L(s) = 1 | − 3i·3-s − 4i·7-s − 6·9-s − 11-s − 3i·13-s − 2i·17-s − 4·19-s − 12·21-s − 6i·23-s + 9i·27-s + 29-s + 9·31-s + 3i·33-s + 8i·37-s − 9·39-s + ⋯ |
L(s) = 1 | − 1.73i·3-s − 1.51i·7-s − 2·9-s − 0.301·11-s − 0.832i·13-s − 0.485i·17-s − 0.917·19-s − 2.61·21-s − 1.25i·23-s + 1.73i·27-s + 0.185·29-s + 1.61·31-s + 0.522i·33-s + 1.31i·37-s − 1.44·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.147352786\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.147352786\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 29 | \( 1 - T \) |
good | 3 | \( 1 + 3iT - 3T^{2} \) |
| 7 | \( 1 + 4iT - 7T^{2} \) |
| 11 | \( 1 + T + 11T^{2} \) |
| 13 | \( 1 + 3iT - 13T^{2} \) |
| 17 | \( 1 + 2iT - 17T^{2} \) |
| 19 | \( 1 + 4T + 19T^{2} \) |
| 23 | \( 1 + 6iT - 23T^{2} \) |
| 31 | \( 1 - 9T + 31T^{2} \) |
| 37 | \( 1 - 8iT - 37T^{2} \) |
| 41 | \( 1 + 8T + 41T^{2} \) |
| 43 | \( 1 + 5iT - 43T^{2} \) |
| 47 | \( 1 - 7iT - 47T^{2} \) |
| 53 | \( 1 + 5iT - 53T^{2} \) |
| 59 | \( 1 - 10T + 59T^{2} \) |
| 61 | \( 1 - 10T + 61T^{2} \) |
| 67 | \( 1 + 8iT - 67T^{2} \) |
| 71 | \( 1 + 2T + 71T^{2} \) |
| 73 | \( 1 - 73T^{2} \) |
| 79 | \( 1 - T + 79T^{2} \) |
| 83 | \( 1 - 6iT - 83T^{2} \) |
| 89 | \( 1 + 12T + 89T^{2} \) |
| 97 | \( 1 - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.255516315186511054408977969745, −7.44413148945122034190638266403, −6.68259705694532716113960154904, −6.46612785139959394339708704386, −5.24838490168089429545923566185, −4.33516336110932363381446092258, −3.14188537352762663975550552415, −2.30850990335944994427550041726, −1.10074789646366179681599013388, −0.39662715908482398433421750941,
2.05270465277567400135754719590, 2.91920140040291001908349715597, 3.86813069012593587202929275985, 4.57021771834001088748463699249, 5.41223417929931121759785931222, 5.86546189692156582120155029805, 6.84776543516457636317410813253, 8.281441868506121524829947280501, 8.624867548541186202168076388516, 9.318811459050558113699128859529