Properties

Label 2890.2.a.bi.1.7
Level $2890$
Weight $2$
Character 2890.1
Self dual yes
Analytic conductor $23.077$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2890,2,Mod(1,2890)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2890.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2890, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2890 = 2 \cdot 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2890.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,8,-4,8,-8,-4,-8,8,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.0767661842\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: 8.8.32887537664.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 6x^{6} + 28x^{5} + 13x^{4} - 56x^{3} - 12x^{2} + 32x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 170)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-0.0614939\) of defining polynomial
Character \(\chi\) \(=\) 2890.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.47571 q^{3} +1.00000 q^{4} -1.00000 q^{5} +1.47571 q^{6} -3.54824 q^{7} +1.00000 q^{8} -0.822287 q^{9} -1.00000 q^{10} +4.70854 q^{11} +1.47571 q^{12} -5.47699 q^{13} -3.54824 q^{14} -1.47571 q^{15} +1.00000 q^{16} -0.822287 q^{18} +1.21304 q^{19} -1.00000 q^{20} -5.23617 q^{21} +4.70854 q^{22} -5.72028 q^{23} +1.47571 q^{24} +1.00000 q^{25} -5.47699 q^{26} -5.64058 q^{27} -3.54824 q^{28} -4.64378 q^{29} -1.47571 q^{30} -7.28334 q^{31} +1.00000 q^{32} +6.94843 q^{33} +3.54824 q^{35} -0.822287 q^{36} -9.29174 q^{37} +1.21304 q^{38} -8.08244 q^{39} -1.00000 q^{40} -0.143094 q^{41} -5.23617 q^{42} -0.830161 q^{43} +4.70854 q^{44} +0.822287 q^{45} -5.72028 q^{46} +5.85635 q^{47} +1.47571 q^{48} +5.59004 q^{49} +1.00000 q^{50} -5.47699 q^{52} +9.25215 q^{53} -5.64058 q^{54} -4.70854 q^{55} -3.54824 q^{56} +1.79009 q^{57} -4.64378 q^{58} +4.71650 q^{59} -1.47571 q^{60} +12.4453 q^{61} -7.28334 q^{62} +2.91768 q^{63} +1.00000 q^{64} +5.47699 q^{65} +6.94843 q^{66} -8.66703 q^{67} -8.44146 q^{69} +3.54824 q^{70} +5.14391 q^{71} -0.822287 q^{72} -16.1322 q^{73} -9.29174 q^{74} +1.47571 q^{75} +1.21304 q^{76} -16.7071 q^{77} -8.08244 q^{78} -10.1159 q^{79} -1.00000 q^{80} -5.85698 q^{81} -0.143094 q^{82} -3.40601 q^{83} -5.23617 q^{84} -0.830161 q^{86} -6.85286 q^{87} +4.70854 q^{88} +2.24175 q^{89} +0.822287 q^{90} +19.4337 q^{91} -5.72028 q^{92} -10.7481 q^{93} +5.85635 q^{94} -1.21304 q^{95} +1.47571 q^{96} +4.35543 q^{97} +5.59004 q^{98} -3.87177 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} - 4 q^{3} + 8 q^{4} - 8 q^{5} - 4 q^{6} - 8 q^{7} + 8 q^{8} + 4 q^{9} - 8 q^{10} - 8 q^{11} - 4 q^{12} - 4 q^{13} - 8 q^{14} + 4 q^{15} + 8 q^{16} + 4 q^{18} + 12 q^{19} - 8 q^{20} - 8 q^{21}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.47571 0.852000 0.426000 0.904723i \(-0.359922\pi\)
0.426000 + 0.904723i \(0.359922\pi\)
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) 1.47571 0.602455
\(7\) −3.54824 −1.34111 −0.670555 0.741860i \(-0.733944\pi\)
−0.670555 + 0.741860i \(0.733944\pi\)
\(8\) 1.00000 0.353553
\(9\) −0.822287 −0.274096
\(10\) −1.00000 −0.316228
\(11\) 4.70854 1.41968 0.709839 0.704364i \(-0.248768\pi\)
0.709839 + 0.704364i \(0.248768\pi\)
\(12\) 1.47571 0.426000
\(13\) −5.47699 −1.51904 −0.759522 0.650481i \(-0.774567\pi\)
−0.759522 + 0.650481i \(0.774567\pi\)
\(14\) −3.54824 −0.948308
\(15\) −1.47571 −0.381026
\(16\) 1.00000 0.250000
\(17\) 0 0
\(18\) −0.822287 −0.193815
\(19\) 1.21304 0.278290 0.139145 0.990272i \(-0.455565\pi\)
0.139145 + 0.990272i \(0.455565\pi\)
\(20\) −1.00000 −0.223607
\(21\) −5.23617 −1.14263
\(22\) 4.70854 1.00386
\(23\) −5.72028 −1.19276 −0.596381 0.802702i \(-0.703395\pi\)
−0.596381 + 0.802702i \(0.703395\pi\)
\(24\) 1.47571 0.301228
\(25\) 1.00000 0.200000
\(26\) −5.47699 −1.07413
\(27\) −5.64058 −1.08553
\(28\) −3.54824 −0.670555
\(29\) −4.64378 −0.862328 −0.431164 0.902274i \(-0.641897\pi\)
−0.431164 + 0.902274i \(0.641897\pi\)
\(30\) −1.47571 −0.269426
\(31\) −7.28334 −1.30813 −0.654063 0.756440i \(-0.726937\pi\)
−0.654063 + 0.756440i \(0.726937\pi\)
\(32\) 1.00000 0.176777
\(33\) 6.94843 1.20957
\(34\) 0 0
\(35\) 3.54824 0.599763
\(36\) −0.822287 −0.137048
\(37\) −9.29174 −1.52755 −0.763776 0.645481i \(-0.776657\pi\)
−0.763776 + 0.645481i \(0.776657\pi\)
\(38\) 1.21304 0.196781
\(39\) −8.08244 −1.29423
\(40\) −1.00000 −0.158114
\(41\) −0.143094 −0.0223476 −0.0111738 0.999938i \(-0.503557\pi\)
−0.0111738 + 0.999938i \(0.503557\pi\)
\(42\) −5.23617 −0.807959
\(43\) −0.830161 −0.126598 −0.0632992 0.997995i \(-0.520162\pi\)
−0.0632992 + 0.997995i \(0.520162\pi\)
\(44\) 4.70854 0.709839
\(45\) 0.822287 0.122579
\(46\) −5.72028 −0.843410
\(47\) 5.85635 0.854236 0.427118 0.904196i \(-0.359529\pi\)
0.427118 + 0.904196i \(0.359529\pi\)
\(48\) 1.47571 0.213000
\(49\) 5.59004 0.798577
\(50\) 1.00000 0.141421
\(51\) 0 0
\(52\) −5.47699 −0.759522
\(53\) 9.25215 1.27088 0.635440 0.772150i \(-0.280819\pi\)
0.635440 + 0.772150i \(0.280819\pi\)
\(54\) −5.64058 −0.767585
\(55\) −4.70854 −0.634900
\(56\) −3.54824 −0.474154
\(57\) 1.79009 0.237103
\(58\) −4.64378 −0.609758
\(59\) 4.71650 0.614036 0.307018 0.951704i \(-0.400669\pi\)
