Properties

Label 2890.2.a.bh
Level $2890$
Weight $2$
Character orbit 2890.a
Self dual yes
Analytic conductor $23.077$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2890,2,Mod(1,2890)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2890, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2890.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2890 = 2 \cdot 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2890.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,6,0,6,6,0,0,6,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.0767661842\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.37902897.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 15x^{4} - x^{3} + 60x^{2} - 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} - \beta_1 q^{3} + q^{4} + q^{5} - \beta_1 q^{6} + ( - \beta_{3} + 2 \beta_{2} - \beta_1) q^{7} + q^{8} + (\beta_{5} + \beta_{4} + \beta_{3} + 2) q^{9} + q^{10} + (\beta_{5} + \beta_{4} + \beta_{2} + \cdots + 1) q^{11}+ \cdots + (3 \beta_{5} + 3 \beta_{4} + 6 \beta_{3} + \cdots + 11) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{2} + 6 q^{4} + 6 q^{5} + 6 q^{8} + 12 q^{9} + 6 q^{10} + 6 q^{11} + 12 q^{13} + 6 q^{16} + 12 q^{18} - 9 q^{19} + 6 q^{20} + 21 q^{21} + 6 q^{22} - 6 q^{23} + 6 q^{25} + 12 q^{26} - 3 q^{27}+ \cdots + 66 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 15x^{4} - x^{3} + 60x^{2} - 64 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{5} + 15\nu^{3} + \nu^{2} - 44\nu ) / 16 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{4} - 11\nu^{2} - \nu + 20 ) / 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 5\nu^{5} - 59\nu^{3} - 5\nu^{2} + 124\nu - 16 ) / 16 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -5\nu^{5} - 4\nu^{4} + 59\nu^{3} + 65\nu^{2} - 120\nu - 144 ) / 16 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} + \beta_{4} + \beta_{3} + 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{4} + 5\beta_{2} + 6\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 11\beta_{5} + 11\beta_{4} + 15\beta_{3} + \beta _1 + 35 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} + 16\beta_{4} + \beta_{3} + 59\beta_{2} + 46\beta _1 + 20 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.14945
1.83388
1.37564
−1.27006
−2.18117
−2.90773
1.00000 −3.14945 1.00000 1.00000 −3.14945 −0.922767 1.00000 6.91903 1.00000
1.2 1.00000 −1.83388 1.00000 1.00000 −1.83388 −0.649084 1.00000 0.363102 1.00000
1.3 1.00000 −1.37564 1.00000 1.00000 −1.37564 −4.78712 1.00000 −1.10761 1.00000
1.4 1.00000 1.27006 1.00000 1.00000 1.27006 3.49675 1.00000 −1.38694 1.00000
1.5 1.00000 2.18117 1.00000 1.00000 2.18117 3.36596 1.00000 1.75751 1.00000
1.6 1.00000 2.90773 1.00000 1.00000 2.90773 −0.503742 1.00000 5.45490 1.00000
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2890.2.a.bh yes 6
17.b even 2 1 2890.2.a.bg 6
17.c even 4 2 2890.2.b.q 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2890.2.a.bg 6 17.b even 2 1
2890.2.a.bh yes 6 1.a even 1 1 trivial
2890.2.b.q 12 17.c even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2890))\):

\( T_{3}^{6} - 15T_{3}^{4} + T_{3}^{3} + 60T_{3}^{2} - 64 \) Copy content Toggle raw display
\( T_{7}^{6} - 24T_{7}^{4} + 10T_{7}^{3} + 87T_{7}^{2} + 72T_{7} + 17 \) Copy content Toggle raw display
\( T_{13}^{6} - 12T_{13}^{5} + 27T_{13}^{4} + 121T_{13}^{3} - 486T_{13}^{2} + 504T_{13} - 136 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{6} \) Copy content Toggle raw display
$3$ \( T^{6} - 15 T^{4} + \cdots - 64 \) Copy content Toggle raw display
$5$ \( (T - 1)^{6} \) Copy content Toggle raw display
$7$ \( T^{6} - 24 T^{4} + \cdots + 17 \) Copy content Toggle raw display
$11$ \( T^{6} - 6 T^{5} + \cdots - 296 \) Copy content Toggle raw display
$13$ \( T^{6} - 12 T^{5} + \cdots - 136 \) Copy content Toggle raw display
$17$ \( T^{6} \) Copy content Toggle raw display
$19$ \( T^{6} + 9 T^{5} + \cdots + 584 \) Copy content Toggle raw display
$23$ \( T^{6} + 6 T^{5} + \cdots - 703 \) Copy content Toggle raw display
$29$ \( T^{6} + 9 T^{5} + \cdots + 1864 \) Copy content Toggle raw display
$31$ \( T^{6} - 18 T^{5} + \cdots + 88768 \) Copy content Toggle raw display
$37$ \( T^{6} - 3 T^{5} + \cdots + 136 \) Copy content Toggle raw display
$41$ \( T^{6} - 9 T^{5} + \cdots - 20197 \) Copy content Toggle raw display
$43$ \( T^{6} + 9 T^{5} + \cdots - 2312 \) Copy content Toggle raw display
$47$ \( T^{6} + 9 T^{5} + \cdots - 4913 \) Copy content Toggle raw display
$53$ \( T^{6} - 24 T^{5} + \cdots + 2368 \) Copy content Toggle raw display
$59$ \( T^{6} - 24 T^{5} + \cdots + 1589464 \) Copy content Toggle raw display
$61$ \( T^{6} + 3 T^{5} + \cdots - 32104 \) Copy content Toggle raw display
$67$ \( T^{6} - 18 T^{5} + \cdots - 223624 \) Copy content Toggle raw display
$71$ \( T^{6} + 6 T^{5} + \cdots - 42048 \) Copy content Toggle raw display
$73$ \( T^{6} + 18 T^{5} + \cdots + 40256 \) Copy content Toggle raw display
$79$ \( (T^{3} - 6 T^{2} + \cdots + 456)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} - 18 T^{5} + \cdots + 80648 \) Copy content Toggle raw display
$89$ \( T^{6} - 24 T^{5} + \cdots - 242783 \) Copy content Toggle raw display
$97$ \( T^{6} + 18 T^{5} + \cdots - 9792 \) Copy content Toggle raw display
show more
show less