Properties

Label 2890.2.b.p.2311.4
Level $2890$
Weight $2$
Character 2890.2311
Analytic conductor $23.077$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2890,2,Mod(2311,2890)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2890.2311"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2890, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2890 = 2 \cdot 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2890.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,8,0,8,0,0,0,8,-16,0,0,0,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.0767661842\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 170)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2311.4
Root \(-0.382683 - 0.923880i\) of defining polynomial
Character \(\chi\) \(=\) 2890.2311
Dual form 2890.2.b.p.2311.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.43355i q^{3} +1.00000 q^{4} +1.00000i q^{5} -1.43355i q^{6} +0.648847i q^{7} +1.00000 q^{8} +0.944947 q^{9} +1.00000i q^{10} +3.73124i q^{11} -1.43355i q^{12} +4.08239 q^{13} +0.648847i q^{14} +1.43355 q^{15} +1.00000 q^{16} +0.944947 q^{18} -4.28931 q^{19} +1.00000i q^{20} +0.930151 q^{21} +3.73124i q^{22} +7.27677i q^{23} -1.43355i q^{24} -1.00000 q^{25} +4.08239 q^{26} -5.65526i q^{27} +0.648847i q^{28} -1.80109i q^{29} +1.43355 q^{30} +4.97388i q^{31} +1.00000 q^{32} +5.34890 q^{33} -0.648847 q^{35} +0.944947 q^{36} +8.15640i q^{37} -4.28931 q^{38} -5.85229i q^{39} +1.00000i q^{40} +1.93694i q^{41} +0.930151 q^{42} +1.04667 q^{43} +3.73124i q^{44} +0.944947i q^{45} +7.27677i q^{46} -4.71031 q^{47} -1.43355i q^{48} +6.57900 q^{49} -1.00000 q^{50} +4.08239 q^{52} -8.72286 q^{53} -5.65526i q^{54} -3.73124 q^{55} +0.648847i q^{56} +6.14892i q^{57} -1.80109i q^{58} +10.3881 q^{59} +1.43355 q^{60} +3.54168i q^{61} +4.97388i q^{62} +0.613126i q^{63} +1.00000 q^{64} +4.08239i q^{65} +5.34890 q^{66} +3.48022 q^{67} +10.4316 q^{69} -0.648847 q^{70} -13.2729i q^{71} +0.944947 q^{72} +5.99321i q^{73} +8.15640i q^{74} +1.43355i q^{75} -4.28931 q^{76} -2.42100 q^{77} -5.85229i q^{78} +0.293157i q^{79} +1.00000i q^{80} -5.27223 q^{81} +1.93694i q^{82} -2.48406 q^{83} +0.930151 q^{84} +1.04667 q^{86} -2.58194 q^{87} +3.73124i q^{88} +3.59539 q^{89} +0.944947i q^{90} +2.64885i q^{91} +7.27677i q^{92} +7.13028 q^{93} -4.71031 q^{94} -4.28931i q^{95} -1.43355i q^{96} -19.2355i q^{97} +6.57900 q^{98} +3.52582i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} + 8 q^{4} + 8 q^{8} - 16 q^{9} + 24 q^{13} + 8 q^{15} + 8 q^{16} - 16 q^{18} + 24 q^{19} - 16 q^{21} - 8 q^{25} + 24 q^{26} + 8 q^{30} + 8 q^{32} + 16 q^{33} - 16 q^{36} + 24 q^{38} - 16 q^{42}+ \cdots + 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2890\mathbb{Z}\right)^\times\).

\(n\) \(581\) \(1157\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) − 1.43355i − 0.827658i −0.910355 0.413829i \(-0.864191\pi\)
0.910355 0.413829i \(-0.135809\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.00000i 0.447214i
\(6\) − 1.43355i − 0.585243i
\(7\) 0.648847i 0.245241i 0.992454 + 0.122621i \(0.0391298\pi\)
−0.992454 + 0.122621i \(0.960870\pi\)
\(8\) 1.00000 0.353553
\(9\) 0.944947 0.314982
\(10\) 1.00000i 0.316228i
\(11\) 3.73124i 1.12501i 0.826794 + 0.562505i \(0.190162\pi\)
−0.826794 + 0.562505i \(0.809838\pi\)
\(12\) − 1.43355i − 0.413829i
\(13\) 4.08239 1.13225 0.566126 0.824319i \(-0.308442\pi\)
0.566126 + 0.824319i \(0.308442\pi\)
\(14\) 0.648847i 0.173412i
\(15\) 1.43355 0.370140
\(16\) 1.00000 0.250000
\(17\) 0 0
\(18\) 0.944947 0.222726
\(19\) −4.28931 −0.984036 −0.492018 0.870585i \(-0.663741\pi\)
−0.492018 + 0.870585i \(0.663741\pi\)
\(20\) 1.00000i 0.223607i
\(21\) 0.930151 0.202976
\(22\) 3.73124i 0.795503i
\(23\) 7.27677i 1.51731i 0.651492 + 0.758656i \(0.274143\pi\)
−0.651492 + 0.758656i \(0.725857\pi\)
\(24\) − 1.43355i − 0.292621i
\(25\) −1.00000 −0.200000
\(26\) 4.08239 0.800623
\(27\) − 5.65526i − 1.08836i
\(28\) 0.648847i 0.122621i
\(29\) − 1.80109i − 0.334454i −0.985918 0.167227i \(-0.946519\pi\)
0.985918 0.167227i \(-0.0534812\pi\)
\(30\) 1.43355 0.261728
\(31\) 4.97388i 0.893335i 0.894700 + 0.446668i \(0.147389\pi\)
−0.894700 + 0.446668i \(0.852611\pi\)
\(32\) 1.00000 0.176777
\(33\) 5.34890 0.931124
\(34\) 0 0
\(35\) −0.648847 −0.109675
\(36\) 0.944947 0.157491
\(37\) 8.15640i 1.34090i 0.741953 + 0.670452i \(0.233900\pi\)
−0.741953 + 0.670452i \(0.766100\pi\)
\(38\) −4.28931 −0.695818
\(39\) − 5.85229i − 0.937117i
\(40\) 1.00000i 0.158114i
\(41\) 1.93694i 0.302499i 0.988496 + 0.151250i \(0.0483297\pi\)
−0.988496 + 0.151250i \(0.951670\pi\)
\(42\) 0.930151 0.143525
\(43\) 1.04667 0.159616 0.0798079 0.996810i \(-0.474569\pi\)
0.0798079 + 0.996810i \(0.474569\pi\)
\(44\) 3.73124i 0.562505i
\(45\) 0.944947i 0.140864i
\(46\) 7.27677i 1.07290i
\(47\) −4.71031 −0.687070 −0.343535 0.939140i \(-0.611624\pi\)
−0.343535 + 0.939140i \(0.611624\pi\)
\(48\) − 1.43355i − 0.206914i
\(49\) 6.57900 0.939857
\(50\) −1.00000 −0.141421
\(51\) 0 0
\(52\) 4.08239 0.566126
\(53\) −8.72286 −1.19818 −0.599088 0.800683i \(-0.704470\pi\)
−0.599088 + 0.800683i \(0.704470\pi\)
\(54\) − 5.65526i − 0.769584i
\(55\) −3.73124 −0.503120
\(56\) 0.648847i 0.0867058i
\(57\) 6.14892i 0.814445i
\(58\) − 1.80109i − 0.236494i
\(59\) 10.3881 1.35241 0.676207 0.736711i \(-0.263622\pi\)
0.676207 + 0.736711i \(0.263622\pi\)