0.307018 + 0.951704i \(0.400669\pi\)
\(60\) −1.47571 −0.190513
\(61\) 12.4453 1.59346 0.796729 0.604336i \(-0.206562\pi\)
0.796729 + 0.604336i \(0.206562\pi\)
\(62\) −7.28334 −0.924985
\(63\) 2.91768 0.367593
\(64\) 1.00000 0.125000
\(65\) 5.47699 0.679337
\(66\) 6.94843 0.855293
\(67\) −8.66703 −1.05885 −0.529423 0.848358i \(-0.677592\pi\)
−0.529423 + 0.848358i \(0.677592\pi\)
\(68\) 0 0
\(69\) −8.44146 −1.01623
\(70\) 3.54824 0.424096
\(71\) 5.14391 0.610469 0.305235 0.952277i \(-0.401265\pi\)
0.305235 + 0.952277i \(0.401265\pi\)
\(72\) −0.822287 −0.0969075
\(73\) −16.1322 −1.88813 −0.944064 0.329763i \(-0.893031\pi\)
−0.944064 + 0.329763i \(0.893031\pi\)
\(74\) −9.29174 −1.08014
\(75\) 1.47571 0.170400
\(76\) 1.21304 0.139145
\(77\) −16.7071 −1.90395
\(78\) −8.08244 −0.915156
\(79\) −10.1159 −1.13813 −0.569063 0.822294i \(-0.692694\pi\)
−0.569063 + 0.822294i \(0.692694\pi\)
\(80\) −1.00000 −0.111803
\(81\) −5.85698 −0.650776
\(82\) −0.143094 −0.0158021
\(83\) −3.40601 −0.373858 −0.186929 0.982373i \(-0.559853\pi\)
−0.186929 + 0.982373i \(0.559853\pi\)
\(84\) −5.23617 −0.571313
\(85\) 0 0
\(86\) −0.830161 −0.0895186
\(87\) −6.85286 −0.734704
\(88\) 4.70854 0.501932
\(89\) 2.24175 0.237625 0.118813 0.992917i \(-0.462091\pi\)
0.118813 + 0.992917i \(0.462091\pi\)
\(90\) 0.822287 0.0866767
\(91\) 19.4337 2.03721
\(92\) −5.72028 −0.596381
\(93\) −10.7481 −1.11452
\(94\) 5.85635 0.604036
\(95\) −1.21304 −0.124455
\(96\) 1.47571 0.150614
\(97\) 4.35543 0.442227 0.221113 0.975248i \(-0.429031\pi\)
0.221113 + 0.975248i \(0.429031\pi\)
\(98\) 5.59004 0.564679
\(99\) −3.87177 −0.389128
\(100\) 1.00000 0.100000
\(101\) 10.7393 1.06860 0.534301 0.845294i \(-0.320575\pi\)
0.534301 + 0.845294i \(0.320575\pi\)
\(102\) 0 0
\(103\) −7.43306 −0.732401 −0.366200 0.930536i \(-0.619342\pi\)
−0.366200 + 0.930536i \(0.619342\pi\)
\(104\) −5.47699 −0.537063
\(105\) 5.23617 0.510998
\(106\) 9.25215 0.898648
\(107\) −15.7310 −1.52077 −0.760386 0.649471i \(-0.774990\pi\)
−0.760386 + 0.649471i \(0.774990\pi\)
\(108\) −5.64058 −0.542765
\(109\) −6.43062 −0.615942 −0.307971 0.951396i \(-0.599650\pi\)
−0.307971 + 0.951396i \(0.599650\pi\)
\(110\) −4.70854 −0.448942
\(111\) −13.7119 −1.30147
\(112\) −3.54824 −0.335278
\(113\) 9.64176 0.907020 0.453510 0.891251i \(-0.350172\pi\)
0.453510 + 0.891251i \(0.350172\pi\)
\(114\) 1.79009 0.167657
\(115\) 5.72028 0.533419
\(116\) −4.64378 −0.431164
\(117\) 4.50366 0.416364
\(118\) 4.71650 0.434189
\(119\) 0 0
\(120\) −1.47571 −0.134713
\(121\) 11.1704 1.01549
\(122\) 12.4453 1.12675
\(123\) −0.211165 −0.0190401
\(124\) −7.28334 −0.654063
\(125\) −1.00000 −0.0894427
\(126\) 2.91768 0.259927
\(127\) −3.20591 −0.284479 −0.142239 0.989832i \(-0.545430\pi\)
−0.142239 + 0.989832i \(0.545430\pi\)
\(128\) 1.00000 0.0883883
\(129\) −1.22508 −0.107862
\(130\) 5.47699 0.480364
\(131\) −3.57337 −0.312207 −0.156103 0.987741i \(-0.549893\pi\)
−0.156103 + 0.987741i \(0.549893\pi\)
\(132\) 6.94843 0.604783
\(133\) −4.30416 −0.373218
\(134\) −8.66703 −0.748718
\(135\) 5.64058 0.485464
\(136\) 0 0
\(137\) 3.30950 0.282750 0.141375 0.989956i \(-0.454848\pi\)
0.141375 + 0.989956i \(0.454848\pi\)
\(138\) −8.44146 −0.718585
\(139\) −1.79996 −0.152671 −0.0763354 0.997082i \(-0.524322\pi\)
−0.0763354 + 0.997082i \(0.524322\pi\)
\(140\) 3.54824 0.299881
\(141\) 8.64225 0.727809
\(142\) 5.14391 0.431667
\(143\) −25.7886 −2.15656
\(144\) −0.822287 −0.0685240
\(145\) 4.64378 0.385645
\(146\) −16.1322 −1.33511
\(147\) 8.24926 0.680388
\(148\) −9.29174 −0.763776
\(149\) 4.16768 0.341430 0.170715 0.985320i \(-0.445392\pi\)
0.170715 + 0.985320i \(0.445392\pi\)
\(150\) 1.47571 0.120491
\(151\) 4.59258 0.373739 0.186869 0.982385i \(-0.440166\pi\)
0.186869 + 0.982385i \(0.440166\pi\)
\(152\) 1.21304 0.0983905
\(153\) 0 0
\(154\) −16.7071 −1.34629
\(155\) 7.28334 0.585012
\(156\) −8.08244 −0.647113
\(157\) −15.5482 −1.24088 −0.620442 0.784253i \(-0.713047\pi\)
−0.620442 + 0.784253i \(0.713047\pi\)
\(158\) −10.1159 −0.804777
\(159\) 13.6535 1.08279
\(160\) −1.00000 −0.0790569
\(161\) 20.2970 1.59962
\(162\) −5.85698 −0.460168
\(163\) 10.1378 0.794051 0.397026 0.917807i \(-0.370042\pi\)
0.397026 + 0.917807i \(0.370042\pi\)
\(164\) −0.143094 −0.0111738
\(165\) −6.94843 −0.540935
\(166\) −3.40601 −0.264358
\(167\) 12.4516 0.963531 0.481766 0.876300i \(-0.339996\pi\)
0.481766 + 0.876300i \(0.339996\pi\)
\(168\) −5.23617 −0.403979
\(169\) 16.9974 1.30750
\(170\) 0 0
\(171\) −0.997467 −0.0762782
\(172\) −0.830161 −0.0632992
\(173\) −3.54670 −0.269651 −0.134825 0.990869i \(-0.543047\pi\)
−0.134825 + 0.990869i \(0.543047\pi\)
\(174\) −6.85286 −0.519514
\(175\) −3.54824 −0.268222
\(176\) 4.70854 0.354920
\(177\) 6.96018 0.523159
\(178\) 2.24175 0.168027
\(179\) −13.1025 −0.979325 −0.489663 0.871912i \(-0.662880\pi\)
−0.489663 + 0.871912i \(0.662880\pi\)
\(180\) 0.822287 0.0612897
\(181\) −1.82731 −0.135823 −0.0679114 0.997691i \(-0.521634\pi\)
−0.0679114 + 0.997691i \(0.521634\pi\)
\(182\) 19.4337 1.44052
\(183\) 18.3656 1.35763
\(184\) −5.72028 −0.421705
\(185\) 9.29174 0.683142
\(186\) −10.7481 −0.788087
\(187\) 0 0
\(188\) 5.85635 0.427118
