Properties

Label 289.2.d.c.134.1
Level $289$
Weight $2$
Character 289.134
Analytic conductor $2.308$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [289,2,Mod(110,289)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("289.110"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(289, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 289 = 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 289.d (of order \(8\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.30767661842\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 134.1
Root \(-0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 289.134
Dual form 289.2.d.c.110.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.292893 + 0.292893i) q^{2} +(1.00000 + 2.41421i) q^{3} -1.82843i q^{4} +(1.70711 - 0.707107i) q^{5} +(-0.414214 + 1.00000i) q^{6} +(1.00000 + 0.414214i) q^{7} +(1.12132 - 1.12132i) q^{8} +(-2.70711 + 2.70711i) q^{9} +(0.707107 + 0.292893i) q^{10} +(0.414214 - 1.00000i) q^{11} +(4.41421 - 1.82843i) q^{12} +1.41421i q^{13} +(0.171573 + 0.414214i) q^{14} +(3.41421 + 3.41421i) q^{15} -3.00000 q^{16} -1.58579 q^{18} +(-3.41421 - 3.41421i) q^{19} +(-1.29289 - 3.12132i) q^{20} +2.82843i q^{21} +(0.414214 - 0.171573i) q^{22} +(-1.58579 + 3.82843i) q^{23} +(3.82843 + 1.58579i) q^{24} +(-1.12132 + 1.12132i) q^{25} +(-0.414214 + 0.414214i) q^{26} +(-2.00000 - 0.828427i) q^{27} +(0.757359 - 1.82843i) q^{28} +(-4.12132 + 1.70711i) q^{29} +2.00000i q^{30} +(1.24264 + 3.00000i) q^{31} +(-3.12132 - 3.12132i) q^{32} +2.82843 q^{33} +2.00000 q^{35} +(4.94975 + 4.94975i) q^{36} +(1.46447 + 3.53553i) q^{37} -2.00000i q^{38} +(-3.41421 + 1.41421i) q^{39} +(1.12132 - 2.70711i) q^{40} +(-7.53553 - 3.12132i) q^{41} +(-0.828427 + 0.828427i) q^{42} +(3.41421 - 3.41421i) q^{43} +(-1.82843 - 0.757359i) q^{44} +(-2.70711 + 6.53553i) q^{45} +(-1.58579 + 0.656854i) q^{46} -10.8284i q^{47} +(-3.00000 - 7.24264i) q^{48} +(-4.12132 - 4.12132i) q^{49} -0.656854 q^{50} +2.58579 q^{52} +(1.00000 + 1.00000i) q^{53} +(-0.343146 - 0.828427i) q^{54} -2.00000i q^{55} +(1.58579 - 0.656854i) q^{56} +(4.82843 - 11.6569i) q^{57} +(-1.70711 - 0.707107i) q^{58} +(4.24264 - 4.24264i) q^{59} +(6.24264 - 6.24264i) q^{60} +(8.53553 + 3.53553i) q^{61} +(-0.514719 + 1.24264i) q^{62} +(-3.82843 + 1.58579i) q^{63} +4.17157i q^{64} +(1.00000 + 2.41421i) q^{65} +(0.828427 + 0.828427i) q^{66} +6.82843 q^{67} -10.8284 q^{69} +(0.585786 + 0.585786i) q^{70} +(-5.00000 - 12.0711i) q^{71} +6.07107i q^{72} +(-4.94975 + 2.05025i) q^{73} +(-0.606602 + 1.46447i) q^{74} +(-3.82843 - 1.58579i) q^{75} +(-6.24264 + 6.24264i) q^{76} +(0.828427 - 0.828427i) q^{77} +(-1.41421 - 0.585786i) q^{78} +(1.58579 - 3.82843i) q^{79} +(-5.12132 + 2.12132i) q^{80} +5.82843i q^{81} +(-1.29289 - 3.12132i) q^{82} +(0.242641 + 0.242641i) q^{83} +5.17157 q^{84} +2.00000 q^{86} +(-8.24264 - 8.24264i) q^{87} +(-0.656854 - 1.58579i) q^{88} +9.41421i q^{89} +(-2.70711 + 1.12132i) q^{90} +(-0.585786 + 1.41421i) q^{91} +(7.00000 + 2.89949i) q^{92} +(-6.00000 + 6.00000i) q^{93} +(3.17157 - 3.17157i) q^{94} +(-8.24264 - 3.41421i) q^{95} +(4.41421 - 10.6569i) q^{96} +(5.94975 - 2.46447i) q^{97} -2.41421i q^{98} +(1.58579 + 3.82843i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 4 q^{3} + 4 q^{5} + 4 q^{6} + 4 q^{7} - 4 q^{8} - 8 q^{9} - 4 q^{11} + 12 q^{12} + 12 q^{14} + 8 q^{15} - 12 q^{16} - 12 q^{18} - 8 q^{19} - 8 q^{20} - 4 q^{22} - 12 q^{23} + 4 q^{24} + 4 q^{25}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/289\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{3}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.292893 + 0.292893i 0.207107 + 0.207107i 0.803037 0.595930i \(-0.203216\pi\)
−0.595930 + 0.803037i \(0.703216\pi\)
\(3\) 1.00000 + 2.41421i 0.577350 + 1.39385i 0.895182 + 0.445700i \(0.147045\pi\)
−0.317832 + 0.948147i \(0.602955\pi\)
\(4\) 1.82843i 0.914214i
\(5\) 1.70711 0.707107i 0.763441 0.316228i 0.0332288 0.999448i \(-0.489421\pi\)
0.730213 + 0.683220i \(0.239421\pi\)
\(6\) −0.414214 + 1.00000i −0.169102 + 0.408248i
\(7\) 1.00000 + 0.414214i 0.377964 + 0.156558i 0.563574 0.826066i \(-0.309426\pi\)
−0.185610 + 0.982624i \(0.559426\pi\)
\(8\) 1.12132 1.12132i 0.396447 0.396447i
\(9\) −2.70711 + 2.70711i −0.902369 + 0.902369i
\(10\) 0.707107 + 0.292893i 0.223607 + 0.0926210i
\(11\) 0.414214 1.00000i 0.124890 0.301511i −0.849052 0.528310i \(-0.822826\pi\)
0.973942 + 0.226799i \(0.0728259\pi\)
\(12\) 4.41421 1.82843i 1.27427 0.527821i