\(60\) 1.43355 0.185070
\(61\) 3.54168i 0.453466i 0.973957 + 0.226733i \(0.0728045\pi\)
−0.973957 + 0.226733i \(0.927195\pi\)
\(62\) 4.97388i 0.631683i
\(63\) 0.613126i 0.0772466i
\(64\) 1.00000 0.125000
\(65\) 4.08239i 0.506358i
\(66\) 5.34890 0.658404
\(67\) 3.48022 0.425176 0.212588 0.977142i \(-0.431811\pi\)
0.212588 + 0.977142i \(0.431811\pi\)
\(68\) 0 0
\(69\) 10.4316 1.25581
\(70\) −0.648847 −0.0775520
\(71\) − 13.2729i − 1.57521i −0.616183 0.787603i \(-0.711322\pi\)
0.616183 0.787603i \(-0.288678\pi\)
\(72\) 0.944947 0.111363
\(73\) 5.99321i 0.701452i 0.936478 + 0.350726i \(0.114065\pi\)
−0.936478 + 0.350726i \(0.885935\pi\)
\(74\) 8.15640i 0.948163i
\(75\) 1.43355i 0.165532i
\(76\) −4.28931 −0.492018
\(77\) −2.42100 −0.275899
\(78\) − 5.85229i − 0.662642i
\(79\) 0.293157i 0.0329828i 0.999864 + 0.0164914i \(0.00524961\pi\)
−0.999864 + 0.0164914i \(0.994750\pi\)
\(80\) 1.00000i 0.111803i
\(81\) −5.27223 −0.585804
\(82\) 1.93694i 0.213899i
\(83\) −2.48406 −0.272661 −0.136331 0.990663i \(-0.543531\pi\)
−0.136331 + 0.990663i \(0.543531\pi\)
\(84\) 0.930151 0.101488
\(85\) 0 0
\(86\) 1.04667 0.112865
\(87\) −2.58194 −0.276813
\(88\) 3.73124i 0.397751i
\(89\) 3.59539 0.381110 0.190555 0.981676i \(-0.438971\pi\)
0.190555 + 0.981676i \(0.438971\pi\)
\(90\) 0.944947i 0.0996062i
\(91\) 2.64885i 0.277675i
\(92\) 7.27677i 0.758656i
\(93\) 7.13028 0.739376
\(94\) −4.71031 −0.485832
\(95\) − 4.28931i − 0.440074i
\(96\) − 1.43355i − 0.146311i
\(97\) − 19.2355i − 1.95307i −0.215366 0.976533i \(-0.569094\pi\)
0.215366 0.976533i \(-0.430906\pi\)
\(98\) 6.57900 0.664579
\(99\) 3.52582i 0.354359i
\(100\) −1.00000 −0.100000
\(101\) 9.83938 0.979055 0.489527 0.871988i \(-0.337169\pi\)
0.489527 + 0.871988i \(0.337169\pi\)
\(102\) 0 0
\(103\) 5.96722 0.587968 0.293984 0.955810i \(-0.405019\pi\)
0.293984 + 0.955810i \(0.405019\pi\)
\(104\) 4.08239 0.400311
\(105\) 0.930151i 0.0907735i
\(106\) −8.72286 −0.847239
\(107\) − 5.43739i − 0.525652i −0.964843 0.262826i \(-0.915345\pi\)
0.964843 0.262826i \(-0.0846546\pi\)
\(108\) − 5.65526i − 0.544178i
\(109\) 16.3410i 1.56519i 0.622532 + 0.782594i \(0.286104\pi\)
−0.622532 + 0.782594i \(0.713896\pi\)
\(110\) −3.73124 −0.355760
\(111\) 11.6926 1.10981
\(112\) 0.648847i 0.0613103i
\(113\) 2.49154i 0.234384i 0.993109 + 0.117192i \(0.0373894\pi\)
−0.993109 + 0.117192i \(0.962611\pi\)
\(114\) 6.14892i 0.575900i
\(115\) −7.27677 −0.678562
\(116\) − 1.80109i − 0.167227i
\(117\) 3.85765 0.356639
\(118\) 10.3881 0.956301
\(119\) 0 0
\(120\) 1.43355 0.130864
\(121\) −2.92214 −0.265649
\(122\) 3.54168i 0.320649i
\(123\) 2.77669 0.250366
\(124\) 4.97388i 0.446668i
\(125\) − 1.00000i − 0.0894427i
\(126\) 0.613126i 0.0546216i
\(127\) −9.00347 −0.798929 −0.399464 0.916749i \(-0.630804\pi\)
−0.399464 + 0.916749i \(0.630804\pi\)
\(128\) 1.00000 0.0883883
\(129\) − 1.50045i − 0.132107i
\(130\) 4.08239i 0.358049i
\(131\) − 15.9047i − 1.38960i −0.719203 0.694800i \(-0.755493\pi\)
0.719203 0.694800i \(-0.244507\pi\)
\(132\) 5.34890 0.465562
\(133\) − 2.78311i − 0.241326i
\(134\) 3.48022 0.300645
\(135\) 5.65526 0.486727
\(136\) 0 0
\(137\) 22.9252 1.95864 0.979318 0.202328i \(-0.0648507\pi\)
0.979318 + 0.202328i \(0.0648507\pi\)
\(138\) 10.4316 0.887995
\(139\) 11.5110i 0.976353i 0.872745 + 0.488176i \(0.162338\pi\)
−0.872745 + 0.488176i \(0.837662\pi\)
\(140\) −0.648847 −0.0548376
\(141\) 6.75245i 0.568659i
\(142\) − 13.2729i − 1.11384i
\(143\) 15.2324i 1.27380i
\(144\) 0.944947 0.0787456
\(145\) 1.80109 0.149572
\(146\) 5.99321i 0.496002i
\(147\) − 9.43129i − 0.777880i
\(148\) 8.15640i 0.670452i
\(149\) 13.8251 1.13260 0.566299 0.824200i \(-0.308375\pi\)
0.566299 + 0.824200i \(0.308375\pi\)
\(150\) 1.43355i 0.117049i
\(151\) 18.3424 1.49268 0.746342 0.665563i \(-0.231809\pi\)
0.746342 + 0.665563i \(0.231809\pi\)
\(152\) −4.28931 −0.347909
\(153\) 0 0
\(154\) −2.42100 −0.195090
\(155\) −4.97388 −0.399512
\(156\) − 5.85229i − 0.468559i
\(157\) −17.5326 −1.39926 −0.699629 0.714507i \(-0.746651\pi\)
−0.699629 + 0.714507i \(0.746651\pi\)
\(158\) 0.293157i 0.0233224i
\(159\) 12.5046i 0.991680i
\(160\) 1.00000i 0.0790569i
\(161\) −4.72151 −0.372107
\(162\) −5.27223 −0.414226
\(163\) − 8.61140i − 0.674497i −0.941416 0.337249i \(-0.890504\pi\)
0.941416 0.337249i \(-0.109496\pi\)
\(164\) 1.93694i 0.151250i
\(165\) 5.34890i 0.416411i
\(166\) −2.48406 −0.192801
\(167\) − 11.1026i − 0.859143i −0.903033 0.429571i \(-0.858665\pi\)
0.903033 0.429571i \(-0.141335\pi\)
\(168\) 0.930151 0.0717627
\(169\) 3.66593 0.281994
\(170\) 0 0
\(171\) −4.05317 −0.309954
\(172\) 1.04667 0.0798079
\(173\) − 15.3228i − 1.16497i −0.812842 0.582485i \(-0.802081\pi\)
0.812842 0.582485i \(-0.197919\pi\)
\(174\) −2.58194 −0.195736
\(175\) − 0.648847i − 0.0490482i
\(176\) 3.73124i 0.281253i
\(177\) − 14.8918i − 1.11934i
\(178\) 3.59539 0.269486
\(179\) −10.1899 −0.761627 −0.380813 0.924652i \(-0.624356\pi\)
−0.380813 + 0.924652i \(0.624356\pi\)
\(180\) 0.944947i 0.0704322i
\(181\) − 13.0679i − 0.971328i −0.874146 0.485664i \(-0.838578\pi\)
0.874146 0.485664i \(-0.161422\pi\)
\(182\) 2.64885i 0.196346i
\(183\) 5.07717 0.375315
\(184\) 7.27677i 0.536451i
\(185\) −8.15640 −0.599671
\(186\) 7.13028 0.522818
\(187\) 0 0
\(188\) −4.71031 −0.343535
\(189\) 3.66940 0.266909
\(190\) − 4.28931i − 0.311179i
