Properties

Label 2890.2.a.b
Level $2890$
Weight $2$
Character orbit 2890.a
Self dual yes
Analytic conductor $23.077$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2890,2,Mod(1,2890)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2890, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2890.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2890 = 2 \cdot 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2890.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-1,-3,1,1,3,-2,-1,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.0767661842\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 170)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{2} - 3 q^{3} + q^{4} + q^{5} + 3 q^{6} - 2 q^{7} - q^{8} + 6 q^{9} - q^{10} + 4 q^{11} - 3 q^{12} - 3 q^{13} + 2 q^{14} - 3 q^{15} + q^{16} - 6 q^{18} + 3 q^{19} + q^{20} + 6 q^{21} - 4 q^{22}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 −3.00000 1.00000 1.00000 3.00000 −2.00000 −1.00000 6.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2890.2.a.b 1
17.b even 2 1 170.2.a.d 1
17.c even 4 2 2890.2.b.d 2
51.c odd 2 1 1530.2.a.o 1
68.d odd 2 1 1360.2.a.a 1
85.c even 2 1 850.2.a.f 1
85.g odd 4 2 850.2.c.a 2
119.d odd 2 1 8330.2.a.a 1
136.e odd 2 1 5440.2.a.y 1
136.h even 2 1 5440.2.a.b 1
255.h odd 2 1 7650.2.a.l 1
340.d odd 2 1 6800.2.a.z 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
170.2.a.d 1 17.b even 2 1
850.2.a.f 1 85.c even 2 1
850.2.c.a 2 85.g odd 4 2
1360.2.a.a 1 68.d odd 2 1
1530.2.a.o 1 51.c odd 2 1
2890.2.a.b 1 1.a even 1 1 trivial
2890.2.b.d 2 17.c even 4 2
5440.2.a.b 1 136.h even 2 1
5440.2.a.y 1 136.e odd 2 1
6800.2.a.z 1 340.d odd 2 1
7650.2.a.l 1 255.h odd 2 1
8330.2.a.a 1 119.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2890))\):

\( T_{3} + 3 \) Copy content Toggle raw display
\( T_{7} + 2 \) Copy content Toggle raw display
\( T_{13} + 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 1 \) Copy content Toggle raw display
$3$ \( T + 3 \) Copy content Toggle raw display
$5$ \( T - 1 \) Copy content Toggle raw display
$7$ \( T + 2 \) Copy content Toggle raw display
$11$ \( T - 4 \) Copy content Toggle raw display
$13$ \( T + 3 \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T - 3 \) Copy content Toggle raw display
$23$ \( T - 6 \) Copy content Toggle raw display
$29$ \( T + 9 \) Copy content Toggle raw display
$31$ \( T - 3 \) Copy content Toggle raw display
$37$ \( T - 8 \) Copy content Toggle raw display
$41$ \( T - 6 \) Copy content Toggle raw display
$43$ \( T - 6 \) Copy content Toggle raw display
$47$ \( T + 13 \) Copy content Toggle raw display
$53$ \( T + 9 \) Copy content Toggle raw display
$59$ \( T - 15 \) Copy content Toggle raw display
$61$ \( T + 7 \) Copy content Toggle raw display
$67$ \( T + 2 \) Copy content Toggle raw display
$71$ \( T + 9 \) Copy content Toggle raw display
$73$ \( T - 3 \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T - 12 \) Copy content Toggle raw display
$89$ \( T + 9 \) Copy content Toggle raw display
$97$ \( T + 7 \) Copy content Toggle raw display
show more
show less