\(13\) 1.41421i 0.392232i 0.980581 + 0.196116i \(0.0628330\pi\)
−0.980581 + 0.196116i \(0.937167\pi\)
\(14\) 0.171573 + 0.414214i 0.0458548 + 0.110703i
\(15\) 3.41421 + 3.41421i 0.881546 + 0.881546i
\(16\) −3.00000 −0.750000
\(17\) 0 0
\(18\) −1.58579 −0.373773
\(19\) −3.41421 3.41421i −0.783274 0.783274i 0.197108 0.980382i \(-0.436845\pi\)
−0.980382 + 0.197108i \(0.936845\pi\)
\(20\) −1.29289 3.12132i −0.289100 0.697948i
\(21\) 2.82843i 0.617213i
\(22\) 0.414214 0.171573i 0.0883106 0.0365795i
\(23\) −1.58579 + 3.82843i −0.330659 + 0.798282i 0.667881 + 0.744268i \(0.267202\pi\)
−0.998540 + 0.0540140i \(0.982798\pi\)
\(24\) 3.82843 + 1.58579i 0.781474 + 0.323697i
\(25\) −1.12132 + 1.12132i −0.224264 + 0.224264i
\(26\) −0.414214 + 0.414214i −0.0812340 + 0.0812340i
\(27\) −2.00000 0.828427i −0.384900 0.159431i
\(28\) 0.757359 1.82843i 0.143127 0.345540i
\(29\) −4.12132 + 1.70711i −0.765310 + 0.317002i −0.730971 0.682408i \(-0.760933\pi\)
−0.0343389 + 0.999410i \(0.510933\pi\)
\(30\) 2.00000i 0.365148i
\(31\) 1.24264 + 3.00000i 0.223185 + 0.538816i 0.995319 0.0966436i \(-0.0308107\pi\)
−0.772134 + 0.635460i \(0.780811\pi\)
\(32\) −3.12132 3.12132i −0.551777 0.551777i
\(33\) 2.82843 0.492366
\(34\) 0 0
\(35\) 2.00000 0.338062
\(36\) 4.94975 + 4.94975i 0.824958 + 0.824958i
\(37\) 1.46447 + 3.53553i 0.240757 + 0.581238i 0.997358 0.0726379i \(-0.0231417\pi\)
−0.756602 + 0.653876i \(0.773142\pi\)
\(38\) 2.00000i 0.324443i
\(39\) −3.41421 + 1.41421i −0.546712 + 0.226455i
\(40\) 1.12132 2.70711i 0.177296 0.428031i
\(41\) −7.53553 3.12132i −1.17685 0.487468i −0.293400 0.955990i \(-0.594787\pi\)
−0.883452 + 0.468521i \(0.844787\pi\)
\(42\) −0.828427 + 0.828427i −0.127829 + 0.127829i
\(43\) 3.41421 3.41421i 0.520663 0.520663i −0.397109 0.917772i \(-0.629986\pi\)
0.917772 + 0.397109i \(0.129986\pi\)
\(44\) −1.82843 0.757359i −0.275646 0.114176i
\(45\) −2.70711 + 6.53553i −0.403552 + 0.974260i
\(46\) −1.58579 + 0.656854i −0.233811 + 0.0968479i
\(47\) 10.8284i 1.57949i −0.613436 0.789744i \(-0.710213\pi\)
0.613436 0.789744i \(-0.289787\pi\)
\(48\) −3.00000 7.24264i −0.433013 1.04539i
\(49\) −4.12132 4.12132i −0.588760 0.588760i
\(50\) −0.656854 −0.0928932
\(51\) 0 0
\(52\) 2.58579 0.358584
\(53\) 1.00000 + 1.00000i 0.137361 + 0.137361i 0.772444 0.635083i \(-0.219034\pi\)
−0.635083 + 0.772444i \(0.719034\pi\)
\(54\) −0.343146 0.828427i −0.0466962 0.112735i
\(55\) 2.00000i 0.269680i
\(56\) 1.58579 0.656854i 0.211910 0.0877758i
\(57\) 4.82843 11.6569i 0.639541 1.54399i
\(58\) −1.70711 0.707107i −0.224154 0.0928477i
\(59\) 4.24264 4.24264i 0.552345 0.552345i −0.374772 0.927117i \(-0.622279\pi\)
0.927117 + 0.374772i \(0.122279\pi\)
\(60\) 6.24264 6.24264i 0.805921 0.805921i
\(61\) 8.53553 + 3.53553i 1.09286 + 0.452679i 0.855004 0.518621i \(-0.173554\pi\)
0.237859 + 0.971300i \(0.423554\pi\)
\(62\) −0.514719 + 1.24264i −0.0653693 + 0.157816i
\(63\) −3.82843 + 1.58579i −0.482336 + 0.199790i
\(64\) 4.17157i 0.521447i
\(65\) 1.00000 + 2.41421i 0.124035 + 0.299446i
\(66\) 0.828427 + 0.828427i 0.101972 + 0.101972i
\(67\) 6.82843 0.834225 0.417113 0.908855i \(-0.363042\pi\)
0.417113 + 0.908855i \(0.363042\pi\)
\(68\) 0 0
\(69\) −10.8284 −1.30359
\(70\) 0.585786 + 0.585786i 0.0700149 + 0.0700149i
\(71\) −5.00000 12.0711i −0.593391 1.43257i −0.880209 0.474587i \(-0.842597\pi\)
0.286818 0.957985i \(-0.407403\pi\)
\(72\) 6.07107i 0.715482i
\(73\) −4.94975 + 2.05025i −0.579324 + 0.239964i −0.653050 0.757315i \(-0.726511\pi\)
0.0737261 + 0.997279i \(0.476511\pi\)
\(74\) −0.606602 + 1.46447i −0.0705160 + 0.170241i
\(75\) −3.82843 1.58579i −0.442069 0.183111i
\(76\) −6.24264 + 6.24264i −0.716080 + 0.716080i
\(77\) 0.828427 0.828427i 0.0944080 0.0944080i
\(78\) −1.41421 0.585786i −0.160128 0.0663273i
\(79\) 1.58579 3.82843i 0.178415 0.430732i −0.809219 0.587506i \(-0.800110\pi\)
0.987634 + 0.156775i \(0.0501097\pi\)
\(80\) −5.12132 + 2.12132i −0.572581 + 0.237171i
\(81\) 5.82843i 0.647603i
\(82\) −1.29289 3.12132i −0.142776 0.344692i
\(83\) 0.242641 + 0.242641i 0.0266333 + 0.0266333i 0.720298 0.693665i \(-0.244005\pi\)
−0.693665 + 0.720298i \(0.744005\pi\)
\(84\) 5.17157 0.564265
\(85\) 0 0
\(86\) 2.00000 0.215666
\(87\) −8.24264 8.24264i −0.883704 0.883704i
\(88\) −0.656854 1.58579i −0.0700209 0.169045i
\(89\) 9.41421i 0.997905i 0.866629 + 0.498952i \(0.166282\pi\)
−0.866629 + 0.498952i \(0.833718\pi\)
\(90\) −2.70711 + 1.12132i −0.285354 + 0.118198i
\(91\) −0.585786 + 1.41421i −0.0614071 + 0.148250i