\(189\) 20.0142 1.45582
\(190\) −1.21304 −0.0880031
\(191\) −16.8319 −1.21791 −0.608955 0.793205i \(-0.708411\pi\)
−0.608955 + 0.793205i \(0.708411\pi\)
\(192\) 1.47571 0.106500
\(193\) −5.82873 −0.419561 −0.209781 0.977749i \(-0.567275\pi\)
−0.209781 + 0.977749i \(0.567275\pi\)
\(194\) 4.35543 0.312702
\(195\) 8.08244 0.578795
\(196\) 5.59004 0.399288
\(197\) 3.52144 0.250892 0.125446 0.992100i \(-0.459964\pi\)
0.125446 + 0.992100i \(0.459964\pi\)
\(198\) −3.87177 −0.275155
\(199\) −16.8001 −1.19092 −0.595462 0.803383i \(-0.703031\pi\)
−0.595462 + 0.803383i \(0.703031\pi\)
\(200\) 1.00000 0.0707107
\(201\) −12.7900 −0.902137
\(202\) 10.7393 0.755616
\(203\) 16.4773 1.15648
\(204\) 0 0
\(205\) 0.143094 0.00999414
\(206\) −7.43306 −0.517886
\(207\) 4.70372 0.326931
\(208\) −5.47699 −0.379761
\(209\) 5.71165 0.395083
\(210\) 5.23617 0.361330
\(211\) 22.8199 1.57099 0.785493 0.618870i \(-0.212409\pi\)
0.785493 + 0.618870i \(0.212409\pi\)
\(212\) 9.25215 0.635440
\(213\) 7.59090 0.520120
\(214\) −15.7310 −1.07535
\(215\) 0.830161 0.0566165
\(216\) −5.64058 −0.383793
\(217\) 25.8431 1.75434
\(218\) −6.43062 −0.435537
\(219\) −23.8064 −1.60868
\(220\) −4.70854 −0.317450
\(221\) 0 0
\(222\) −13.7119 −0.920281
\(223\) −9.06859 −0.607278 −0.303639 0.952787i \(-0.598202\pi\)
−0.303639 + 0.952787i \(0.598202\pi\)
\(224\) −3.54824 −0.237077
\(225\) −0.822287 −0.0548192
\(226\) 9.64176 0.641360
\(227\) 15.7478 1.04522 0.522610 0.852572i \(-0.324958\pi\)
0.522610 + 0.852572i \(0.324958\pi\)
\(228\) 1.79009 0.118552
\(229\) −20.1188 −1.32949 −0.664745 0.747070i \(-0.731460\pi\)
−0.664745 + 0.747070i \(0.731460\pi\)
\(230\) 5.72028 0.377184
\(231\) −24.6547 −1.62216
\(232\) −4.64378 −0.304879
\(233\) −19.2748 −1.26273 −0.631366 0.775485i \(-0.717505\pi\)
−0.631366 + 0.775485i \(0.717505\pi\)
\(234\) 4.50366 0.294414
\(235\) −5.85635 −0.382026
\(236\) 4.71650 0.307018
\(237\) −14.9281 −0.969684
\(238\) 0 0
\(239\) 14.2040 0.918778 0.459389 0.888235i \(-0.348068\pi\)
0.459389 + 0.888235i \(0.348068\pi\)
\(240\) −1.47571 −0.0952565
\(241\) −4.57455 −0.294673 −0.147336 0.989086i \(-0.547070\pi\)
−0.147336 + 0.989086i \(0.547070\pi\)
\(242\) 11.1704 0.718058
\(243\) 8.27854 0.531069
\(244\) 12.4453 0.796729
\(245\) −5.59004 −0.357134
\(246\) −0.211165 −0.0134634
\(247\) −6.64381 −0.422735
\(248\) −7.28334 −0.462492
\(249\) −5.02628 −0.318527
\(250\) −1.00000 −0.0632456
\(251\) 9.00712 0.568524 0.284262 0.958747i \(-0.408251\pi\)
0.284262 + 0.958747i \(0.408251\pi\)
\(252\) 2.91768 0.183796
\(253\) −26.9342 −1.69334
\(254\) −3.20591 −0.201157
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 28.6580 1.78764 0.893819 0.448429i \(-0.148016\pi\)
0.893819 + 0.448429i \(0.148016\pi\)
\(258\) −1.22508 −0.0762698
\(259\) 32.9693 2.04862
\(260\) 5.47699 0.339669
\(261\) 3.81852 0.236361
\(262\) −3.57337 −0.220763
\(263\) 6.04573 0.372796 0.186398 0.982474i \(-0.440319\pi\)
0.186398 + 0.982474i \(0.440319\pi\)
\(264\) 6.94843 0.427646
\(265\) −9.25215 −0.568355
\(266\) −4.30416 −0.263905
\(267\) 3.30817 0.202457
\(268\) −8.66703 −0.529423
\(269\) 16.8933 1.03000 0.515000 0.857190i \(-0.327792\pi\)
0.515000 + 0.857190i \(0.327792\pi\)
\(270\) 5.64058 0.343275
\(271\) 22.9305 1.39293 0.696463 0.717593i \(-0.254756\pi\)
0.696463 + 0.717593i \(0.254756\pi\)
\(272\) 0 0
\(273\) 28.6785 1.73570
\(274\) 3.30950 0.199934
\(275\) 4.70854 0.283936
\(276\) −8.44146 −0.508116
\(277\) −20.0018 −1.20179 −0.600895 0.799328i \(-0.705189\pi\)
−0.600895 + 0.799328i \(0.705189\pi\)
\(278\) −1.79996 −0.107955
\(279\) 5.98900 0.358552
\(280\) 3.54824 0.212048
\(281\) 23.2826 1.38892 0.694462 0.719529i \(-0.255642\pi\)
0.694462 + 0.719529i \(0.255642\pi\)
\(282\) 8.64225 0.514639
\(283\) 25.1508 1.49506 0.747528 0.664230i \(-0.231240\pi\)
0.747528 + 0.664230i \(0.231240\pi\)
\(284\) 5.14391 0.305235
\(285\) −1.79009 −0.106036
\(286\) −25.7886 −1.52491
\(287\) 0.507734 0.0299706
\(288\) −0.822287 −0.0484538
\(289\) 0 0
\(290\) 4.64378 0.272692
\(291\) 6.42734 0.376777
\(292\) −16.1322 −0.944064
\(293\) 25.5251 1.49119 0.745595 0.666399i \(-0.232165\pi\)
0.745595 + 0.666399i \(0.232165\pi\)
\(294\) 8.24926 0.481107
\(295\) −4.71650 −0.274605
\(296\) −9.29174 −0.540071
\(297\) −26.5589 −1.54110
\(298\) 4.16768 0.241427
\(299\) 31.3299 1.81186
\(300\) 1.47571 0.0852000
\(301\) 2.94561 0.169782
\(302\) 4.59258 0.264273
\(303\) 15.8481 0.910449
\(304\) 1.21304 0.0695726
\(305\) −12.4453 −0.712616
\(306\) 0 0
\(307\) −14.2382 −0.812616 −0.406308 0.913736i \(-0.633184\pi\)
−0.406308 + 0.913736i \(0.633184\pi\)
\(308\) −16.7071 −0.951973
\(309\) −10.9690 −0.624006
\(310\) 7.28334 0.413666
\(311\) 12.1514 0.689040 0.344520 0.938779i \(-0.388042\pi\)
0.344520 + 0.938779i \(0.388042\pi\)
\(312\) −8.08244 −0.457578
\(313\) 21.7897 1.23162 0.615812 0.787893i \(-0.288828\pi\)
0.615812 + 0.787893i \(0.288828\pi\)
\(314\) −15.5482 −0.877437
\(315\) −2.91768 −0.164392
\(316\) −10.1159 −0.569063
\(317\) −10.2517 −0.575791 −0.287895 0.957662i \(-0.592956\pi\)
−0.287895 + 0.957662i \(0.592956\pi\)
\(318\) 13.6535 0.765648
\(319\) −21.8654 −1.22423
\(320\) −1.00000 −0.0559017