\(191\) −19.7531 −1.42929 −0.714644 0.699489i \(-0.753411\pi\)
−0.714644 + 0.699489i \(0.753411\pi\)
\(192\) − 1.43355i − 0.103457i
\(193\) 10.3611i 0.745806i 0.927870 + 0.372903i \(0.121638\pi\)
−0.927870 + 0.372903i \(0.878362\pi\)
\(194\) − 19.2355i − 1.38103i
\(195\) 5.85229 0.419092
\(196\) 6.57900 0.469928
\(197\) − 16.6845i − 1.18872i −0.804198 0.594361i \(-0.797405\pi\)
0.804198 0.594361i \(-0.202595\pi\)
\(198\) 3.52582i 0.250569i
\(199\) − 9.47274i − 0.671505i −0.941950 0.335752i \(-0.891009\pi\)
0.941950 0.335752i \(-0.108991\pi\)
\(200\) −1.00000 −0.0707107
\(201\) − 4.98905i − 0.351900i
\(202\) 9.83938 0.692296
\(203\) 1.16863 0.0820217
\(204\) 0 0
\(205\) −1.93694 −0.135282
\(206\) 5.96722 0.415756
\(207\) 6.87616i 0.477926i
\(208\) 4.08239 0.283063
\(209\) − 16.0044i − 1.10705i
\(210\) 0.930151i 0.0641865i
\(211\) 25.1371i 1.73051i 0.501334 + 0.865254i \(0.332843\pi\)
−0.501334 + 0.865254i \(0.667157\pi\)
\(212\) −8.72286 −0.599088
\(213\) −19.0273 −1.30373
\(214\) − 5.43739i − 0.371692i
\(215\) 1.04667i 0.0713824i
\(216\) − 5.65526i − 0.384792i
\(217\) −3.22729 −0.219082
\(218\) 16.3410i 1.10676i
\(219\) 8.59154 0.580563
\(220\) −3.73124 −0.251560
\(221\) 0 0
\(222\) 11.6926 0.784754
\(223\) 19.0672 1.27684 0.638418 0.769690i \(-0.279589\pi\)
0.638418 + 0.769690i \(0.279589\pi\)
\(224\) 0.648847i 0.0433529i
\(225\) −0.944947 −0.0629965
\(226\) 2.49154i 0.165735i
\(227\) − 4.01217i − 0.266297i −0.991096 0.133149i \(-0.957491\pi\)
0.991096 0.133149i \(-0.0425087\pi\)
\(228\) 6.14892i 0.407222i
\(229\) 17.1455 1.13300 0.566502 0.824061i \(-0.308296\pi\)
0.566502 + 0.824061i \(0.308296\pi\)
\(230\) −7.27677 −0.479816
\(231\) 3.47062i 0.228350i
\(232\) − 1.80109i − 0.118247i
\(233\) − 18.9317i − 1.24026i −0.784499 0.620130i \(-0.787080\pi\)
0.784499 0.620130i \(-0.212920\pi\)
\(234\) 3.85765 0.252182
\(235\) − 4.71031i − 0.307267i
\(236\) 10.3881 0.676207
\(237\) 0.420255 0.0272985
\(238\) 0 0
\(239\) −25.1215 −1.62498 −0.812488 0.582978i \(-0.801888\pi\)
−0.812488 + 0.582978i \(0.801888\pi\)
\(240\) 1.43355 0.0925350
\(241\) − 5.98711i − 0.385664i −0.981232 0.192832i \(-0.938233\pi\)
0.981232 0.192832i \(-0.0617672\pi\)
\(242\) −2.92214 −0.187843
\(243\) − 9.40780i − 0.603511i
\(244\) 3.54168i 0.226733i
\(245\) 6.57900i 0.420317i
\(246\) 2.77669 0.177035
\(247\) −17.5107 −1.11418
\(248\) 4.97388i 0.315842i
\(249\) 3.56102i 0.225670i
\(250\) − 1.00000i − 0.0632456i
\(251\) −25.4489 −1.60632 −0.803160 0.595763i \(-0.796850\pi\)
−0.803160 + 0.595763i \(0.796850\pi\)
\(252\) 0.613126i 0.0386233i
\(253\) −27.1514 −1.70699
\(254\) −9.00347 −0.564928
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 24.8653 1.55106 0.775528 0.631314i \(-0.217484\pi\)
0.775528 + 0.631314i \(0.217484\pi\)
\(258\) − 1.50045i − 0.0934140i
\(259\) −5.29226 −0.328845
\(260\) 4.08239i 0.253179i
\(261\) − 1.70193i − 0.105347i
\(262\) − 15.9047i − 0.982595i
\(263\) −5.49782 −0.339010 −0.169505 0.985529i \(-0.554217\pi\)
−0.169505 + 0.985529i \(0.554217\pi\)
\(264\) 5.34890 0.329202
\(265\) − 8.72286i − 0.535841i
\(266\) − 2.78311i − 0.170643i
\(267\) − 5.15415i − 0.315429i
\(268\) 3.48022 0.212588
\(269\) 9.06844i 0.552913i 0.961026 + 0.276456i \(0.0891601\pi\)
−0.961026 + 0.276456i \(0.910840\pi\)
\(270\) 5.65526 0.344168
\(271\) −26.0766 −1.58404 −0.792020 0.610496i \(-0.790970\pi\)
−0.792020 + 0.610496i \(0.790970\pi\)
\(272\) 0 0
\(273\) 3.79724 0.229820
\(274\) 22.9252 1.38496
\(275\) − 3.73124i − 0.225002i
\(276\) 10.4316 0.627907
\(277\) 2.50204i 0.150333i 0.997171 + 0.0751666i \(0.0239489\pi\)
−0.997171 + 0.0751666i \(0.976051\pi\)
\(278\) 11.5110i 0.690386i
\(279\) 4.70005i 0.281385i
\(280\) −0.648847 −0.0387760
\(281\) 11.6341 0.694029 0.347015 0.937860i \(-0.387195\pi\)
0.347015 + 0.937860i \(0.387195\pi\)
\(282\) 6.75245i 0.402103i
\(283\) 27.1032i 1.61112i 0.592514 + 0.805560i \(0.298135\pi\)
−0.592514 + 0.805560i \(0.701865\pi\)
\(284\) − 13.2729i − 0.787603i
\(285\) −6.14892 −0.364231
\(286\) 15.2324i 0.900710i
\(287\) −1.25678 −0.0741852
\(288\) 0.944947 0.0556816
\(289\) 0 0
\(290\) 1.80109 0.105764
\(291\) −27.5749 −1.61647
\(292\) 5.99321i 0.350726i
\(293\) −19.1754 −1.12024 −0.560118 0.828413i \(-0.689244\pi\)
−0.560118 + 0.828413i \(0.689244\pi\)
\(294\) − 9.43129i − 0.550044i
\(295\) 10.3881i 0.604818i
\(296\) 8.15640i 0.474081i
\(297\) 21.1011 1.22441
\(298\) 13.8251 0.800867
\(299\) 29.7066i 1.71798i
\(300\) 1.43355i 0.0827658i
\(301\) 0.679129i 0.0391444i
\(302\) 18.3424 1.05549
\(303\) − 14.1052i − 0.810322i
\(304\) −4.28931 −0.246009
\(305\) −3.54168 −0.202796
\(306\) 0 0
\(307\) 8.72029 0.497693 0.248847 0.968543i \(-0.419949\pi\)
0.248847 + 0.968543i \(0.419949\pi\)
\(308\) −2.42100 −0.137949
\(309\) − 8.55428i − 0.486636i
\(310\) −4.97388 −0.282497
\(311\) 16.8641i 0.956275i 0.878285 + 0.478137i \(0.158688\pi\)
−0.878285 + 0.478137i \(0.841312\pi\)
\(312\) − 5.85229i − 0.331321i
\(313\) − 7.43930i − 0.420494i −0.977648 0.210247i \(-0.932573\pi\)
0.977648 0.210247i \(-0.0674268\pi\)
\(314\) −17.5326 −0.989424
\(315\) −0.613126 −0.0345457
\(316\) 0.293157i 0.0164914i
\(317\) 1.29035i 0.0724730i 0.999343 + 0.0362365i \(0.0115370\pi\)
−0.999343 + 0.0362365i \(0.988463\pi\)
\(318\) 12.5046i 0.701224i
\(319\) 6.72029 0.376264
\(320\) 1.00000i 0.0559017i
\(321\) −7.79475 −0.435060
\(322\) −4.72151 −0.263119
\(323\) 0 0