\(92\) 7.00000 + 2.89949i 0.729800 + 0.302293i
\(93\) −6.00000 + 6.00000i −0.622171 + 0.622171i
\(94\) 3.17157 3.17157i 0.327123 0.327123i
\(95\) −8.24264 3.41421i −0.845677 0.350291i
\(96\) 4.41421 10.6569i 0.450524 1.08766i
\(97\) 5.94975 2.46447i 0.604105 0.250229i −0.0596005 0.998222i \(-0.518983\pi\)
0.663706 + 0.747994i \(0.268983\pi\)
\(98\) 2.41421i 0.243872i
\(99\) 1.58579 + 3.82843i 0.159378 + 0.384771i
\(100\) 2.05025 + 2.05025i 0.205025 + 0.205025i
\(101\) −13.4142 −1.33476 −0.667382 0.744715i \(-0.732585\pi\)
−0.667382 + 0.744715i \(0.732585\pi\)
\(102\) 0 0
\(103\) −4.48528 −0.441948 −0.220974 0.975280i \(-0.570924\pi\)
−0.220974 + 0.975280i \(0.570924\pi\)
\(104\) 1.58579 + 1.58579i 0.155499 + 0.155499i
\(105\) 2.00000 + 4.82843i 0.195180 + 0.471206i
\(106\) 0.585786i 0.0568966i
\(107\) −5.82843 + 2.41421i −0.563455 + 0.233391i −0.646184 0.763181i \(-0.723636\pi\)
0.0827292 + 0.996572i \(0.473636\pi\)
\(108\) −1.51472 + 3.65685i −0.145754 + 0.351881i
\(109\) 3.94975 + 1.63604i 0.378317 + 0.156704i 0.563735 0.825956i \(-0.309364\pi\)
−0.185418 + 0.982660i \(0.559364\pi\)
\(110\) 0.585786 0.585786i 0.0558525 0.0558525i
\(111\) −7.07107 + 7.07107i −0.671156 + 0.671156i
\(112\) −3.00000 1.24264i −0.283473 0.117419i
\(113\) −6.19239 + 14.9497i −0.582531 + 1.40635i 0.307980 + 0.951393i \(0.400347\pi\)
−0.890511 + 0.454961i \(0.849653\pi\)
\(114\) 4.82843 2.00000i 0.452224 0.187317i
\(115\) 7.65685i 0.714005i
\(116\) 3.12132 + 7.53553i 0.289807 + 0.699657i
\(117\) −3.82843 3.82843i −0.353938 0.353938i
\(118\) 2.48528 0.228789
\(119\) 0 0
\(120\) 7.65685 0.698972
\(121\) 6.94975 + 6.94975i 0.631795 + 0.631795i
\(122\) 1.46447 + 3.53553i 0.132587 + 0.320092i
\(123\) 21.3137i 1.92179i
\(124\) 5.48528 2.27208i 0.492593 0.204039i
\(125\) −4.65685 + 11.2426i −0.416522 + 1.00557i
\(126\) −1.58579 0.656854i −0.141273 0.0585172i
\(127\) 12.2426 12.2426i 1.08636 1.08636i 0.0904585 0.995900i \(-0.471167\pi\)
0.995900 0.0904585i \(-0.0288332\pi\)
\(128\) −7.46447 + 7.46447i −0.659772 + 0.659772i
\(129\) 11.6569 + 4.82843i 1.02633 + 0.425119i
\(130\) −0.414214 + 1.00000i −0.0363289 + 0.0877058i
\(131\) 0.171573 0.0710678i 0.0149904 0.00620922i −0.375176 0.926954i \(-0.622418\pi\)
0.390166 + 0.920745i \(0.372418\pi\)
\(132\) 5.17157i 0.450128i
\(133\) −2.00000 4.82843i −0.173422 0.418678i
\(134\) 2.00000 + 2.00000i 0.172774 + 0.172774i
\(135\) −4.00000 −0.344265
\(136\) 0 0
\(137\) 8.72792 0.745677 0.372838 0.927896i \(-0.378385\pi\)
0.372838 + 0.927896i \(0.378385\pi\)
\(138\) −3.17157 3.17157i −0.269982 0.269982i
\(139\) 5.72792 + 13.8284i 0.485836 + 1.17291i 0.956797 + 0.290758i \(0.0939074\pi\)
−0.470961 + 0.882154i \(0.656093\pi\)
\(140\) 3.65685i 0.309061i
\(141\) 26.1421 10.8284i 2.20156 0.911918i
\(142\) 2.07107 5.00000i 0.173800 0.419591i
\(143\) 1.41421 + 0.585786i 0.118262 + 0.0489859i
\(144\) 8.12132 8.12132i 0.676777 0.676777i
\(145\) −5.82843 + 5.82843i −0.484025 + 0.484025i
\(146\) −2.05025 0.849242i −0.169680 0.0702838i
\(147\) 5.82843 14.0711i 0.480721 1.16056i
\(148\) 6.46447 2.67767i 0.531376 0.220103i
\(149\) 16.9706i 1.39028i −0.718873 0.695141i \(-0.755342\pi\)
0.718873 0.695141i \(-0.244658\pi\)
\(150\) −0.656854 1.58579i −0.0536319 0.129479i
\(151\) 9.07107 + 9.07107i 0.738193 + 0.738193i 0.972228 0.234035i \(-0.0751931\pi\)
−0.234035 + 0.972228i \(0.575193\pi\)
\(152\) −7.65685 −0.621053
\(153\) 0 0
\(154\) 0.485281 0.0391051
\(155\) 4.24264 + 4.24264i 0.340777 + 0.340777i
\(156\) 2.58579 + 6.24264i 0.207029 + 0.499811i
\(157\) 1.65685i 0.132231i 0.997812 + 0.0661157i \(0.0210606\pi\)
−0.997812 + 0.0661157i \(0.978939\pi\)
\(158\) 1.58579 0.656854i 0.126158 0.0522565i
\(159\) −1.41421 + 3.41421i −0.112154 + 0.270765i
\(160\) −7.53553 3.12132i −0.595736 0.246762i
\(161\) −3.17157 + 3.17157i −0.249955 + 0.249955i
\(162\) −1.70711 + 1.70711i −0.134123 + 0.134123i
\(163\) −5.24264 2.17157i −0.410635 0.170091i 0.167796 0.985822i \(-0.446335\pi\)
−0.578431 + 0.815731i \(0.696335\pi\)
\(164\) −5.70711 + 13.7782i −0.445650 + 1.07589i
\(165\) 4.82843 2.00000i 0.375893 0.155700i
\(166\) 0.142136i 0.0110319i
\(167\) −3.82843 9.24264i −0.296253 0.715217i −0.999989 0.00475555i \(-0.998486\pi\)
0.703736 0.710461i \(-0.251514\pi\)
\(168\) 3.17157 + 3.17157i 0.244692 + 0.244692i
\(169\) 11.0000 0.846154
\(170\) 0 0
\(171\) 18.4853 1.41360
\(172\) −6.24264 6.24264i −0.475997 0.475997i
\(173\) 1.29289 + 3.12132i 0.0982969 + 0.237310i 0.965377 0.260859i \(-0.0840059\pi\)