\(321\) −23.2143 −1.29570
\(322\) 20.2970 1.13111
\(323\) 0 0
\(324\) −5.85698 −0.325388
\(325\) −5.47699 −0.303809
\(326\) 10.1378 0.561479
\(327\) −9.48972 −0.524783
\(328\) −0.143094 −0.00790106
\(329\) −20.7797 −1.14562
\(330\) −6.94843 −0.382499
\(331\) 0.296190 0.0162801 0.00814003 0.999967i \(-0.497409\pi\)
0.00814003 + 0.999967i \(0.497409\pi\)
\(332\) −3.40601 −0.186929
\(333\) 7.64048 0.418696
\(334\) 12.4516 0.681320
\(335\) 8.66703 0.473531
\(336\) −5.23617 −0.285657
\(337\) 14.0520 0.765463 0.382732 0.923860i \(-0.374983\pi\)
0.382732 + 0.923860i \(0.374983\pi\)
\(338\) 16.9974 0.924539
\(339\) 14.2284 0.772782
\(340\) 0 0
\(341\) −34.2939 −1.85712
\(342\) −0.997467 −0.0539368
\(343\) 5.00289 0.270130
\(344\) −0.830161 −0.0447593
\(345\) 8.44146 0.454473
\(346\) −3.54670 −0.190672
\(347\) 11.1494 0.598532 0.299266 0.954170i \(-0.403258\pi\)
0.299266 + 0.954170i \(0.403258\pi\)
\(348\) −6.85286 −0.367352
\(349\) −2.51265 −0.134499 −0.0672494 0.997736i \(-0.521422\pi\)
−0.0672494 + 0.997736i \(0.521422\pi\)
\(350\) −3.54824 −0.189662
\(351\) 30.8934 1.64897
\(352\) 4.70854 0.250966
\(353\) 10.0823 0.536629 0.268314 0.963331i \(-0.413533\pi\)
0.268314 + 0.963331i \(0.413533\pi\)
\(354\) 6.96018 0.369929
\(355\) −5.14391 −0.273010
\(356\) 2.24175 0.118813
\(357\) 0 0
\(358\) −13.1025 −0.692487
\(359\) −24.6679 −1.30192 −0.650962 0.759110i \(-0.725634\pi\)
−0.650962 + 0.759110i \(0.725634\pi\)
\(360\) 0.822287 0.0433384
\(361\) −17.5285 −0.922555
\(362\) −1.82731 −0.0960413
\(363\) 16.4842 0.865196
\(364\) 19.4337 1.01860
\(365\) 16.1322 0.844396
\(366\) 18.3656 0.959987
\(367\) 29.7736 1.55417 0.777085 0.629396i \(-0.216698\pi\)
0.777085 + 0.629396i \(0.216698\pi\)
\(368\) −5.72028 −0.298190
\(369\) 0.117665 0.00612538
\(370\) 9.29174 0.483054
\(371\) −32.8289 −1.70439
\(372\) −10.7481 −0.557262
\(373\) −20.8039 −1.07718 −0.538592 0.842567i \(-0.681044\pi\)
−0.538592 + 0.842567i \(0.681044\pi\)
\(374\) 0 0
\(375\) −1.47571 −0.0762052
\(376\) 5.85635 0.302018
\(377\) 25.4339 1.30992
\(378\) 20.0142 1.02942
\(379\) −10.4448 −0.536514 −0.268257 0.963347i \(-0.586448\pi\)
−0.268257 + 0.963347i \(0.586448\pi\)
\(380\) −1.21304 −0.0622276
\(381\) −4.73099 −0.242376
\(382\) −16.8319 −0.861193
\(383\) −20.1518 −1.02971 −0.514854 0.857278i \(-0.672154\pi\)
−0.514854 + 0.857278i \(0.672154\pi\)
\(384\) 1.47571 0.0753069
\(385\) 16.7071 0.851471
\(386\) −5.82873 −0.296674
\(387\) 0.682631 0.0347001
\(388\) 4.35543 0.221113
\(389\) 19.6657 0.997092 0.498546 0.866863i \(-0.333867\pi\)
0.498546 + 0.866863i \(0.333867\pi\)
\(390\) 8.08244 0.409270
\(391\) 0 0
\(392\) 5.59004 0.282340
\(393\) −5.27324 −0.266000
\(394\) 3.52144 0.177408
\(395\) 10.1159 0.508986
\(396\) −3.87177 −0.194564
\(397\) −23.9479 −1.20191 −0.600955 0.799283i \(-0.705213\pi\)
−0.600955 + 0.799283i \(0.705213\pi\)
\(398\) −16.8001 −0.842111
\(399\) −6.35168 −0.317982
\(400\) 1.00000 0.0500000
\(401\) −23.0408 −1.15060 −0.575302 0.817941i \(-0.695115\pi\)
−0.575302 + 0.817941i \(0.695115\pi\)
\(402\) −12.7900 −0.637907
\(403\) 39.8908 1.98710
\(404\) 10.7393 0.534301
\(405\) 5.85698 0.291036
\(406\) 16.4773 0.817753
\(407\) −43.7505 −2.16863
\(408\) 0 0
\(409\) 12.7488 0.630389 0.315195 0.949027i \(-0.397930\pi\)
0.315195 + 0.949027i \(0.397930\pi\)
\(410\) 0.143094 0.00706692
\(411\) 4.88385 0.240903
\(412\) −7.43306 −0.366200
\(413\) −16.7353 −0.823491
\(414\) 4.70372 0.231175
\(415\) 3.40601 0.167195
\(416\) −5.47699 −0.268532
\(417\) −2.65622 −0.130076
\(418\) 5.71165 0.279366
\(419\) −27.3719 −1.33720 −0.668602 0.743621i \(-0.733107\pi\)
−0.668602 + 0.743621i \(0.733107\pi\)
\(420\) 5.23617 0.255499
\(421\) −33.6813 −1.64153 −0.820764 0.571268i \(-0.806452\pi\)
−0.820764 + 0.571268i \(0.806452\pi\)
\(422\) 22.8199 1.11086
\(423\) −4.81560 −0.234142
\(424\) 9.25215 0.449324
\(425\) 0 0
\(426\) 7.59090 0.367780
\(427\) −44.1590 −2.13700
\(428\) −15.7310 −0.760386
\(429\) −38.0565 −1.83739
\(430\) 0.830161 0.0400339
\(431\) −18.1802 −0.875709 −0.437854 0.899046i \(-0.644261\pi\)
−0.437854 + 0.899046i \(0.644261\pi\)
\(432\) −5.64058 −0.271382
\(433\) 8.10392 0.389450 0.194725 0.980858i \(-0.437619\pi\)
0.194725 + 0.980858i \(0.437619\pi\)
\(434\) 25.8431 1.24051
\(435\) 6.85286 0.328570
\(436\) −6.43062 −0.307971
\(437\) −6.93893 −0.331934
\(438\) −23.8064 −1.13751
\(439\) −23.9774 −1.14438 −0.572188 0.820122i \(-0.693905\pi\)
−0.572188 + 0.820122i \(0.693905\pi\)
\(440\) −4.70854 −0.224471
\(441\) −4.59662 −0.218887
\(442\) 0 0
\(443\) 0.244075 0.0115964 0.00579819 0.999983i \(-0.498154\pi\)
0.00579819 + 0.999983i \(0.498154\pi\)
\(444\) −13.7119 −0.650737
\(445\) −2.24175 −0.106269
\(446\) −9.06859 −0.429410
\(447\) 6.15028 0.290898
\(448\) −3.54824 −0.167639
\(449\) 0.0824322 0.00389021 0.00194511 0.999998i \(-0.499381\pi\)
0.00194511 + 0.999998i \(0.499381\pi\)
\(450\) −0.822287 −0.0387630
\(451\) −0.673765 −0.0317264
\(452\) 9.64176 0.453510
\(453\) 6.77731 0.318426
\(454\) 15.7478 0.739082
\(455\) −19.4337 −0.911066
\(456\) 1.79009 0.0838287
\(457\) −24.3896 −1.14090 −0.570449 0.821333i \(-0.693231\pi\)
−0.570449 + 0.821333i \(0.693231\pi\)
\(458\) −20.1188 −0.940092