\(324\) −5.27223 −0.292902
\(325\) −4.08239 −0.226450
\(326\) − 8.61140i − 0.476941i
\(327\) 23.4256 1.29544
\(328\) 1.93694i 0.106950i
\(329\) − 3.05627i − 0.168498i
\(330\) 5.34890i 0.294447i
\(331\) 7.26651 0.399403 0.199702 0.979857i \(-0.436003\pi\)
0.199702 + 0.979857i \(0.436003\pi\)
\(332\) −2.48406 −0.136331
\(333\) 7.70737i 0.422361i
\(334\) − 11.1026i − 0.607506i
\(335\) 3.48022i 0.190145i
\(336\) 0.930151 0.0507439
\(337\) − 17.4872i − 0.952588i −0.879286 0.476294i \(-0.841980\pi\)
0.879286 0.476294i \(-0.158020\pi\)
\(338\) 3.66593 0.199400
\(339\) 3.57174 0.193990
\(340\) 0 0
\(341\) −18.5587 −1.00501
\(342\) −4.05317 −0.219171
\(343\) 8.81069i 0.475732i
\(344\) 1.04667 0.0564327
\(345\) 10.4316i 0.561617i
\(346\) − 15.3228i − 0.823758i
\(347\) − 21.7988i − 1.17022i −0.810954 0.585110i \(-0.801051\pi\)
0.810954 0.585110i \(-0.198949\pi\)
\(348\) −2.58194 −0.138407
\(349\) 13.2144 0.707351 0.353675 0.935368i \(-0.384932\pi\)
0.353675 + 0.935368i \(0.384932\pi\)
\(350\) − 0.648847i − 0.0346823i
\(351\) − 23.0870i − 1.23229i
\(352\) 3.73124i 0.198876i
\(353\) 29.5181 1.57109 0.785546 0.618803i \(-0.212382\pi\)
0.785546 + 0.618803i \(0.212382\pi\)
\(354\) − 14.8918i − 0.791490i
\(355\) 13.2729 0.704454
\(356\) 3.59539 0.190555
\(357\) 0 0
\(358\) −10.1899 −0.538551
\(359\) −8.21236 −0.433432 −0.216716 0.976235i \(-0.569535\pi\)
−0.216716 + 0.976235i \(0.569535\pi\)
\(360\) 0.944947i 0.0498031i
\(361\) −0.601802 −0.0316738
\(362\) − 13.0679i − 0.686833i
\(363\) 4.18903i 0.219867i
\(364\) 2.64885i 0.138837i
\(365\) −5.99321 −0.313699
\(366\) 5.07717 0.265388
\(367\) − 10.9304i − 0.570564i −0.958444 0.285282i \(-0.907913\pi\)
0.958444 0.285282i \(-0.0920873\pi\)
\(368\) 7.27677i 0.379328i
\(369\) 1.83031i 0.0952819i
\(370\) −8.15640 −0.424031
\(371\) − 5.65980i − 0.293842i
\(372\) 7.13028 0.369688
\(373\) 4.57353 0.236808 0.118404 0.992965i \(-0.462222\pi\)
0.118404 + 0.992965i \(0.462222\pi\)
\(374\) 0 0
\(375\) −1.43355 −0.0740280
\(376\) −4.71031 −0.242916
\(377\) − 7.35275i − 0.378686i
\(378\) 3.66940 0.188733
\(379\) − 7.24227i − 0.372010i −0.982549 0.186005i \(-0.940446\pi\)
0.982549 0.186005i \(-0.0595541\pi\)
\(380\) − 4.28931i − 0.220037i
\(381\) 12.9069i 0.661240i
\(382\) −19.7531 −1.01066
\(383\) −35.4256 −1.81017 −0.905083 0.425236i \(-0.860191\pi\)
−0.905083 + 0.425236i \(0.860191\pi\)
\(384\) − 1.43355i − 0.0731553i
\(385\) − 2.42100i − 0.123386i
\(386\) 10.3611i 0.527365i
\(387\) 0.989049 0.0502762
\(388\) − 19.2355i − 0.976533i
\(389\) −33.3188 −1.68933 −0.844666 0.535293i \(-0.820201\pi\)
−0.844666 + 0.535293i \(0.820201\pi\)
\(390\) 5.85229 0.296342
\(391\) 0 0
\(392\) 6.57900 0.332290
\(393\) −22.8001 −1.15011
\(394\) − 16.6845i − 0.840553i
\(395\) −0.293157 −0.0147504
\(396\) 3.52582i 0.177179i
\(397\) − 13.4120i − 0.673127i −0.941661 0.336564i \(-0.890735\pi\)
0.941661 0.336564i \(-0.109265\pi\)
\(398\) − 9.47274i − 0.474825i
\(399\) −3.98971 −0.199735
\(400\) −1.00000 −0.0500000
\(401\) 34.4003i 1.71787i 0.512087 + 0.858934i \(0.328873\pi\)
−0.512087 + 0.858934i \(0.671127\pi\)
\(402\) − 4.98905i − 0.248831i
\(403\) 20.3053i 1.01148i
\(404\) 9.83938 0.489527
\(405\) − 5.27223i − 0.261979i
\(406\) 1.16863 0.0579981
\(407\) −30.4335 −1.50853
\(408\) 0 0
\(409\) 37.6365 1.86101 0.930503 0.366283i \(-0.119370\pi\)
0.930503 + 0.366283i \(0.119370\pi\)
\(410\) −1.93694 −0.0956586
\(411\) − 32.8644i − 1.62108i
\(412\) 5.96722 0.293984
\(413\) 6.74028i 0.331667i
\(414\) 6.87616i 0.337945i
\(415\) − 2.48406i − 0.121938i
\(416\) 4.08239 0.200156
\(417\) 16.5016 0.808086
\(418\) − 16.0044i − 0.782803i
\(419\) 2.02265i 0.0988129i 0.998779 + 0.0494064i \(0.0157330\pi\)
−0.998779 + 0.0494064i \(0.984267\pi\)
\(420\) 0.930151i 0.0453867i
\(421\) −34.7424 −1.69324 −0.846620 0.532198i \(-0.821366\pi\)
−0.846620 + 0.532198i \(0.821366\pi\)
\(422\) 25.1371i 1.22365i
\(423\) −4.45100 −0.216415
\(424\) −8.72286 −0.423619
\(425\) 0 0
\(426\) −19.0273 −0.921878
\(427\) −2.29801 −0.111209
\(428\) − 5.43739i − 0.262826i
\(429\) 21.8363 1.05427
\(430\) 1.04667i 0.0504750i
\(431\) 23.8731i 1.14993i 0.818179 + 0.574964i \(0.194984\pi\)
−0.818179 + 0.574964i \(0.805016\pi\)
\(432\) − 5.65526i − 0.272089i
\(433\) 1.15412 0.0554635 0.0277317 0.999615i \(-0.491172\pi\)
0.0277317 + 0.999615i \(0.491172\pi\)
\(434\) −3.22729 −0.154915
\(435\) − 2.58194i − 0.123795i
\(436\) 16.3410i 0.782594i
\(437\) − 31.2123i − 1.49309i
\(438\) 8.59154 0.410520
\(439\) − 0.395124i − 0.0188582i −0.999956 0.00942912i \(-0.996999\pi\)
0.999956 0.00942912i \(-0.00300143\pi\)
\(440\) −3.73124 −0.177880
\(441\) 6.21681 0.296038
\(442\) 0 0
\(443\) −17.8435 −0.847772 −0.423886 0.905716i \(-0.639334\pi\)
−0.423886 + 0.905716i \(0.639334\pi\)
\(444\) 11.6926 0.554905
\(445\) 3.59539i 0.170438i
\(446\) 19.0672 0.902859
\(447\) − 19.8189i − 0.937403i
\(448\) 0.648847i 0.0306551i
\(449\) − 30.2944i − 1.42968i −0.699288 0.714840i \(-0.746500\pi\)
0.699288 0.714840i \(-0.253500\pi\)
\(450\) −0.944947 −0.0445452
\(451\) −7.22718 −0.340315
\(452\) 2.49154i 0.117192i
\(453\) − 26.2947i − 1.23543i
\(454\) − 4.01217i − 0.188300i
\(455\) −2.64885 −0.124180
\(456\) 6.14892i 0.287950i
\(457\) −35.0823 −1.64108 −0.820541 0.571587i \(-0.806328\pi\)
−0.820541 + 0.571587i \(0.806328\pi\)
\(458\) 17.1455 0.801154
\(459\) 0 0
\(460\) −7.27677 −0.339281