−0.867080 + 0.498169i \(0.834006\pi\)
\(174\) 4.82843i 0.366042i
\(175\) −1.58579 + 0.656854i −0.119874 + 0.0496535i
\(176\) −1.24264 + 3.00000i −0.0936676 + 0.226134i
\(177\) 14.4853 + 6.00000i 1.08878 + 0.450988i
\(178\) −2.75736 + 2.75736i −0.206673 + 0.206673i
\(179\) −4.24264 + 4.24264i −0.317110 + 0.317110i −0.847656 0.530546i \(-0.821987\pi\)
0.530546 + 0.847656i \(0.321987\pi\)
\(180\) 11.9497 + 4.94975i 0.890682 + 0.368932i
\(181\) 4.77817 11.5355i 0.355159 0.857429i −0.640807 0.767702i \(-0.721400\pi\)
0.995966 0.0897278i \(-0.0285997\pi\)
\(182\) −0.585786 + 0.242641i −0.0434214 + 0.0179857i
\(183\) 24.1421i 1.78464i
\(184\) 2.51472 + 6.07107i 0.185388 + 0.447565i
\(185\) 5.00000 + 5.00000i 0.367607 + 0.367607i
\(186\) −3.51472 −0.257712
\(187\) 0 0
\(188\) −19.7990 −1.44399
\(189\) −1.65685 1.65685i −0.120518 0.120518i
\(190\) −1.41421 3.41421i −0.102598 0.247693i
\(191\) 20.0000i 1.44715i 0.690246 + 0.723575i \(0.257502\pi\)
−0.690246 + 0.723575i \(0.742498\pi\)
\(192\) −10.0711 + 4.17157i −0.726817 + 0.301057i
\(193\) −2.12132 + 5.12132i −0.152696 + 0.368641i −0.981654 0.190670i \(-0.938934\pi\)
0.828958 + 0.559310i \(0.188934\pi\)
\(194\) 2.46447 + 1.02082i 0.176938 + 0.0732903i
\(195\) −4.82843 + 4.82843i −0.345771 + 0.345771i
\(196\) −7.53553 + 7.53553i −0.538252 + 0.538252i
\(197\) −13.7782 5.70711i −0.981654 0.406615i −0.166616 0.986022i \(-0.553284\pi\)
−0.815038 + 0.579407i \(0.803284\pi\)
\(198\) −0.656854 + 1.58579i −0.0466806 + 0.112697i
\(199\) −1.58579 + 0.656854i −0.112413 + 0.0465632i −0.438181 0.898887i \(-0.644377\pi\)
0.325768 + 0.945450i \(0.394377\pi\)
\(200\) 2.51472i 0.177817i
\(201\) 6.82843 + 16.4853i 0.481640 + 1.16278i
\(202\) −3.92893 3.92893i −0.276439 0.276439i
\(203\) −4.82843 −0.338889
\(204\) 0 0
\(205\) −15.0711 −1.05261
\(206\) −1.31371 1.31371i −0.0915304 0.0915304i
\(207\) −6.07107 14.6569i −0.421968 1.01872i
\(208\) 4.24264i 0.294174i
\(209\) −4.82843 + 2.00000i −0.333989 + 0.138343i
\(210\) −0.828427 + 2.00000i −0.0571669 + 0.138013i
\(211\) 13.8284 + 5.72792i 0.951988 + 0.394326i 0.803978 0.594659i \(-0.202713\pi\)
0.148010 + 0.988986i \(0.452713\pi\)
\(212\) 1.82843 1.82843i 0.125577 0.125577i
\(213\) 24.1421 24.1421i 1.65419 1.65419i
\(214\) −2.41421 1.00000i −0.165032 0.0683586i
\(215\) 3.41421 8.24264i 0.232847 0.562143i
\(216\) −3.17157 + 1.31371i −0.215798 + 0.0893865i
\(217\) 3.51472i 0.238595i
\(218\) 0.677670 + 1.63604i 0.0458976 + 0.110807i
\(219\) −9.89949 9.89949i −0.668946 0.668946i
\(220\) −3.65685 −0.246545
\(221\) 0 0
\(222\) −4.14214 −0.278002
\(223\) −0.585786 0.585786i −0.0392272 0.0392272i 0.687221 0.726448i \(-0.258830\pi\)
−0.726448 + 0.687221i \(0.758830\pi\)
\(224\) −1.82843 4.41421i −0.122167 0.294937i
\(225\) 6.07107i 0.404738i
\(226\) −6.19239 + 2.56497i −0.411912 + 0.170619i
\(227\) 1.92893 4.65685i 0.128028 0.309086i −0.846848 0.531835i \(-0.821503\pi\)
0.974876 + 0.222748i \(0.0715028\pi\)
\(228\) −21.3137 8.82843i −1.41153 0.584677i
\(229\) −16.1421 + 16.1421i −1.06670 + 1.06670i −0.0690921 + 0.997610i \(0.522010\pi\)
−0.997610 + 0.0690921i \(0.977990\pi\)
\(230\) −2.24264 + 2.24264i −0.147875 + 0.147875i
\(231\) 2.82843 + 1.17157i 0.186097 + 0.0770838i
\(232\) −2.70711 + 6.53553i −0.177730 + 0.429079i
\(233\) 9.36396 3.87868i 0.613453 0.254101i −0.0542508 0.998527i \(-0.517277\pi\)
0.667704 + 0.744427i \(0.267277\pi\)
\(234\) 2.24264i 0.146606i
\(235\) −7.65685 18.4853i −0.499478 1.20585i
\(236\) −7.75736 7.75736i −0.504961 0.504961i
\(237\) 10.8284 0.703382
\(238\) 0 0
\(239\) 9.17157 0.593260 0.296630 0.954993i \(-0.404137\pi\)
0.296630 + 0.954993i \(0.404137\pi\)
\(240\) −10.2426 10.2426i −0.661160 0.661160i
\(241\) −4.70711 11.3640i −0.303211 0.732017i −0.999893 0.0146365i \(-0.995341\pi\)
0.696681 0.717381i \(-0.254659\pi\)
\(242\) 4.07107i 0.261698i
\(243\) −20.0711 + 8.31371i −1.28756 + 0.533325i
\(244\) 6.46447 15.6066i 0.413845 0.999110i
\(245\) −9.94975 4.12132i −0.635666 0.263301i
\(246\) 6.24264 6.24264i 0.398016 0.398016i
\(247\) 4.82843 4.82843i 0.307225 0.307225i
\(248\) 4.75736 + 1.97056i 0.302093 + 0.125131i
\(249\) −0.343146 + 0.828427i −0.0217460 + 0.0524994i
\(250\) −4.65685 + 1.92893i −0.294525 + 0.121996i
\(251\) 3.51472i 0.221847i −0.993829 0.110924i \(-0.964619\pi\)
0.993829 0.110924i \(-0.0353809\pi\)
\(252\) 2.89949 + 7.00000i 0.182651 + 0.440959i
\(253\) 3.17157 + 3.17157i 0.199395 + 0.199395i
\(254\) 7.17157 0.449985
\(255\) 0 0
