(999\) −72.0000 −2.27798
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2900.2.c.a.349.1 2
5.2 odd 4 116.2.a.a.1.1 1
5.3 odd 4 2900.2.a.e.1.1 1
5.4 even 2 inner 2900.2.c.a.349.2 2
15.2 even 4 1044.2.a.c.1.1 1
20.7 even 4 464.2.a.g.1.1 1
35.27 even 4 5684.2.a.k.1.1 1
40.27 even 4 1856.2.a.a.1.1 1
40.37 odd 4 1856.2.a.o.1.1 1
60.47 odd 4 4176.2.a.c.1.1 1
145.12 even 4 3364.2.c.b.1681.1 2
145.17 even 4 3364.2.c.b.1681.2 2
145.57 odd 4 3364.2.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
116.2.a.a.1.1 1 5.2 odd 4
464.2.a.g.1.1 1 20.7 even 4
1044.2.a.c.1.1 1 15.2 even 4
1856.2.a.a.1.1 1 40.27 even 4
1856.2.a.o.1.1 1 40.37 odd 4
2900.2.a.e.1.1 1 5.3 odd 4
2900.2.c.a.349.1 2 1.1 even 1 trivial
2900.2.c.a.349.2 2 5.4 even 2 inner
3364.2.a.c.1.1 1 145.57 odd 4
3364.2.c.b.1681.1 2 145.12 even 4
3364.2.c.b.1681.2 2 145.17 even 4
4176.2.a.c.1.1 1 60.47 odd 4
5684.2.a.k.1.1 1 35.27 even 4