\(461\) 40.2564 1.87493 0.937464 0.348083i \(-0.113167\pi\)
0.937464 + 0.348083i \(0.113167\pi\)
\(462\) 3.47062i 0.161468i
\(463\) −1.74763 −0.0812191 −0.0406096 0.999175i \(-0.512930\pi\)
−0.0406096 + 0.999175i \(0.512930\pi\)
\(464\) − 1.80109i − 0.0836134i
\(465\) 7.13028i 0.330659i
\(466\) − 18.9317i − 0.876996i
\(467\) −17.0853 −0.790615 −0.395308 0.918549i \(-0.629362\pi\)
−0.395308 + 0.918549i \(0.629362\pi\)
\(468\) 3.85765 0.178320
\(469\) 2.25813i 0.104271i
\(470\) − 4.71031i − 0.217271i
\(471\) 25.1338i 1.15811i
\(472\) 10.3881 0.478151
\(473\) 3.90538i 0.179570i
\(474\) 0.420255 0.0193029
\(475\) 4.28931 0.196807
\(476\) 0 0
\(477\) −8.24264 −0.377405
\(478\) −25.1215 −1.14903
\(479\) 20.9115i 0.955471i 0.878504 + 0.477736i \(0.158542\pi\)
−0.878504 + 0.477736i \(0.841458\pi\)
\(480\) 1.43355 0.0654321
\(481\) 33.2976i 1.51824i
\(482\) − 5.98711i − 0.272706i
\(483\) 6.76850i 0.307977i
\(484\) −2.92214 −0.132825
\(485\) 19.2355 0.873438
\(486\) − 9.40780i − 0.426746i
\(487\) 16.2520i 0.736448i 0.929737 + 0.368224i \(0.120034\pi\)
−0.929737 + 0.368224i \(0.879966\pi\)
\(488\) 3.54168i 0.160325i
\(489\) −12.3448 −0.558253
\(490\) 6.57900i 0.297209i
\(491\) 16.3083 0.735985 0.367992 0.929829i \(-0.380045\pi\)
0.367992 + 0.929829i \(0.380045\pi\)
\(492\) 2.77669 0.125183
\(493\) 0 0
\(494\) −17.5107 −0.787842
\(495\) −3.52582 −0.158474
\(496\) 4.97388i 0.223334i
\(497\) 8.61209 0.386305
\(498\) 3.56102i 0.159573i
\(499\) − 32.7000i − 1.46385i −0.681384 0.731926i \(-0.738621\pi\)
0.681384 0.731926i \(-0.261379\pi\)
\(500\) − 1.00000i − 0.0447214i
\(501\) −15.9160 −0.711076
\(502\) −25.4489 −1.13584
\(503\) 17.6314i 0.786146i 0.919507 + 0.393073i \(0.128588\pi\)
−0.919507 + 0.393073i \(0.871412\pi\)
\(504\) 0.613126i 0.0273108i
\(505\) 9.83938i 0.437847i
\(506\) −27.1514 −1.20703
\(507\) − 5.25527i − 0.233395i
\(508\) −9.00347 −0.399464
\(509\) −18.7525 −0.831189 −0.415595 0.909550i \(-0.636426\pi\)
−0.415595 + 0.909550i \(0.636426\pi\)
\(510\) 0 0
\(511\) −3.88868 −0.172025
\(512\) 1.00000 0.0441942
\(513\) 24.2572i 1.07098i
\(514\) 24.8653 1.09676
\(515\) 5.96722i 0.262947i
\(516\) − 1.50045i − 0.0660537i
\(517\) − 17.5753i − 0.772961i
\(518\) −5.29226 −0.232528
\(519\) −21.9659 −0.964196
\(520\) 4.08239i 0.179025i
\(521\) − 19.8645i − 0.870278i −0.900363 0.435139i \(-0.856699\pi\)
0.900363 0.435139i \(-0.143301\pi\)
\(522\) − 1.70193i − 0.0744916i
\(523\) −16.9141 −0.739601 −0.369801 0.929111i \(-0.620574\pi\)
−0.369801 + 0.929111i \(0.620574\pi\)
\(524\) − 15.9047i − 0.694800i
\(525\) −0.930151 −0.0405951
\(526\) −5.49782 −0.239717
\(527\) 0 0
\(528\) 5.34890 0.232781
\(529\) −29.9514 −1.30223
\(530\) − 8.72286i − 0.378897i
\(531\) 9.81620 0.425987
\(532\) − 2.78311i − 0.120663i
\(533\) 7.90735i 0.342505i
\(534\) − 5.15415i − 0.223042i
\(535\) 5.43739 0.235079
\(536\) 3.48022 0.150322
\(537\) 14.6076i 0.630366i
\(538\) 9.06844i 0.390968i
\(539\) 24.5478i 1.05735i
\(540\) 5.65526 0.243364
\(541\) 22.1120i 0.950670i 0.879805 + 0.475335i \(0.157673\pi\)
−0.879805 + 0.475335i \(0.842327\pi\)
\(542\) −26.0766 −1.12009
\(543\) −18.7334 −0.803927
\(544\) 0 0
\(545\) −16.3410 −0.699974
\(546\) 3.79724 0.162507
\(547\) 35.5271i 1.51903i 0.650491 + 0.759514i \(0.274563\pi\)
−0.650491 + 0.759514i \(0.725437\pi\)
\(548\) 22.9252 0.979318
\(549\) 3.34671i 0.142834i
\(550\) − 3.73124i − 0.159101i
\(551\) 7.72543i 0.329114i
\(552\) 10.4316 0.443997
\(553\) −0.190214 −0.00808873
\(554\) 2.50204i 0.106302i
\(555\) 11.6926i 0.496322i
\(556\) 11.5110i 0.488176i
\(557\) 5.78242 0.245009 0.122504 0.992468i \(-0.460907\pi\)
0.122504 + 0.992468i \(0.460907\pi\)
\(558\) 4.70005i 0.198969i
\(559\) 4.27292 0.180725
\(560\) −0.648847 −0.0274188
\(561\) 0 0
\(562\) 11.6341 0.490753
\(563\) 0.883106 0.0372185 0.0186092 0.999827i \(-0.494076\pi\)
0.0186092 + 0.999827i \(0.494076\pi\)
\(564\) 6.75245i 0.284329i
\(565\) −2.49154 −0.104820
\(566\) 27.1032i 1.13923i
\(567\) − 3.42087i − 0.143663i
\(568\) − 13.2729i − 0.556919i
\(569\) 6.06200 0.254132 0.127066 0.991894i \(-0.459444\pi\)
0.127066 + 0.991894i \(0.459444\pi\)
\(570\) −6.14892 −0.257550
\(571\) − 22.1138i − 0.925432i −0.886507 0.462716i \(-0.846875\pi\)
0.886507 0.462716i \(-0.153125\pi\)
\(572\) 15.2324i 0.636898i
\(573\) 28.3170i 1.18296i
\(574\) −1.25678 −0.0524569
\(575\) − 7.27677i − 0.303462i
\(576\) 0.944947 0.0393728
\(577\) −11.1949 −0.466051 −0.233026 0.972471i \(-0.574863\pi\)
−0.233026 + 0.972471i \(0.574863\pi\)
\(578\) 0 0
\(579\) 14.8531 0.617272
\(580\) 1.80109 0.0747861
\(581\) − 1.61178i − 0.0668677i
\(582\) −27.5749 −1.14302
\(583\) − 32.5471i − 1.34796i
\(584\) 5.99321i 0.248001i
\(585\) 3.85765i 0.159494i
\(586\) −19.1754 −0.792127
\(587\) 14.0669 0.580605 0.290302 0.956935i \(-0.406244\pi\)
0.290302 + 0.956935i \(0.406244\pi\)
\(588\) − 9.43129i − 0.388940i
\(589\) − 21.3345i − 0.879074i
\(590\) 10.3881i 0.427671i
\(591\) −23.9180 −0.983855
\(592\) 8.15640i 0.335226i
\(593\) −9.99549 −0.410466 −0.205233 0.978713i \(-0.565795\pi\)
−0.205233 + 0.978713i \(0.565795\pi\)
\(594\) 21.1011 0.865790
\(595\) 0 0
\(596\) 13.8251 0.566299
\(597\) −13.5796 −0.555776
\(598\) 29.7066i 1.21479i
\(599\) 17.8658 0.729976 0.364988 0.931012i \(-0.381073\pi\)
0.364988 + 0.931012i \(0.381073\pi\)
\(600\) 1.43355i 0.0585243i