\(256\) 3.97056 0.248160
\(257\) 15.6569 + 15.6569i 0.976648 + 0.976648i 0.999733 0.0230858i \(-0.00734908\pi\)
−0.0230858 + 0.999733i \(0.507349\pi\)
\(258\) 2.00000 + 4.82843i 0.124515 + 0.300605i
\(259\) 4.14214i 0.257380i
\(260\) 4.41421 1.82843i 0.273758 0.113394i
\(261\) 6.53553 15.7782i 0.404539 0.976644i
\(262\) 0.0710678 + 0.0294373i 0.00439058 + 0.00181864i
\(263\) 4.58579 4.58579i 0.282772 0.282772i −0.551442 0.834213i \(-0.685922\pi\)
0.834213 + 0.551442i \(0.185922\pi\)
\(264\) 3.17157 3.17157i 0.195197 0.195197i
\(265\) 2.41421 + 1.00000i 0.148304 + 0.0614295i
\(266\) 0.828427 2.00000i 0.0507941 0.122628i
\(267\) −22.7279 + 9.41421i −1.39093 + 0.576141i
\(268\) 12.4853i 0.762660i
\(269\) −2.43503 5.87868i −0.148466 0.358429i 0.832098 0.554629i \(-0.187140\pi\)
−0.980564 + 0.196200i \(0.937140\pi\)
\(270\) −1.17157 1.17157i −0.0712997 0.0712997i
\(271\) −6.14214 −0.373108 −0.186554 0.982445i \(-0.559732\pi\)
−0.186554 + 0.982445i \(0.559732\pi\)
\(272\) 0 0
\(273\) −4.00000 −0.242091
\(274\) 2.55635 + 2.55635i 0.154435 + 0.154435i
\(275\) 0.656854 + 1.58579i 0.0396098 + 0.0956265i
\(276\) 19.7990i 1.19176i
\(277\) 20.3640 8.43503i 1.22355 0.506812i 0.325015 0.945709i \(-0.394631\pi\)
0.898537 + 0.438897i \(0.144631\pi\)
\(278\) −2.37258 + 5.72792i −0.142298 + 0.343538i
\(279\) −11.4853 4.75736i −0.687606 0.284816i
\(280\) 2.24264 2.24264i 0.134023 0.134023i
\(281\) 12.6569 12.6569i 0.755045 0.755045i −0.220371 0.975416i \(-0.570727\pi\)
0.975416 + 0.220371i \(0.0707269\pi\)
\(282\) 10.8284 + 4.48528i 0.644823 + 0.267095i
\(283\) −8.75736 + 21.1421i −0.520571 + 1.25677i 0.416978 + 0.908917i \(0.363089\pi\)
−0.937549 + 0.347853i \(0.886911\pi\)
\(284\) −22.0711 + 9.14214i −1.30968 + 0.542486i
\(285\) 23.3137i 1.38098i
\(286\) 0.242641 + 0.585786i 0.0143476 + 0.0346383i
\(287\) −6.24264 6.24264i −0.368491 0.368491i
\(288\) 16.8995 0.995812
\(289\) 0 0
\(290\) −3.41421 −0.200490
\(291\) 11.8995 + 11.8995i 0.697561 + 0.697561i
\(292\) 3.74874 + 9.05025i 0.219378 + 0.529626i
\(293\) 23.6569i 1.38205i −0.722832 0.691024i \(-0.757160\pi\)
0.722832 0.691024i \(-0.242840\pi\)
\(294\) 5.82843 2.41421i 0.339921 0.140800i
\(295\) 4.24264 10.2426i 0.247016 0.596350i
\(296\) 5.60660 + 2.32233i 0.325877 + 0.134983i
\(297\) −1.65685 + 1.65685i −0.0961404 + 0.0961404i
\(298\) 4.97056 4.97056i 0.287937 0.287937i
\(299\) −5.41421 2.24264i −0.313112 0.129695i
\(300\) −2.89949 + 7.00000i −0.167402 + 0.404145i
\(301\) 4.82843 2.00000i 0.278306 0.115278i
\(302\) 5.31371i 0.305770i
\(303\) −13.4142 32.3848i −0.770626 1.86046i
\(304\) 10.2426 + 10.2426i 0.587456 + 0.587456i
\(305\) 17.0711 0.977486
\(306\) 0 0
\(307\) 2.14214 0.122258 0.0611291 0.998130i \(-0.480530\pi\)
0.0611291 + 0.998130i \(0.480530\pi\)
\(308\) −1.51472 1.51472i −0.0863091 0.0863091i
\(309\) −4.48528 10.8284i −0.255159 0.616008i
\(310\) 2.48528i 0.141154i
\(311\) −4.17157 + 1.72792i −0.236548 + 0.0979815i −0.497809 0.867287i \(-0.665862\pi\)
0.261261 + 0.965268i \(0.415862\pi\)
\(312\) −2.24264 + 5.41421i −0.126965 + 0.306519i
\(313\) −11.7782 4.87868i −0.665742 0.275759i 0.0241106 0.999709i \(-0.492325\pi\)
−0.689852 + 0.723950i \(0.742325\pi\)
\(314\) −0.485281 + 0.485281i −0.0273860 + 0.0273860i
\(315\) −5.41421 + 5.41421i −0.305056 + 0.305056i
\(316\) −7.00000 2.89949i −0.393781 0.163109i
\(317\) 2.22183 5.36396i 0.124790 0.301270i −0.849122 0.528198i \(-0.822868\pi\)
0.973912 + 0.226927i \(0.0728680\pi\)
\(318\) −1.41421 + 0.585786i −0.0793052 + 0.0328493i
\(319\) 4.82843i 0.270340i
\(320\) 2.94975 + 7.12132i 0.164896 + 0.398094i
\(321\) −11.6569 11.6569i −0.650622 0.650622i
\(322\) −1.85786 −0.103535
\(323\) 0 0
\(324\) 10.6569 0.592047
\(325\) −1.58579 1.58579i −0.0879636 0.0879636i
\(326\) −0.899495 2.17157i −0.0498184 0.120272i
\(327\) 11.1716i 0.617789i
\(328\) −11.9497 + 4.94975i −0.659814 + 0.273304i
\(329\) 4.48528 10.8284i 0.247282 0.596991i
\(330\) 2.00000 + 0.828427i 0.110096 + 0.0456034i
\(331\) 12.5858 12.5858i 0.691777 0.691777i −0.270845 0.962623i \(-0.587303\pi\)
0.962623 + 0.270845i \(0.0873032\pi\)
\(332\) 0.443651 0.443651i 0.0243485 0.0243485i
\(333\) −13.5355 5.60660i −0.741743 0.307240i
\(334\) 1.58579 3.82843i 0.0867704 0.209482i
\(335\) 11.6569 4.82843i 0.636882 0.263805i
\(336\) 8.48528i 0.462910i
\(337\) 13.1924 + 31.8492i 0.718635 + 1.73494i 0.677202 + 0.735798i \(0.263192\pi\)
0.0414336 + 0.999141i \(0.486808\pi\)
\(338\) 3.22183 + 3.22183i 0.175244 + 0.175244i
\(339\) −42.2843 −2.29657