\(459\) 0 0
\(460\) 5.72028 0.266710
\(461\) 29.1100 1.35579 0.677894 0.735159i \(-0.262893\pi\)
0.677894 + 0.735159i \(0.262893\pi\)
\(462\) −24.6547 −1.14704
\(463\) 27.9762 1.30016 0.650081 0.759865i \(-0.274735\pi\)
0.650081 + 0.759865i \(0.274735\pi\)
\(464\) −4.64378 −0.215582
\(465\) 10.7481 0.498430
\(466\) −19.2748 −0.892886
\(467\) −31.2786 −1.44740 −0.723701 0.690113i \(-0.757561\pi\)
−0.723701 + 0.690113i \(0.757561\pi\)
\(468\) 4.50366 0.208182
\(469\) 30.7528 1.42003
\(470\) −5.85635 −0.270133
\(471\) −22.9446 −1.05723
\(472\) 4.71650 0.217095
\(473\) −3.90885 −0.179729
\(474\) −14.9281 −0.685670
\(475\) 1.21304 0.0556581
\(476\) 0 0
\(477\) −7.60792 −0.348343
\(478\) 14.2040 0.649674
\(479\) −12.0756 −0.551747 −0.275873 0.961194i \(-0.588967\pi\)
−0.275873 + 0.961194i \(0.588967\pi\)
\(480\) −1.47571 −0.0673565
\(481\) 50.8908 2.32042
\(482\) −4.57455 −0.208365
\(483\) 29.9524 1.36288
\(484\) 11.1704 0.507744
\(485\) −4.35543 −0.197770
\(486\) 8.27854 0.375522
\(487\) −5.01555 −0.227276 −0.113638 0.993522i \(-0.536250\pi\)
−0.113638 + 0.993522i \(0.536250\pi\)
\(488\) 12.4453 0.563373
\(489\) 14.9604 0.676532
\(490\) −5.59004 −0.252532
\(491\) 26.4441 1.19341 0.596703 0.802462i \(-0.296477\pi\)
0.596703 + 0.802462i \(0.296477\pi\)
\(492\) −0.211165 −0.00952007
\(493\) 0 0
\(494\) −6.64381 −0.298919
\(495\) 3.87177 0.174023
\(496\) −7.28334 −0.327031
\(497\) −18.2518 −0.818707
\(498\) −5.02628 −0.225233
\(499\) −29.9384 −1.34023 −0.670113 0.742259i \(-0.733754\pi\)
−0.670113 + 0.742259i \(0.733754\pi\)
\(500\) −1.00000 −0.0447214
\(501\) 18.3749 0.820929
\(502\) 9.00712 0.402007
\(503\) 34.1010 1.52049 0.760244 0.649638i \(-0.225080\pi\)
0.760244 + 0.649638i \(0.225080\pi\)
\(504\) 2.91768 0.129964
\(505\) −10.7393 −0.477893
\(506\) −26.9342 −1.19737
\(507\) 25.0833 1.11399
\(508\) −3.20591 −0.142239
\(509\) −28.0939 −1.24524 −0.622620 0.782525i \(-0.713932\pi\)
−0.622620 + 0.782525i \(0.713932\pi\)
\(510\) 0 0
\(511\) 57.2409 2.53219
\(512\) 1.00000 0.0441942
\(513\) −6.84224 −0.302092
\(514\) 28.6580 1.26405
\(515\) 7.43306 0.327540
\(516\) −1.22508 −0.0539309
\(517\) 27.5749 1.21274
\(518\) 32.9693 1.44859
\(519\) −5.23389 −0.229742
\(520\) 5.47699 0.240182
\(521\) −19.0734 −0.835620 −0.417810 0.908534i \(-0.637202\pi\)
−0.417810 + 0.908534i \(0.637202\pi\)
\(522\) 3.81852 0.167132
\(523\) −6.69653 −0.292819 −0.146409 0.989224i \(-0.546772\pi\)
−0.146409 + 0.989224i \(0.546772\pi\)
\(524\) −3.57337 −0.156103
\(525\) −5.23617 −0.228525
\(526\) 6.04573 0.263606
\(527\) 0 0
\(528\) 6.94843 0.302392
\(529\) 9.72163 0.422679
\(530\) −9.25215 −0.401888
\(531\) −3.87832 −0.168305
\(532\) −4.30416 −0.186609
\(533\) 0.783726 0.0339470
\(534\) 3.30817 0.143159
\(535\) 15.7310 0.680110
\(536\) −8.66703 −0.374359
\(537\) −19.3354 −0.834385
\(538\) 16.8933 0.728320
\(539\) 26.3209 1.13372
\(540\) 5.64058 0.242732
\(541\) 6.84763 0.294403 0.147201 0.989107i \(-0.452973\pi\)
0.147201 + 0.989107i \(0.452973\pi\)
\(542\) 22.9305 0.984947
\(543\) −2.69657 −0.115721
\(544\) 0 0
\(545\) 6.43062 0.275458
\(546\) 28.6785 1.22733
\(547\) −3.53078 −0.150965 −0.0754827 0.997147i \(-0.524050\pi\)
−0.0754827 + 0.997147i \(0.524050\pi\)
\(548\) 3.30950 0.141375
\(549\) −10.2336 −0.436760
\(550\) 4.70854 0.200773
\(551\) −5.63309 −0.239978
\(552\) −8.44146 −0.359293
\(553\) 35.8937 1.52635
\(554\) −20.0018 −0.849794
\(555\) 13.7119 0.582037
\(556\) −1.79996 −0.0763354
\(557\) −45.7591 −1.93888 −0.969438 0.245338i \(-0.921101\pi\)
−0.969438 + 0.245338i \(0.921101\pi\)
\(558\) 5.98900 0.253534
\(559\) 4.54679 0.192309
\(560\) 3.54824 0.149941
\(561\) 0 0
\(562\) 23.2826 0.982118
\(563\) −9.97870 −0.420552 −0.210276 0.977642i \(-0.567436\pi\)
−0.210276 + 0.977642i \(0.567436\pi\)
\(564\) 8.64225 0.363905
\(565\) −9.64176 −0.405632
\(566\) 25.1508 1.05716
\(567\) 20.7820 0.872762
\(568\) 5.14391 0.215834
\(569\) 13.5202 0.566795 0.283397 0.959003i \(-0.408538\pi\)
0.283397 + 0.959003i \(0.408538\pi\)
\(570\) −1.79009 −0.0749787
\(571\) 16.9714 0.710233 0.355116 0.934822i \(-0.384441\pi\)
0.355116 + 0.934822i \(0.384441\pi\)
\(572\) −25.7886 −1.07828
\(573\) −24.8389 −1.03766
\(574\) 0.507734 0.0211924
\(575\) −5.72028 −0.238552
\(576\) −0.822287 −0.0342620
\(577\) 9.67374 0.402723 0.201361 0.979517i \(-0.435463\pi\)
0.201361 + 0.979517i \(0.435463\pi\)
\(578\) 0 0
\(579\) −8.60150 −0.357466
\(580\) 4.64378 0.192822
\(581\) 12.0854 0.501385
\(582\) 6.42734 0.266422
\(583\) 43.5641 1.80424
\(584\) −16.1322 −0.667554
\(585\) −4.50366 −0.186204
\(586\) 25.5251 1.05443
\(587\) 4.59186 0.189526 0.0947632 0.995500i \(-0.469791\pi\)
0.0947632 + 0.995500i \(0.469791\pi\)
\(588\) 8.24926 0.340194
\(589\) −8.83497 −0.364039
\(590\) −4.71650 −0.194175
\(591\) 5.19661 0.213760
\(592\) −9.29174 −0.381888
\(593\) 0.778841 0.0319832 0.0159916 0.999872i \(-0.494910\pi\)
0.0159916 + 0.999872i \(0.494910\pi\)
\(594\) −26.5589 −1.08972
\(595\) 0 0
\(596\) 4.16768 0.170715
\(597\) −24.7920 −1.01467
\(598\) 31.3299 1.28118
\(599\) −10.4846 −0.428391 −0.214196 0.976791i \(-0.568713\pi\)
−0.214196 + 0.976791i \(0.568713\pi\)
\(600\) 1.47571 0.0602455