\(601\) − 21.8948i − 0.893108i −0.894757 0.446554i \(-0.852651\pi\)
0.894757 0.446554i \(-0.147349\pi\)
\(602\) 0.679129i 0.0276792i
\(603\) 3.28862 0.133923
\(604\) 18.3424 0.746342
\(605\) − 2.92214i − 0.118802i
\(606\) − 14.1052i − 0.572984i
\(607\) − 16.8314i − 0.683164i −0.939852 0.341582i \(-0.889037\pi\)
0.939852 0.341582i \(-0.110963\pi\)
\(608\) −4.28931 −0.173955
\(609\) − 1.67528i − 0.0678859i
\(610\) −3.54168 −0.143399
\(611\) −19.2293 −0.777936
\(612\) 0 0
\(613\) −16.8709 −0.681408 −0.340704 0.940171i \(-0.610665\pi\)
−0.340704 + 0.940171i \(0.610665\pi\)
\(614\) 8.72029 0.351922
\(615\) 2.77669i 0.111967i
\(616\) −2.42100 −0.0975450
\(617\) − 30.9716i − 1.24687i −0.781876 0.623434i \(-0.785737\pi\)
0.781876 0.623434i \(-0.214263\pi\)
\(618\) − 8.55428i − 0.344104i
\(619\) − 9.03604i − 0.363189i −0.983373 0.181595i \(-0.941874\pi\)
0.983373 0.181595i \(-0.0581258\pi\)
\(620\) −4.97388 −0.199756
\(621\) 41.1520 1.65137
\(622\) 16.8641i 0.676188i
\(623\) 2.33285i 0.0934639i
\(624\) − 5.85229i − 0.234279i
\(625\) 1.00000 0.0400000
\(626\) − 7.43930i − 0.297334i
\(627\) −22.9431 −0.916259
\(628\) −17.5326 −0.699629
\(629\) 0 0
\(630\) −0.613126 −0.0244275
\(631\) −24.7713 −0.986129 −0.493064 0.869993i \(-0.664123\pi\)
−0.493064 + 0.869993i \(0.664123\pi\)
\(632\) 0.293157i 0.0116612i
\(633\) 36.0351 1.43227
\(634\) 1.29035i 0.0512462i
\(635\) − 9.00347i − 0.357292i
\(636\) 12.5046i 0.495840i
\(637\) 26.8580 1.06415
\(638\) 6.72029 0.266059
\(639\) − 12.5422i − 0.496162i
\(640\) 1.00000i 0.0395285i
\(641\) 30.6326i 1.20991i 0.796258 + 0.604957i \(0.206810\pi\)
−0.796258 + 0.604957i \(0.793190\pi\)
\(642\) −7.79475 −0.307634
\(643\) − 2.38650i − 0.0941144i −0.998892 0.0470572i \(-0.985016\pi\)
0.998892 0.0470572i \(-0.0149843\pi\)
\(644\) −4.72151 −0.186053
\(645\) 1.50045 0.0590802
\(646\) 0 0
\(647\) −25.0527 −0.984924 −0.492462 0.870334i \(-0.663903\pi\)
−0.492462 + 0.870334i \(0.663903\pi\)
\(648\) −5.27223 −0.207113
\(649\) 38.7605i 1.52148i
\(650\) −4.08239 −0.160125
\(651\) 4.62646i 0.181325i
\(652\) − 8.61140i − 0.337249i
\(653\) − 15.4788i − 0.605731i −0.953033 0.302866i \(-0.902057\pi\)
0.953033 0.302866i \(-0.0979434\pi\)
\(654\) 23.4256 0.916015
\(655\) 15.9047 0.621448
\(656\) 1.93694i 0.0756248i
\(657\) 5.66327i 0.220945i
\(658\) − 3.05627i − 0.119146i
\(659\) 8.19841 0.319365 0.159682 0.987168i \(-0.448953\pi\)
0.159682 + 0.987168i \(0.448953\pi\)
\(660\) 5.34890i 0.208206i
\(661\) 45.2036 1.75822 0.879108 0.476622i \(-0.158139\pi\)
0.879108 + 0.476622i \(0.158139\pi\)
\(662\) 7.26651 0.282421
\(663\) 0 0
\(664\) −2.48406 −0.0964003
\(665\) 2.78311 0.107924
\(666\) 7.70737i 0.298655i
\(667\) 13.1061 0.507470
\(668\) − 11.1026i − 0.429571i
\(669\) − 27.3337i − 1.05678i
\(670\) 3.48022i 0.134453i
\(671\) −13.2149 −0.510154
\(672\) 0.930151 0.0358814
\(673\) − 17.6341i − 0.679743i −0.940472 0.339871i \(-0.889616\pi\)
0.940472 0.339871i \(-0.110384\pi\)
\(674\) − 17.4872i − 0.673581i
\(675\) 5.65526i 0.217671i
\(676\) 3.66593 0.140997
\(677\) − 42.1776i − 1.62102i −0.585728 0.810508i \(-0.699191\pi\)
0.585728 0.810508i \(-0.300809\pi\)
\(678\) 3.57174 0.137172
\(679\) 12.4809 0.478972
\(680\) 0 0
\(681\) −5.75163 −0.220403
\(682\) −18.5587 −0.710651
\(683\) − 12.0540i − 0.461234i −0.973045 0.230617i \(-0.925926\pi\)
0.973045 0.230617i \(-0.0740745\pi\)
\(684\) −4.05317 −0.154977
\(685\) 22.9252i 0.875928i
\(686\) 8.81069i 0.336394i
\(687\) − 24.5788i − 0.937739i
\(688\) 1.04667 0.0399040
\(689\) −35.6101 −1.35664
\(690\) 10.4316i 0.397123i
\(691\) 31.4839i 1.19770i 0.800860 + 0.598852i \(0.204376\pi\)
−0.800860 + 0.598852i \(0.795624\pi\)
\(692\) − 15.3228i − 0.582485i
\(693\) −2.28772 −0.0869033
\(694\) − 21.7988i − 0.827470i
\(695\) −11.5110 −0.436638
\(696\) −2.58194 −0.0978682
\(697\) 0 0
\(698\) 13.2144 0.500172
\(699\) −27.1395 −1.02651
\(700\) − 0.648847i − 0.0245241i
\(701\) 7.86897 0.297207 0.148603 0.988897i \(-0.452522\pi\)
0.148603 + 0.988897i \(0.452522\pi\)
\(702\) − 23.0870i − 0.871362i
\(703\) − 34.9854i − 1.31950i
\(704\) 3.73124i 0.140626i
\(705\) −6.75245 −0.254312
\(706\) 29.5181 1.11093
\(707\) 6.38425i 0.240104i
\(708\) − 14.8918i − 0.559668i
\(709\) − 16.0385i − 0.602338i −0.953571 0.301169i \(-0.902623\pi\)
0.953571 0.301169i \(-0.0973768\pi\)
\(710\) 13.2729 0.498124
\(711\) 0.277018i 0.0103890i
\(712\) 3.59539 0.134743
\(713\) −36.1938 −1.35547
\(714\) 0 0
\(715\) −15.2324 −0.569659
\(716\) −10.1899 −0.380813
\(717\) 36.0129i 1.34492i
\(718\) −8.21236 −0.306482
\(719\) 1.13641i 0.0423810i 0.999775 + 0.0211905i \(0.00674565\pi\)
−0.999775 + 0.0211905i \(0.993254\pi\)
\(720\) 0.944947i 0.0352161i
\(721\) 3.87181i 0.144194i
\(722\) −0.601802 −0.0223967
\(723\) −8.58280 −0.319198
\(724\) − 13.0679i − 0.485664i
\(725\) 1.80109i 0.0668907i
\(726\) 4.18903i 0.155469i
\(727\) 16.5261 0.612918 0.306459 0.951884i \(-0.400856\pi\)
0.306459 + 0.951884i \(0.400856\pi\)
\(728\) 2.64885i 0.0981728i
\(729\) −29.3032 −1.08530
\(730\) −5.99321 −0.221819
\(731\) 0 0
\(732\) 5.07717 0.187657
\(733\) 4.79888 0.177251 0.0886253 0.996065i \(-0.471753\pi\)
0.0886253 + 0.996065i \(0.471753\pi\)
\(734\) − 10.9304i − 0.403450i
\(735\) 9.43129 0.347878
\(736\) 7.27677i 0.268225i
\(737\) 12.9855i 0.478328i
\(738\) 1.83031i 0.0673745i
\(739\) −48.1816 −1.77239 −0.886195 0.463312i \(-0.846661\pi\)