\(340\) 0 0
\(341\) 3.51472 0.190333
\(342\) 5.41421 + 5.41421i 0.292767 + 0.292767i
\(343\) −5.31371 12.8284i −0.286913 0.692670i
\(344\) 7.65685i 0.412830i
\(345\) −18.4853 + 7.65685i −0.995214 + 0.412231i
\(346\) −0.535534 + 1.29289i −0.0287905 + 0.0695064i
\(347\) −3.58579 1.48528i −0.192495 0.0797341i 0.284354 0.958719i \(-0.408221\pi\)
−0.476849 + 0.878985i \(0.658221\pi\)
\(348\) −15.0711 + 15.0711i −0.807894 + 0.807894i
\(349\) −3.00000 + 3.00000i −0.160586 + 0.160586i −0.782826 0.622240i \(-0.786223\pi\)
0.622240 + 0.782826i \(0.286223\pi\)
\(350\) −0.656854 0.272078i −0.0351103 0.0145432i
\(351\) 1.17157 2.82843i 0.0625339 0.150970i
\(352\) −4.41421 + 1.82843i −0.235278 + 0.0974555i
\(353\) 14.0000i 0.745145i 0.928003 + 0.372572i \(0.121524\pi\)
−0.928003 + 0.372572i \(0.878476\pi\)
\(354\) 2.48528 + 6.00000i 0.132091 + 0.318896i
\(355\) −17.0711 17.0711i −0.906038 0.906038i
\(356\) 17.2132 0.912298
\(357\) 0 0
\(358\) −2.48528 −0.131351
\(359\) −16.3848 16.3848i −0.864755 0.864755i 0.127131 0.991886i \(-0.459423\pi\)
−0.991886 + 0.127131i \(0.959423\pi\)
\(360\) 4.29289 + 10.3640i 0.226255 + 0.546229i
\(361\) 4.31371i 0.227037i
\(362\) 4.77817 1.97918i 0.251135 0.104024i
\(363\) −9.82843 + 23.7279i −0.515859 + 1.24539i
\(364\) 2.58579 + 1.07107i 0.135532 + 0.0561392i
\(365\) −7.00000 + 7.00000i −0.366397 + 0.366397i
\(366\) −7.07107 + 7.07107i −0.369611 + 0.369611i
\(367\) 24.3137 + 10.0711i 1.26917 + 0.525705i 0.912710 0.408607i \(-0.133985\pi\)
0.356455 + 0.934313i \(0.383985\pi\)
\(368\) 4.75736 11.4853i 0.247994 0.598712i
\(369\) 28.8492 11.9497i 1.50183 0.622079i
\(370\) 2.92893i 0.152268i
\(371\) 0.585786 + 1.41421i 0.0304125 + 0.0734223i
\(372\) 10.9706 + 10.9706i 0.568797 + 0.568797i
\(373\) −19.5563 −1.01259 −0.506295 0.862361i \(-0.668985\pi\)
−0.506295 + 0.862361i \(0.668985\pi\)
\(374\) 0 0
\(375\) −31.7990 −1.64209
\(376\) −12.1421 12.1421i −0.626183 0.626183i
\(377\) −2.41421 5.82843i −0.124338 0.300179i
\(378\) 0.970563i 0.0499204i
\(379\) 1.00000 0.414214i 0.0513665 0.0212767i −0.356852 0.934161i \(-0.616150\pi\)
0.408219 + 0.912884i \(0.366150\pi\)
\(380\) −6.24264 + 15.0711i −0.320241 + 0.773129i
\(381\) 41.7990 + 17.3137i 2.14143 + 0.887008i
\(382\) −5.85786 + 5.85786i −0.299714 + 0.299714i
\(383\) −3.89949 + 3.89949i −0.199255 + 0.199255i −0.799681 0.600426i \(-0.794998\pi\)
0.600426 + 0.799681i \(0.294998\pi\)
\(384\) −25.4853 10.5563i −1.30054 0.538701i
\(385\) 0.828427 2.00000i 0.0422206 0.101929i
\(386\) −2.12132 + 0.878680i −0.107972 + 0.0447236i
\(387\) 18.4853i 0.939660i
\(388\) −4.50610 10.8787i −0.228762 0.552281i
\(389\) 11.4142 + 11.4142i 0.578724 + 0.578724i 0.934551 0.355828i \(-0.115801\pi\)
−0.355828 + 0.934551i \(0.615801\pi\)
\(390\) −2.82843 −0.143223
\(391\) 0 0
\(392\) −9.24264 −0.466824
\(393\) 0.343146 + 0.343146i 0.0173094 + 0.0173094i
\(394\) −2.36396 5.70711i −0.119095 0.287520i
\(395\) 7.65685i 0.385258i
\(396\) 7.00000 2.89949i 0.351763 0.145705i
\(397\) −10.4350 + 25.1924i −0.523719 + 1.26437i 0.411858 + 0.911248i \(0.364880\pi\)
−0.935577 + 0.353122i \(0.885120\pi\)
\(398\) −0.656854 0.272078i −0.0329251 0.0136380i
\(399\) 9.65685 9.65685i 0.483447 0.483447i
\(400\) 3.36396 3.36396i 0.168198 0.168198i
\(401\) 15.7782 + 6.53553i 0.787924 + 0.326369i 0.740109 0.672487i \(-0.234774\pi\)
0.0478157 + 0.998856i \(0.484774\pi\)
\(402\) −2.82843 + 6.82843i −0.141069 + 0.340571i
\(403\) −4.24264 + 1.75736i −0.211341 + 0.0875403i
\(404\) 24.5269i 1.22026i
\(405\) 4.12132 + 9.94975i 0.204790 + 0.494407i
\(406\) −1.41421 1.41421i −0.0701862 0.0701862i
\(407\) 4.14214 0.205318
\(408\) 0 0
\(409\) 19.3137 0.955001 0.477501 0.878631i \(-0.341543\pi\)
0.477501 + 0.878631i \(0.341543\pi\)
\(410\) −4.41421 4.41421i −0.218002 0.218002i
\(411\) 8.72792 + 21.0711i 0.430517 + 1.03936i
\(412\) 8.20101i 0.404035i
\(413\) 6.00000 2.48528i 0.295241 0.122293i
\(414\) 2.51472 6.07107i 0.123592 0.298377i
\(415\) 0.585786 + 0.242641i 0.0287551 + 0.0119108i
\(416\) 4.41421 4.41421i 0.216425 0.216425i
\(417\) −27.6569 + 27.6569i −1.35436 + 1.35436i
\(418\) −2.00000 0.828427i −0.0978232 0.0405197i
\(419\) 10.3137 24.8995i 0.503858 1.21642i −0.443509 0.896270i \(-0.646267\pi\)
0.947367 0.320150i \(-0.103733\pi\)
\(420\) 8.82843 3.65685i 0.430783 0.178436i
\(421\) 17.4142i 0.848717i −0.905494 0.424358i \(-0.860500\pi\)
0.905494 0.424358i \(-0.139500\pi\)
\(422\) 2.37258 + 5.72792i 0.115496 + 0.278831i