\(601\) −15.3435 −0.625875 −0.312937 0.949774i \(-0.601313\pi\)
−0.312937 + 0.949774i \(0.601313\pi\)
\(602\) 2.94561 0.120054
\(603\) 7.12679 0.290225
\(604\) 4.59258 0.186869
\(605\) −11.1704 −0.454140
\(606\) 15.8481 0.643785
\(607\) 21.6225 0.877631 0.438815 0.898577i \(-0.355398\pi\)
0.438815 + 0.898577i \(0.355398\pi\)
\(608\) 1.21304 0.0491952
\(609\) 24.3156 0.985319
\(610\) −12.4453 −0.503896
\(611\) −32.0752 −1.29762
\(612\) 0 0
\(613\) −18.6071 −0.751535 −0.375768 0.926714i \(-0.622621\pi\)
−0.375768 + 0.926714i \(0.622621\pi\)
\(614\) −14.2382 −0.574606
\(615\) 0.211165 0.00851501
\(616\) −16.7071 −0.673147
\(617\) −5.70409 −0.229638 −0.114819 0.993386i \(-0.536629\pi\)
−0.114819 + 0.993386i \(0.536629\pi\)
\(618\) −10.9690 −0.441239
\(619\) −29.2325 −1.17495 −0.587477 0.809241i \(-0.699879\pi\)
−0.587477 + 0.809241i \(0.699879\pi\)
\(620\) 7.28334 0.292506
\(621\) 32.2657 1.29478
\(622\) 12.1514 0.487225
\(623\) −7.95429 −0.318682
\(624\) −8.08244 −0.323557
\(625\) 1.00000 0.0400000
\(626\) 21.7897 0.870890
\(627\) 8.42872 0.336611
\(628\) −15.5482 −0.620442
\(629\) 0 0
\(630\) −2.91768 −0.116243
\(631\) 43.7803 1.74287 0.871433 0.490514i \(-0.163191\pi\)
0.871433 + 0.490514i \(0.163191\pi\)
\(632\) −10.1159 −0.402389
\(633\) 33.6755 1.33848
\(634\) −10.2517 −0.407146
\(635\) 3.20591 0.127223
\(636\) 13.6535 0.541395
\(637\) −30.6166 −1.21307
\(638\) −21.8654 −0.865661
\(639\) −4.22977 −0.167327
\(640\) −1.00000 −0.0395285
\(641\) −43.6164 −1.72274 −0.861372 0.507975i \(-0.830394\pi\)
−0.861372 + 0.507975i \(0.830394\pi\)
\(642\) −23.2143 −0.916197
\(643\) 5.54619 0.218720 0.109360 0.994002i \(-0.465120\pi\)
0.109360 + 0.994002i \(0.465120\pi\)
\(644\) 20.2970 0.799812
\(645\) 1.22508 0.0482373
\(646\) 0 0
\(647\) −25.3893 −0.998155 −0.499078 0.866557i \(-0.666328\pi\)
−0.499078 + 0.866557i \(0.666328\pi\)
\(648\) −5.85698 −0.230084
\(649\) 22.2079 0.871734
\(650\) −5.47699 −0.214825
\(651\) 38.1368 1.49470
\(652\) 10.1378 0.397026
\(653\) −39.3163 −1.53857 −0.769283 0.638908i \(-0.779387\pi\)
−0.769283 + 0.638908i \(0.779387\pi\)
\(654\) −9.48972 −0.371077
\(655\) 3.57337 0.139623
\(656\) −0.143094 −0.00558689
\(657\) 13.2653 0.517528
\(658\) −20.7797 −0.810079
\(659\) −39.5179 −1.53940 −0.769698 0.638408i \(-0.779593\pi\)
−0.769698 + 0.638408i \(0.779593\pi\)
\(660\) −6.94843 −0.270467
\(661\) 3.13936 0.122107 0.0610535 0.998134i \(-0.480554\pi\)
0.0610535 + 0.998134i \(0.480554\pi\)
\(662\) 0.296190 0.0115117
\(663\) 0 0
\(664\) −3.40601 −0.132179
\(665\) 4.30416 0.166908
\(666\) 7.64048 0.296062
\(667\) 26.5637 1.02855
\(668\) 12.4516 0.481766
\(669\) −13.3826 −0.517401
\(670\) 8.66703 0.334837
\(671\) 58.5993 2.26220
\(672\) −5.23617 −0.201990
\(673\) −23.2880 −0.897688 −0.448844 0.893610i \(-0.648164\pi\)
−0.448844 + 0.893610i \(0.648164\pi\)
\(674\) 14.0520 0.541264
\(675\) −5.64058 −0.217106
\(676\) 16.9974 0.653748
\(677\) 41.2769 1.58640 0.793200 0.608961i \(-0.208413\pi\)
0.793200 + 0.608961i \(0.208413\pi\)
\(678\) 14.2284 0.546439
\(679\) −15.4541 −0.593075
\(680\) 0 0
\(681\) 23.2392 0.890528
\(682\) −34.2939 −1.31318
\(683\) 6.25229 0.239237 0.119619 0.992820i \(-0.461833\pi\)
0.119619 + 0.992820i \(0.461833\pi\)
\(684\) −0.997467 −0.0381391
\(685\) −3.30950 −0.126449
\(686\) 5.00289 0.191011
\(687\) −29.6895 −1.13273
\(688\) −0.830161 −0.0316496
\(689\) −50.6739 −1.93052
\(690\) 8.44146 0.321361
\(691\) 32.1462 1.22290 0.611449 0.791284i \(-0.290587\pi\)
0.611449 + 0.791284i \(0.290587\pi\)
\(692\) −3.54670 −0.134825
\(693\) 13.7380 0.521864
\(694\) 11.1494 0.423226
\(695\) 1.79996 0.0682765
\(696\) −6.85286 −0.259757
\(697\) 0 0
\(698\) −2.51265 −0.0951051
\(699\) −28.4439 −1.07585
\(700\) −3.54824 −0.134111
\(701\) −12.7609 −0.481972 −0.240986 0.970529i \(-0.577471\pi\)
−0.240986 + 0.970529i \(0.577471\pi\)
\(702\) 30.8934 1.16600
\(703\) −11.2712 −0.425103
\(704\) 4.70854 0.177460
\(705\) −8.64225 −0.325486
\(706\) 10.0823 0.379454
\(707\) −38.1057 −1.43311
\(708\) 6.96018 0.261580
\(709\) 33.5197 1.25886 0.629429 0.777058i \(-0.283289\pi\)
0.629429 + 0.777058i \(0.283289\pi\)
\(710\) −5.14391 −0.193047
\(711\) 8.31817 0.311956
\(712\) 2.24175 0.0840133
\(713\) 41.6627 1.56028
\(714\) 0 0
\(715\) 25.7886 0.964441
\(716\) −13.1025 −0.489663
\(717\) 20.9609 0.782799
\(718\) −24.6679 −0.920599
\(719\) 28.6679 1.06913 0.534567 0.845126i \(-0.320475\pi\)
0.534567 + 0.845126i \(0.320475\pi\)
\(720\) 0.822287 0.0306448
\(721\) 26.3743 0.982231
\(722\) −17.5285 −0.652345
\(723\) −6.75070 −0.251061
\(724\) −1.82731 −0.0679114
\(725\) −4.64378 −0.172466
\(726\) 16.4842 0.611786
\(727\) −21.0302 −0.779966 −0.389983 0.920822i \(-0.627519\pi\)
−0.389983 + 0.920822i \(0.627519\pi\)
\(728\) 19.4337 0.720261
\(729\) 29.7877 1.10325
\(730\) 16.1322 0.597078
\(731\) 0 0
\(732\) 18.3656 0.678813
\(733\) −9.02619 −0.333390 −0.166695 0.986009i \(-0.553310\pi\)
−0.166695 + 0.986009i \(0.553310\pi\)
\(734\) 29.7736 1.09896
\(735\) −8.24926 −0.304279
\(736\) −5.72028 −0.210852
\(737\) −40.8091 −1.50322
\(738\) 0.117665 0.00433130
\(739\) −14.4038 −0.529852 −0.264926 0.964269i \(-0.585347\pi\)