−0.886195 + 0.463312i \(0.846661\pi\)
\(740\) −8.15640 −0.299835
\(741\) 25.1023i 0.922157i
\(742\) − 5.65980i − 0.207778i
\(743\) − 19.7569i − 0.724810i −0.932021 0.362405i \(-0.881956\pi\)
0.932021 0.362405i \(-0.118044\pi\)
\(744\) 7.13028 0.261409
\(745\) 13.8251i 0.506513i
\(746\) 4.57353 0.167449
\(747\) −2.34731 −0.0858835
\(748\) 0 0
\(749\) 3.52803 0.128912
\(750\) −1.43355 −0.0523457
\(751\) 16.2921i 0.594507i 0.954799 + 0.297253i \(0.0960706\pi\)
−0.954799 + 0.297253i \(0.903929\pi\)
\(752\) −4.71031 −0.171767
\(753\) 36.4822i 1.32948i
\(754\) − 7.35275i − 0.267771i
\(755\) 18.3424i 0.667548i
\(756\) 3.66940 0.133455
\(757\) 16.0166 0.582134 0.291067 0.956703i \(-0.405990\pi\)
0.291067 + 0.956703i \(0.405990\pi\)
\(758\) − 7.24227i − 0.263051i
\(759\) 38.9227i 1.41280i
\(760\) − 4.28931i − 0.155590i
\(761\) 14.4363 0.523314 0.261657 0.965161i \(-0.415731\pi\)
0.261657 + 0.965161i \(0.415731\pi\)
\(762\) 12.9069i 0.467567i
\(763\) −10.6028 −0.383848
\(764\) −19.7531 −0.714644
\(765\) 0 0
\(766\) −35.4256 −1.27998
\(767\) 42.4083 1.53127
\(768\) − 1.43355i − 0.0517286i
\(769\) −55.2022 −1.99064 −0.995321 0.0966274i \(-0.969194\pi\)
−0.995321 + 0.0966274i \(0.969194\pi\)
\(770\) − 2.42100i − 0.0872469i
\(771\) − 35.6456i − 1.28374i
\(772\) 10.3611i 0.372903i
\(773\) −0.0978044 −0.00351778 −0.00175889 0.999998i \(-0.500560\pi\)
−0.00175889 + 0.999998i \(0.500560\pi\)
\(774\) 0.989049 0.0355506
\(775\) − 4.97388i − 0.178667i
\(776\) − 19.2355i − 0.690513i
\(777\) 7.58669i 0.272171i
\(778\) −33.3188 −1.19454
\(779\) − 8.30814i − 0.297670i
\(780\) 5.85229 0.209546
\(781\) 49.5244 1.77212
\(782\) 0 0
\(783\) −10.1856 −0.364004
\(784\) 6.57900 0.234964
\(785\) − 17.5326i − 0.625767i
\(786\) −22.8001 −0.813253
\(787\) − 37.4792i − 1.33599i −0.744167 0.667994i \(-0.767153\pi\)
0.744167 0.667994i \(-0.232847\pi\)
\(788\) − 16.6845i − 0.594361i
\(789\) 7.88138i 0.280585i
\(790\) −0.293157 −0.0104301
\(791\) −1.61663 −0.0574807
\(792\) 3.52582i 0.125285i
\(793\) 14.4585i 0.513438i
\(794\) − 13.4120i − 0.475973i
\(795\) −12.5046 −0.443493
\(796\) − 9.47274i − 0.335752i
\(797\) −26.8631 −0.951540 −0.475770 0.879570i \(-0.657831\pi\)
−0.475770 + 0.879570i \(0.657831\pi\)
\(798\) −3.98971 −0.141234
\(799\) 0 0
\(800\) −1.00000 −0.0353553
\(801\) 3.39745 0.120043
\(802\) 34.4003i 1.21472i
\(803\) −22.3621 −0.789142
\(804\) − 4.98905i − 0.175950i
\(805\) − 4.72151i − 0.166411i
\(806\) 20.3053i 0.715225i
\(807\) 13.0000 0.457623
\(808\) 9.83938 0.346148
\(809\) − 32.0160i − 1.12562i −0.826586 0.562811i \(-0.809720\pi\)
0.826586 0.562811i \(-0.190280\pi\)
\(810\) − 5.27223i − 0.185247i
\(811\) 32.0305i 1.12474i 0.826885 + 0.562371i \(0.190111\pi\)
−0.826885 + 0.562371i \(0.809889\pi\)
\(812\) 1.16863 0.0410109
\(813\) 37.3820i 1.31104i
\(814\) −30.4335 −1.06669
\(815\) 8.61140 0.301644
\(816\) 0 0
\(817\) −4.48950 −0.157068
\(818\) 37.6365 1.31593
\(819\) 2.50302i 0.0874626i
\(820\) −1.93694 −0.0676409
\(821\) 3.86563i 0.134911i 0.997722 + 0.0674557i \(0.0214881\pi\)
−0.997722 + 0.0674557i \(0.978512\pi\)
\(822\) − 32.8644i − 1.14628i
\(823\) 4.22340i 0.147218i 0.997287 + 0.0736092i \(0.0234517\pi\)
−0.997287 + 0.0736092i \(0.976548\pi\)
\(824\) 5.96722 0.207878
\(825\) −5.34890 −0.186225
\(826\) 6.74028i 0.234524i
\(827\) − 42.5037i − 1.47800i −0.673706 0.739000i \(-0.735298\pi\)
0.673706 0.739000i \(-0.264702\pi\)
\(828\) 6.87616i 0.238963i
\(829\) 10.9929 0.381798 0.190899 0.981610i \(-0.438860\pi\)
0.190899 + 0.981610i \(0.438860\pi\)
\(830\) − 2.48406i − 0.0862231i
\(831\) 3.58679 0.124424
\(832\) 4.08239 0.141531
\(833\) 0 0
\(834\) 16.5016 0.571403
\(835\) 11.1026 0.384220
\(836\) − 16.0044i − 0.553525i
\(837\) 28.1286 0.972266
\(838\) 2.02265i 0.0698712i
\(839\) − 33.6345i − 1.16119i −0.814192 0.580596i \(-0.802819\pi\)
0.814192 0.580596i \(-0.197181\pi\)
\(840\) 0.930151i 0.0320933i
\(841\) 25.7561 0.888141
\(842\) −34.7424 −1.19730
\(843\) − 16.6779i − 0.574419i
\(844\) 25.1371i 0.865254i
\(845\) 3.66593i 0.126112i
\(846\) −4.45100 −0.153028
\(847\) − 1.89602i − 0.0651481i
\(848\) −8.72286 −0.299544
\(849\) 38.8537 1.33346
\(850\) 0 0
\(851\) −59.3523 −2.03457
\(852\) −19.0273 −0.651866
\(853\) − 10.6584i − 0.364938i −0.983212 0.182469i \(-0.941591\pi\)
0.983212 0.182469i \(-0.0584090\pi\)
\(854\) −2.29801 −0.0786363
\(855\) − 4.05317i − 0.138616i
\(856\) − 5.43739i − 0.185846i
\(857\) − 24.1940i − 0.826451i −0.910629 0.413226i \(-0.864402\pi\)
0.910629 0.413226i \(-0.135598\pi\)
\(858\) 21.8363 0.745479
\(859\) 19.2963 0.658381 0.329190 0.944264i \(-0.393224\pi\)
0.329190 + 0.944264i \(0.393224\pi\)
\(860\) 1.04667i 0.0356912i
\(861\) 1.80165i 0.0614000i
\(862\) 23.8731i 0.813122i
\(863\) −31.7534 −1.08090 −0.540449 0.841377i \(-0.681746\pi\)
−0.540449 + 0.841377i \(0.681746\pi\)
\(864\) − 5.65526i − 0.192396i
\(865\) 15.3228 0.520990
\(866\) 1.15412 0.0392186
\(867\) 0 0
\(868\) −3.22729 −0.109541
\(869\) −1.09384 −0.0371060
\(870\) − 2.58194i − 0.0875360i
\(871\) 14.2076 0.481407
\(872\) 16.3410i 0.553378i
\(873\) − 18.1765i − 0.615182i
\(874\) − 31.2123i − 1.05577i
\(875\) 0.648847 0.0219350
\(876\) 8.59154 0.290281
\(877\) − 37.0649i − 1.25159i −0.779986 0.625797i \(-0.784774\pi\)
0.779986 0.625797i \(-0.215226\pi\)
\(878\) − 0.395124i − 0.0133348i
\(879\) 27.4888i 0.927173i
\(880\) −3.73124 −0.125780