\(423\) 29.3137 + 29.3137i 1.42528 + 1.42528i
\(424\) 2.24264 0.108912
\(425\) 0 0
\(426\) 14.1421 0.685189
\(427\) 7.07107 + 7.07107i 0.342193 + 0.342193i
\(428\) 4.41421 + 10.6569i 0.213369 + 0.515118i
\(429\) 4.00000i 0.193122i
\(430\) 3.41421 1.41421i 0.164648 0.0681994i
\(431\) 15.2426 36.7990i 0.734212 1.77254i 0.106195 0.994345i \(-0.466133\pi\)
0.628017 0.778200i \(-0.283867\pi\)
\(432\) 6.00000 + 2.48528i 0.288675 + 0.119573i
\(433\) 10.7279 10.7279i 0.515551 0.515551i −0.400671 0.916222i \(-0.631223\pi\)
0.916222 + 0.400671i \(0.131223\pi\)
\(434\) −1.02944 + 1.02944i −0.0494146 + 0.0494146i
\(435\) −19.8995 8.24264i −0.954108 0.395204i
\(436\) 2.99138 7.22183i 0.143261 0.345863i
\(437\) 18.4853 7.65685i 0.884271 0.366277i
\(438\) 5.79899i 0.277086i
\(439\) −4.17157 10.0711i −0.199098 0.480666i 0.792523 0.609841i \(-0.208767\pi\)
−0.991622 + 0.129176i \(0.958767\pi\)
\(440\) −2.24264 2.24264i −0.106914 0.106914i
\(441\) 22.3137 1.06256
\(442\) 0 0
\(443\) 15.7990 0.750633 0.375316 0.926897i \(-0.377534\pi\)
0.375316 + 0.926897i \(0.377534\pi\)
\(444\) 12.9289 + 12.9289i 0.613580 + 0.613580i
\(445\) 6.65685 + 16.0711i 0.315565 + 0.761842i
\(446\) 0.343146i 0.0162484i
\(447\) 40.9706 16.9706i 1.93784 0.802680i
\(448\) −1.72792 + 4.17157i −0.0816366 + 0.197088i
\(449\) −17.3640 7.19239i −0.819456 0.339430i −0.0667361 0.997771i \(-0.521259\pi\)
−0.752720 + 0.658341i \(0.771259\pi\)
\(450\) 1.77817 1.77817i 0.0838240 0.0838240i
\(451\) −6.24264 + 6.24264i −0.293954 + 0.293954i
\(452\) 27.3345 + 11.3223i 1.28571 + 0.532558i
\(453\) −12.8284 + 30.9706i −0.602732 + 1.45512i
\(454\) 1.92893 0.798990i 0.0905293 0.0374985i
\(455\) 2.82843i 0.132599i
\(456\) −7.65685 18.4853i −0.358565 0.865653i
\(457\) 13.3137 + 13.3137i 0.622789 + 0.622789i 0.946244 0.323455i \(-0.104844\pi\)
−0.323455 + 0.946244i \(0.604844\pi\)
\(458\) −9.45584 −0.441843
\(459\) 0 0
\(460\) 14.0000 0.652753
\(461\) −17.0000 17.0000i −0.791769 0.791769i 0.190013 0.981782i \(-0.439147\pi\)
−0.981782 + 0.190013i \(0.939147\pi\)
\(462\) 0.485281 + 1.17157i 0.0225773 + 0.0545065i
\(463\) 30.6274i 1.42338i −0.702495 0.711688i \(-0.747931\pi\)
0.702495 0.711688i \(-0.252069\pi\)
\(464\) 12.3640 5.12132i 0.573982 0.237751i
\(465\) −6.00000 + 14.4853i −0.278243 + 0.671739i
\(466\) 3.87868 + 1.60660i 0.179676 + 0.0744244i
\(467\) −8.92893 + 8.92893i −0.413182 + 0.413182i −0.882845 0.469664i \(-0.844375\pi\)
0.469664 + 0.882845i \(0.344375\pi\)
\(468\) −7.00000 + 7.00000i −0.323575 + 0.323575i
\(469\) 6.82843 + 2.82843i 0.315307 + 0.130605i
\(470\) 3.17157 7.65685i 0.146294 0.353184i
\(471\) −4.00000 + 1.65685i −0.184310 + 0.0763438i
\(472\) 9.51472i 0.437950i
\(473\) −2.00000 4.82843i −0.0919601 0.222011i
\(474\) 3.17157 + 3.17157i 0.145675 + 0.145675i
\(475\) 7.65685 0.351321
\(476\) 0 0
\(477\) −5.41421 −0.247900
\(478\) 2.68629 + 2.68629i 0.122868 + 0.122868i
\(479\) 13.2426 + 31.9706i 0.605072 + 1.46077i 0.868300 + 0.496039i \(0.165213\pi\)
−0.263229 + 0.964733i \(0.584787\pi\)
\(480\) 21.3137i 0.972833i
\(481\) −5.00000 + 2.07107i −0.227980 + 0.0944326i
\(482\) 1.94975 4.70711i 0.0888086 0.214403i
\(483\) −10.8284 4.48528i −0.492710 0.204087i
\(484\) 12.7071 12.7071i 0.577596 0.577596i
\(485\) 8.41421 8.41421i 0.382070 0.382070i
\(486\) −8.31371 3.44365i −0.377117 0.156207i
\(487\) 1.68629 4.07107i 0.0764132 0.184478i −0.881057 0.473010i \(-0.843167\pi\)
0.957470 + 0.288533i \(0.0931674\pi\)
\(488\) 13.5355 5.60660i 0.612725 0.253799i
\(489\) 14.8284i 0.670565i
\(490\) −1.70711 4.12132i −0.0771192 0.186182i
\(491\) −17.7574 17.7574i −0.801378 0.801378i 0.181933 0.983311i \(-0.441765\pi\)
−0.983311 + 0.181933i \(0.941765\pi\)
\(492\) −38.9706 −1.75693
\(493\) 0 0
\(494\) 2.82843 0.127257
\(495\) 5.41421 + 5.41421i 0.243351 + 0.243351i
\(496\) −3.72792 9.00000i −0.167389 0.404112i
\(497\) 14.1421i 0.634361i
\(498\) −0.343146 + 0.142136i −0.0153767 + 0.00636925i
\(499\) −14.1716 + 34.2132i −0.634407 + 1.53159i 0.199622 + 0.979873i \(0.436028\pi\)
−0.834029 + 0.551720i \(0.813972\pi\)
\(500\) 20.5563 + 8.51472i 0.919308 + 0.380790i
\(501\) 18.4853 18.4853i 0.825861 0.825861i
\(502\) 1.02944 1.02944i 0.0459460 0.0459460i
\(503\) 13.8284 + 5.72792i 0.616579 + 0.255395i 0.669039 0.743228i \(-0.266706\pi\)
−0.0524595 + 0.998623i \(0.516706\pi\)
\(504\) −2.51472 + 6.07107i −0.112014 + 0.270427i
\(505\) −22.8995 + 9.48528i −1.01901 + 0.422089i
\(506\) 1.85786i 0.0825921i
\(507\) 11.0000 + 26.5563i 0.488527 + 1.17941i