−0.264926 + 0.964269i \(0.585347\pi\)
\(740\) 9.29174 0.341571
\(741\) −9.80432 −0.360171
\(742\) −32.8289 −1.20519
\(743\) 33.1127 1.21479 0.607393 0.794401i \(-0.292215\pi\)
0.607393 + 0.794401i \(0.292215\pi\)
\(744\) −10.7481 −0.394043
\(745\) −4.16768 −0.152692
\(746\) −20.8039 −0.761684
\(747\) 2.80072 0.102473
\(748\) 0 0
\(749\) 55.8174 2.03952
\(750\) −1.47571 −0.0538852
\(751\) −6.41038 −0.233918 −0.116959 0.993137i \(-0.537315\pi\)
−0.116959 + 0.993137i \(0.537315\pi\)
\(752\) 5.85635 0.213559
\(753\) 13.2919 0.484383
\(754\) 25.4339 0.926250
\(755\) −4.59258 −0.167141
\(756\) 20.0142 0.727908
\(757\) 49.0252 1.78185 0.890925 0.454150i \(-0.150057\pi\)
0.890925 + 0.454150i \(0.150057\pi\)
\(758\) −10.4448 −0.379373
\(759\) −39.7470 −1.44272
\(760\) −1.21304 −0.0440016
\(761\) −42.6819 −1.54722 −0.773610 0.633662i \(-0.781551\pi\)
−0.773610 + 0.633662i \(0.781551\pi\)
\(762\) −4.73099 −0.171386
\(763\) 22.8174 0.826046
\(764\) −16.8319 −0.608955
\(765\) 0 0
\(766\) −20.1518 −0.728113
\(767\) −25.8323 −0.932749
\(768\) 1.47571 0.0532500
\(769\) 14.6429 0.528035 0.264018 0.964518i \(-0.414952\pi\)
0.264018 + 0.964518i \(0.414952\pi\)
\(770\) 16.7071 0.602081
\(771\) 42.2908 1.52307
\(772\) −5.82873 −0.209781
\(773\) −14.8507 −0.534142 −0.267071 0.963677i \(-0.586056\pi\)
−0.267071 + 0.963677i \(0.586056\pi\)
\(774\) 0.682631 0.0245367
\(775\) −7.28334 −0.261625
\(776\) 4.35543 0.156351
\(777\) 48.6531 1.74542
\(778\) 19.6657 0.705051
\(779\) −0.173579 −0.00621911
\(780\) 8.08244 0.289398
\(781\) 24.2203 0.866670
\(782\) 0 0
\(783\) 26.1936 0.936083
\(784\) 5.59004 0.199644
\(785\) 15.5482 0.554940
\(786\) −5.27324 −0.188090
\(787\) −21.4953 −0.766224 −0.383112 0.923702i \(-0.625148\pi\)
−0.383112 + 0.923702i \(0.625148\pi\)
\(788\) 3.52144 0.125446
\(789\) 8.92173 0.317622
\(790\) 10.1159 0.359907
\(791\) −34.2113 −1.21641
\(792\) −3.87177 −0.137578
\(793\) −68.1629 −2.42053
\(794\) −23.9479 −0.849879
\(795\) −13.6535 −0.484238
\(796\) −16.8001 −0.595462
\(797\) −21.0624 −0.746068 −0.373034 0.927818i \(-0.621683\pi\)
−0.373034 + 0.927818i \(0.621683\pi\)
\(798\) −6.35168 −0.224847
\(799\) 0 0
\(800\) 1.00000 0.0353553
\(801\) −1.84337 −0.0651321
\(802\) −23.0408 −0.813599
\(803\) −75.9590 −2.68053
\(804\) −12.7900 −0.451069
\(805\) −20.2970 −0.715374
\(806\) 39.8908 1.40509
\(807\) 24.9295 0.877560
\(808\) 10.7393 0.377808
\(809\) −18.2576 −0.641904 −0.320952 0.947095i \(-0.604003\pi\)
−0.320952 + 0.947095i \(0.604003\pi\)
\(810\) 5.85698 0.205793
\(811\) −14.5457 −0.510767 −0.255384 0.966840i \(-0.582202\pi\)
−0.255384 + 0.966840i \(0.582202\pi\)
\(812\) 16.4773 0.578239
\(813\) 33.8386 1.18677
\(814\) −43.7505 −1.53346
\(815\) −10.1378 −0.355111
\(816\) 0 0
\(817\) −1.00702 −0.0352311
\(818\) 12.7488 0.445752
\(819\) −15.9801 −0.558390
\(820\) 0.143094 0.00499707
\(821\) −40.8248 −1.42480 −0.712399 0.701775i \(-0.752391\pi\)
−0.712399 + 0.701775i \(0.752391\pi\)
\(822\) 4.88385 0.170344
\(823\) −1.82250 −0.0635283 −0.0317641 0.999495i \(-0.510113\pi\)
−0.0317641 + 0.999495i \(0.510113\pi\)
\(824\) −7.43306 −0.258943
\(825\) 6.94843 0.241913
\(826\) −16.7353 −0.582296
\(827\) −46.4355 −1.61472 −0.807360 0.590059i \(-0.799104\pi\)
−0.807360 + 0.590059i \(0.799104\pi\)
\(828\) 4.70372 0.163465
\(829\) 34.9749 1.21473 0.607364 0.794424i \(-0.292227\pi\)
0.607364 + 0.794424i \(0.292227\pi\)
\(830\) 3.40601 0.118224
\(831\) −29.5168 −1.02393
\(832\) −5.47699 −0.189881
\(833\) 0 0
\(834\) −2.65622 −0.0919773
\(835\) −12.4516 −0.430904
\(836\) 5.71165 0.197541
\(837\) 41.0822 1.42001
\(838\) −27.3719 −0.945545
\(839\) 42.9558 1.48300 0.741500 0.670953i \(-0.234115\pi\)
0.741500 + 0.670953i \(0.234115\pi\)
\(840\) 5.23617 0.180665
\(841\) −7.43531 −0.256390
\(842\) −33.6813 −1.16074
\(843\) 34.3583 1.18336
\(844\) 22.8199 0.785493
\(845\) −16.9974 −0.584730
\(846\) −4.81560 −0.165564
\(847\) −39.6352 −1.36188
\(848\) 9.25215 0.317720
\(849\) 37.1152 1.27379
\(850\) 0 0
\(851\) 53.1513 1.82200
\(852\) 7.59090 0.260060
\(853\) −9.29809 −0.318360 −0.159180 0.987250i \(-0.550885\pi\)
−0.159180 + 0.987250i \(0.550885\pi\)
\(854\) −44.1590 −1.51109
\(855\) 0.997467 0.0341127
\(856\) −15.7310 −0.537674
\(857\) 30.9726 1.05801 0.529003 0.848620i \(-0.322566\pi\)
0.529003 + 0.848620i \(0.322566\pi\)
\(858\) −38.0565 −1.29923
\(859\) 18.5274 0.632145 0.316073 0.948735i \(-0.397636\pi\)
0.316073 + 0.948735i \(0.397636\pi\)
\(860\) 0.830161 0.0283083
\(861\) 0.749266 0.0255349
\(862\) −18.1802 −0.619219
\(863\) 18.5377 0.631030 0.315515 0.948921i \(-0.397823\pi\)
0.315515 + 0.948921i \(0.397823\pi\)
\(864\) −5.64058 −0.191896
\(865\) 3.54670 0.120591
\(866\) 8.10392 0.275382
\(867\) 0 0
\(868\) 25.8431 0.877170
\(869\) −47.6311 −1.61577
\(870\) 6.85286 0.232334
\(871\) 47.4693 1.60843
\(872\) −6.43062 −0.217768
\(873\) −3.58141 −0.121212
\(874\) −6.93893 −0.234713
\(875\) 3.54824 0.119953
\(876\) −23.8064 −0.804342
\(877\) 42.8547 1.44710 0.723550 0.690272i \(-0.242509\pi\)
0.723550 + 0.690272i \(0.242509\pi\)
\(878\) −23.9774 −0.809197
\(879\) 37.6675 1.27049
\(880\) −4.70854 −0.158725
\(881\) −40.8762 −1.37715 −0.688576 0.725164i \(-0.741764\pi\)