\(881\) 33.0057i 1.11199i 0.831186 + 0.555995i \(0.187663\pi\)
−0.831186 + 0.555995i \(0.812337\pi\)
\(882\) 6.21681 0.209331
\(883\) 25.4716 0.857188 0.428594 0.903497i \(-0.359009\pi\)
0.428594 + 0.903497i \(0.359009\pi\)
\(884\) 0 0
\(885\) 14.8918 0.500583
\(886\) −17.8435 −0.599465
\(887\) − 29.2476i − 0.982040i −0.871148 0.491020i \(-0.836624\pi\)
0.871148 0.491020i \(-0.163376\pi\)
\(888\) 11.6926 0.392377
\(889\) − 5.84187i − 0.195930i
\(890\) 3.59539i 0.120518i
\(891\) − 19.6720i − 0.659035i
\(892\) 19.0672 0.638418
\(893\) 20.2040 0.676101
\(894\) − 19.8189i − 0.662844i
\(895\) − 10.1899i − 0.340610i
\(896\) 0.648847i 0.0216764i
\(897\) 42.5858 1.42190
\(898\) − 30.2944i − 1.01094i
\(899\) 8.95839 0.298779
\(900\) −0.944947 −0.0314982
\(901\) 0 0
\(902\) −7.22718 −0.240639
\(903\) 0.973563 0.0323981
\(904\) 2.49154i 0.0828674i
\(905\) 13.0679 0.434391
\(906\) − 26.2947i − 0.873582i
\(907\) 41.5854i 1.38082i 0.723418 + 0.690410i \(0.242570\pi\)
−0.723418 + 0.690410i \(0.757430\pi\)
\(908\) − 4.01217i − 0.133149i
\(909\) 9.29769 0.308385
\(910\) −2.64885 −0.0878084
\(911\) − 0.0623697i − 0.00206640i −0.999999 0.00103320i \(-0.999671\pi\)
0.999999 0.00103320i \(-0.000328878\pi\)
\(912\) 6.14892i 0.203611i
\(913\) − 9.26863i − 0.306747i
\(914\) −35.0823 −1.16042
\(915\) 5.07717i 0.167846i
\(916\) 17.1455 0.566502
\(917\) 10.3197 0.340787
\(918\) 0 0
\(919\) 17.0376 0.562019 0.281009 0.959705i \(-0.409331\pi\)
0.281009 + 0.959705i \(0.409331\pi\)
\(920\) −7.27677 −0.239908
\(921\) − 12.5009i − 0.411920i
\(922\) 40.2564 1.32577
\(923\) − 54.1853i − 1.78353i
\(924\) 3.47062i 0.114175i
\(925\) − 8.15640i − 0.268181i
\(926\) −1.74763 −0.0574306
\(927\) 5.63871 0.185200
\(928\) − 1.80109i − 0.0591236i
\(929\) − 6.87693i − 0.225625i −0.993616 0.112812i \(-0.964014\pi\)
0.993616 0.112812i \(-0.0359859\pi\)
\(930\) 7.13028i 0.233811i
\(931\) −28.2194 −0.924853
\(932\) − 18.9317i − 0.620130i
\(933\) 24.1754 0.791468
\(934\) −17.0853 −0.559049
\(935\) 0 0
\(936\) 3.85765 0.126091
\(937\) 19.0427 0.622098 0.311049 0.950394i \(-0.399320\pi\)
0.311049 + 0.950394i \(0.399320\pi\)
\(938\) 2.25813i 0.0737305i
\(939\) −10.6646 −0.348025
\(940\) − 4.71031i − 0.153634i
\(941\) 2.60364i 0.0848761i 0.999099 + 0.0424381i \(0.0135125\pi\)
−0.999099 + 0.0424381i \(0.986487\pi\)
\(942\) 25.1338i 0.818905i
\(943\) −14.0947 −0.458985
\(944\) 10.3881 0.338104
\(945\) 3.66940i 0.119366i
\(946\) 3.90538i 0.126975i
\(947\) 7.42511i 0.241284i 0.992696 + 0.120642i \(0.0384952\pi\)
−0.992696 + 0.120642i \(0.961505\pi\)
\(948\) 0.420255 0.0136492
\(949\) 24.4666i 0.794221i
\(950\) 4.28931 0.139164
\(951\) 1.84977 0.0599829
\(952\) 0 0
\(953\) 37.5558 1.21655 0.608277 0.793725i \(-0.291861\pi\)
0.608277 + 0.793725i \(0.291861\pi\)
\(954\) −8.24264 −0.266865
\(955\) − 19.7531i − 0.639197i
\(956\) −25.1215 −0.812488
\(957\) − 9.63384i − 0.311418i
\(958\) 20.9115i 0.675620i
\(959\) 14.8750i 0.480338i
\(960\) 1.43355 0.0462675
\(961\) 6.26052 0.201952
\(962\) 33.2976i 1.07356i
\(963\) − 5.13805i − 0.165571i
\(964\) − 5.98711i − 0.192832i
\(965\) −10.3611 −0.333535
\(966\) 6.76850i 0.217773i
\(967\) 49.1247 1.57974 0.789871 0.613273i \(-0.210147\pi\)
0.789871 + 0.613273i \(0.210147\pi\)
\(968\) −2.92214 −0.0939213
\(969\) 0 0
\(970\) 19.2355 0.617614
\(971\) −20.0813 −0.644439 −0.322220 0.946665i \(-0.604429\pi\)
−0.322220 + 0.946665i \(0.604429\pi\)
\(972\) − 9.40780i − 0.301755i
\(973\) −7.46889 −0.239442
\(974\) 16.2520i 0.520748i
\(975\) 5.85229i 0.187423i
\(976\) 3.54168i 0.113367i
\(977\) 38.9009 1.24455 0.622275 0.782799i \(-0.286209\pi\)
0.622275 + 0.782799i \(0.286209\pi\)
\(978\) −12.3448 −0.394744
\(979\) 13.4152i 0.428753i
\(980\) 6.57900i 0.210158i
\(981\) 15.4414i 0.493007i
\(982\) 16.3083 0.520420
\(983\) 4.42226i 0.141048i 0.997510 + 0.0705242i \(0.0224672\pi\)
−0.997510 + 0.0705242i \(0.977533\pi\)
\(984\) 2.77669 0.0885177
\(985\) 16.6845 0.531613
\(986\) 0 0
\(987\) −4.38130 −0.139458
\(988\) −17.5107 −0.557088
\(989\) 7.61639i 0.242187i
\(990\) −3.52582 −0.112058
\(991\) 16.5120i 0.524521i 0.964997 + 0.262261i \(0.0844680\pi\)
−0.964997 + 0.262261i \(0.915532\pi\)
\(992\) 4.97388i 0.157921i
\(993\) − 10.4169i − 0.330569i
\(994\) 8.61209 0.273159
\(995\) 9.47274 0.300306
\(996\) 3.56102i 0.112835i
\(997\) − 56.3738i − 1.78538i −0.450675 0.892688i \(-0.648817\pi\)
0.450675 0.892688i \(-0.351183\pi\)
\(998\) − 32.7000i − 1.03510i
\(999\) 46.1266 1.45938
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2890.2.b.p.2311.4 8
17.3 odd 16 170.2.k.a.161.1 yes 8
17.4 even 4 2890.2.a.bc.1.3 4
17.11 odd 16 170.2.k.a.151.1 8
17.13 even 4 2890.2.a.bf.1.2 4
17.16 even 2 inner 2890.2.b.p.2311.5 8
85.3 even 16 850.2.o.f.399.1 8
85.28 even 16 850.2.o.c.49.2 8
85.37 even 16 850.2.o.c.399.2 8
85.54 odd 16 850.2.l.d.501.2 8
85.62 even 16 850.2.o.f.49.1 8
85.79 odd 16 850.2.l.d.151.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
170.2.k.a.151.1 8 17.11 odd 16
170.2.k.a.161.1 yes 8 17.3 odd 16
850.2.l.d.151.2 8 85.79 odd 16
850.2.l.d.501.2 8 85.54 odd 16
850.2.o.c.49.2 8 85.28 even 16
850.2.o.c.399.2 8 85.37 even 16
850.2.o.f.49.1 8 85.62 even 16
850.2.o.f.399.1 8 85.3 even 16
2890.2.a.bc.1.3 4 17.4 even 4
2890.2.a.bf.1.2 4 17.13 even 4
2890.2.b.p.2311.4 8 1.1 even 1 trivial
2890.2.b.p.2311.5 8 17.16 even 2 inner