−0.688576 + 0.725164i \(0.741764\pi\)
\(882\) −4.59662 −0.154776
\(883\) −52.3174 −1.76062 −0.880310 0.474398i \(-0.842666\pi\)
−0.880310 + 0.474398i \(0.842666\pi\)
\(884\) 0 0
\(885\) −6.96018 −0.233964
\(886\) 0.244075 0.00819987
\(887\) −15.1110 −0.507377 −0.253689 0.967286i \(-0.581644\pi\)
−0.253689 + 0.967286i \(0.581644\pi\)
\(888\) −13.7119 −0.460141
\(889\) 11.3754 0.381518
\(890\) −2.24175 −0.0751437
\(891\) −27.5778 −0.923892
\(892\) −9.06859 −0.303639
\(893\) 7.10398 0.237726
\(894\) 6.15028 0.205696
\(895\) 13.1025 0.437967
\(896\) −3.54824 −0.118539
\(897\) 46.2338 1.54370
\(898\) 0.0824322 0.00275080
\(899\) 33.8222 1.12803
\(900\) −0.822287 −0.0274096
\(901\) 0 0
\(902\) −0.673765 −0.0224339
\(903\) 4.34687 0.144655
\(904\) 9.64176 0.320680
\(905\) 1.82731 0.0607418
\(906\) 6.77731 0.225161
\(907\) −25.0639 −0.832234 −0.416117 0.909311i \(-0.636609\pi\)
−0.416117 + 0.909311i \(0.636609\pi\)
\(908\) 15.7478 0.522610
\(909\) −8.83080 −0.292899
\(910\) −19.4337 −0.644221
\(911\) −2.88456 −0.0955698 −0.0477849 0.998858i \(-0.515216\pi\)
−0.0477849 + 0.998858i \(0.515216\pi\)
\(912\) 1.79009 0.0592758
\(913\) −16.0373 −0.530759
\(914\) −24.3896 −0.806737
\(915\) −18.3656 −0.607149
\(916\) −20.1188 −0.664745
\(917\) 12.6792 0.418703
\(918\) 0 0
\(919\) −48.0746 −1.58584 −0.792918 0.609328i \(-0.791439\pi\)
−0.792918 + 0.609328i \(0.791439\pi\)
\(920\) 5.72028 0.188592
\(921\) −21.0114 −0.692349
\(922\) 29.1100 0.958687
\(923\) −28.1731 −0.927330
\(924\) −24.6547 −0.811081
\(925\) −9.29174 −0.305510
\(926\) 27.9762 0.919354
\(927\) 6.11211 0.200748
\(928\) −4.64378 −0.152440
\(929\) −27.4311 −0.899985 −0.449992 0.893032i \(-0.648573\pi\)
−0.449992 + 0.893032i \(0.648573\pi\)
\(930\) 10.7481 0.352443
\(931\) 6.78094 0.222236
\(932\) −19.2748 −0.631366
\(933\) 17.9318 0.587062
\(934\) −31.2786 −1.02347
\(935\) 0 0
\(936\) 4.50366 0.147207
\(937\) −14.6741 −0.479382 −0.239691 0.970849i \(-0.577046\pi\)
−0.239691 + 0.970849i \(0.577046\pi\)
\(938\) 30.7528 1.00411
\(939\) 32.1552 1.04934
\(940\) −5.85635 −0.191013
\(941\) 24.7215 0.805897 0.402949 0.915223i \(-0.367985\pi\)
0.402949 + 0.915223i \(0.367985\pi\)
\(942\) −22.9446 −0.747577
\(943\) 0.818540 0.0266553
\(944\) 4.71650 0.153509
\(945\) −20.0142 −0.651060
\(946\) −3.90885 −0.127088
\(947\) −6.51543 −0.211723 −0.105861 0.994381i \(-0.533760\pi\)
−0.105861 + 0.994381i \(0.533760\pi\)
\(948\) −14.9281 −0.484842
\(949\) 88.3558 2.86815
\(950\) 1.21304 0.0393562
\(951\) −15.1285 −0.490574
\(952\) 0 0
\(953\) 13.6944 0.443607 0.221803 0.975091i \(-0.428806\pi\)
0.221803 + 0.975091i \(0.428806\pi\)
\(954\) −7.60792 −0.246316
\(955\) 16.8319 0.544666
\(956\) 14.2040 0.459389
\(957\) −32.2670 −1.04304
\(958\) −12.0756 −0.390144
\(959\) −11.7429 −0.379198
\(960\) −1.47571 −0.0476283
\(961\) 22.0470 0.711193
\(962\) 50.8908 1.64078
\(963\) 12.9354 0.416837
\(964\) −4.57455 −0.147336
\(965\) 5.82873 0.187633
\(966\) 29.9524 0.963702
\(967\) −16.3167 −0.524709 −0.262355 0.964972i \(-0.584499\pi\)
−0.262355 + 0.964972i \(0.584499\pi\)
\(968\) 11.1704 0.359029
\(969\) 0 0
\(970\) −4.35543 −0.139844
\(971\) −26.8893 −0.862919 −0.431460 0.902132i \(-0.642001\pi\)
−0.431460 + 0.902132i \(0.642001\pi\)
\(972\) 8.27854 0.265534
\(973\) 6.38671 0.204748
\(974\) −5.01555 −0.160709
\(975\) −8.08244 −0.258845
\(976\) 12.4453 0.398365
\(977\) 20.0002 0.639862 0.319931 0.947441i \(-0.396340\pi\)
0.319931 + 0.947441i \(0.396340\pi\)
\(978\) 14.9604 0.478380
\(979\) 10.5554 0.337352
\(980\) −5.59004 −0.178567
\(981\) 5.28782 0.168827
\(982\) 26.4441 0.843865
\(983\) 28.8356 0.919713 0.459856 0.887993i \(-0.347901\pi\)
0.459856 + 0.887993i \(0.347901\pi\)
\(984\) −0.211165 −0.00673170
\(985\) −3.52144 −0.112202
\(986\) 0 0
\(987\) −30.6648 −0.976072
\(988\) −6.64381 −0.211368
\(989\) 4.74876 0.151002
\(990\) 3.87177 0.123053
\(991\) 26.8968 0.854404 0.427202 0.904156i \(-0.359499\pi\)
0.427202 + 0.904156i \(0.359499\pi\)
\(992\) −7.28334 −0.231246
\(993\) 0.437089 0.0138706
\(994\) −18.2518 −0.578913
\(995\) 16.8001 0.532598
\(996\) −5.02628 −0.159264
\(997\) −30.4622 −0.964747 −0.482373 0.875966i \(-0.660225\pi\)
−0.482373 + 0.875966i \(0.660225\pi\)
\(998\) −29.9384 −0.947683
\(999\) 52.4108 1.65820
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2890.2.a.bi.1.7 8
17.3 odd 16 170.2.k.b.111.3 16
17.4 even 4 2890.2.b.r.2311.5 16
17.6 odd 16 170.2.k.b.121.3 yes 16
17.13 even 4 2890.2.b.r.2311.12 16
17.16 even 2 2890.2.a.bj.1.2 8
85.3 even 16 850.2.o.g.349.2 16
85.23 even 16 850.2.o.j.699.3 16
85.37 even 16 850.2.o.j.349.3 16
85.54 odd 16 850.2.l.e.451.2 16
85.57 even 16 850.2.o.g.699.2 16
85.74 odd 16 850.2.l.e.801.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
170.2.k.b.111.3 16 17.3 odd 16
170.2.k.b.121.3 yes 16 17.6 odd 16
850.2.l.e.451.2 16 85.54 odd 16
850.2.l.e.801.2 16 85.74 odd 16
850.2.o.g.349.2 16 85.3 even 16
850.2.o.g.699.2 16 85.57 even 16
850.2.o.j.349.3 16 85.37 even 16
850.2.o.j.699.3 16 85.23 even 16
2890.2.a.bi.1.7 8 1.1 even 1 trivial
2890.2.a.bj.1.2 8 17.16 even 2
2890.2.b.r.2311.5 16 17.4 even 4
2890.2.b.r.2311.12 16 17.13 even 4