\(508\) −22.3848 22.3848i −0.993164 0.993164i
\(509\) −3.02944 −0.134277 −0.0671387 0.997744i \(-0.521387\pi\)
−0.0671387 + 0.997744i \(0.521387\pi\)
\(510\) 0 0
\(511\) −5.79899 −0.256532
\(512\) 16.0919 + 16.0919i 0.711167 + 0.711167i
\(513\) 4.00000 + 9.65685i 0.176604 + 0.426361i
\(514\) 9.17157i 0.404541i
\(515\) −7.65685 + 3.17157i −0.337401 + 0.139756i
\(516\) 8.82843 21.3137i 0.388650 0.938284i
\(517\) −10.8284 4.48528i −0.476234 0.197262i
\(518\) −1.21320 + 1.21320i −0.0533051 + 0.0533051i
\(519\) −6.24264 + 6.24264i −0.274022 + 0.274022i
\(520\) 3.82843 + 1.58579i 0.167888 + 0.0695413i
\(521\) −1.19239 + 2.87868i −0.0522395 + 0.126117i −0.947845 0.318732i \(-0.896743\pi\)
0.895605 + 0.444850i \(0.146743\pi\)
\(522\) 6.53553 2.70711i 0.286053 0.118487i
\(523\) 6.82843i 0.298586i −0.988793 0.149293i \(-0.952300\pi\)
0.988793 0.149293i \(-0.0476998\pi\)
\(524\) −0.129942 0.313708i −0.00567656 0.0137044i
\(525\) −3.17157 3.17157i −0.138419 0.138419i
\(526\) 2.68629 0.117128
\(527\) 0 0
\(528\) −8.48528 −0.369274
\(529\) 4.12132 + 4.12132i 0.179188 + 0.179188i
\(530\) 0.414214 + 1.00000i 0.0179923 + 0.0434372i
\(531\) 22.9706i 0.996838i
\(532\) −8.82843 + 3.65685i −0.382761 + 0.158545i
\(533\) 4.41421 10.6569i 0.191201 0.461600i
\(534\) −9.41421 3.89949i −0.407393 0.168748i
\(535\) −8.24264 + 8.24264i −0.356360 + 0.356360i
\(536\) 7.65685 7.65685i 0.330726 0.330726i
\(537\) −14.4853 6.00000i −0.625086 0.258919i
\(538\) 1.00862 2.43503i 0.0434848 0.104982i
\(539\) −5.82843 + 2.41421i −0.251048 + 0.103988i
\(540\) 7.31371i 0.314732i
\(541\) 7.02082 + 16.9497i 0.301848 + 0.728727i 0.999919 + 0.0126980i \(0.00404200\pi\)
−0.698071 + 0.716029i \(0.745958\pi\)
\(542\) −1.79899 1.79899i −0.0772732 0.0772732i
\(543\) 32.6274 1.40018
\(544\) 0 0
\(545\) 7.89949 0.338377
\(546\) −1.17157 1.17157i −0.0501387 0.0501387i
\(547\) −9.48528 22.8995i −0.405561 0.979112i −0.986291 0.165015i \(-0.947233\pi\)
0.580730 0.814096i \(-0.302767\pi\)
\(548\) 15.9584i 0.681708i
\(549\) −32.6777 + 13.5355i −1.39465 + 0.577683i
\(550\) −0.272078 + 0.656854i −0.0116014 + 0.0280084i
\(551\) 19.8995 + 8.24264i 0.847747 + 0.351148i
\(552\) −12.1421 + 12.1421i −0.516804 + 0.516804i
\(553\) 3.17157 3.17157i 0.134869 0.134869i
\(554\) 8.43503 + 3.49390i 0.358370 + 0.148442i
\(555\) −7.07107 + 17.0711i −0.300150 + 0.724626i
\(556\) 25.2843 10.4731i 1.07229 0.444158i
\(557\) 28.2426i 1.19668i 0.801243 + 0.598340i \(0.204173\pi\)
−0.801243 + 0.598340i \(0.795827\pi\)
\(558\) −1.97056 4.75736i −0.0834206 0.201395i
\(559\) 4.82843 + 4.82843i 0.204221 + 0.204221i
\(560\) −6.00000 −0.253546
\(561\) 0 0
\(562\) 7.41421 0.312750
\(563\) −27.4142 27.4142i −1.15537 1.15537i −0.985459 0.169912i \(-0.945652\pi\)
−0.169912 0.985459i \(-0.554348\pi\)
\(564\) −19.7990 47.7990i −0.833688 2.01270i
\(565\) 29.8995i 1.25788i
\(566\) −8.75736 + 3.62742i −0.368099 + 0.152472i
\(567\) −2.41421 + 5.82843i −0.101387 + 0.244771i
\(568\) −19.1421 7.92893i −0.803186 0.332691i
\(569\) −25.4853 + 25.4853i −1.06840 + 1.06840i −0.0709163 + 0.997482i \(0.522592\pi\)
−0.997482 + 0.0709163i \(0.977408\pi\)
\(570\) 6.82843 6.82843i 0.286011 0.286011i
\(571\) −43.6274 18.0711i −1.82575 0.756251i −0.971764 0.235956i \(-0.924178\pi\)
−0.853987 0.520295i \(-0.825822\pi\)
\(572\) 1.07107 2.58579i 0.0447836 0.108117i
\(573\) −48.2843 + 20.0000i −2.01710 + 0.835512i
\(574\) 3.65685i 0.152634i
\(575\) −2.51472 6.07107i −0.104871 0.253181i
\(576\) −11.2929 11.2929i −0.470537 0.470537i
\(577\) −12.9289 −0.538238 −0.269119 0.963107i \(-0.586733\pi\)
−0.269119 + 0.963107i \(0.586733\pi\)
\(578\) 0 0
\(579\) −14.4853 −0.601988
\(580\) 10.6569 + 10.6569i 0.442502 + 0.442502i
\(581\) 0.142136 + 0.343146i 0.00589678 + 0.0142361i
\(582\) 6.97056i 0.288939i
\(583\) 1.41421 0.585786i 0.0585707 0.0242608i
\(584\) −3.25126 + 7.84924i −0.134538 + 0.324804i
\(585\) −9.24264 3.82843i −0.382136 0.158286i
\(586\) 6.92893 6.92893i 0.286232 0.286232i
\(587\) 16.0416 16.0416i 0.662109 0.662109i −0.293768 0.955877i \(-0.594909\pi\)
0.955877 + 0.293768i \(0.0949093\pi\)
\(588\) −25.7279 10.6569i −1.06100 0.439481i
\(589\) 6.00000 14.4853i 0.247226 0.596856i
\(590\) 4.24264 1.75736i 0.174667 0.0723493i
\(591\) 38.9706i 1.60303i
\(592\) −4.39340 10.6066i −0.180568 0.435929i
\(593\) 19.1421 + 19.1421i 0.786073 + 0.786073i 0.980848 0.194775i \(-0.0623976\pi\)
−0.194775 + 0.980848i \(0.562398\pi\)
\(594\) −0.970563 −0.0398227
\(595\) 0 0
\(596\) −31.0294 −1.27102
\(597\) −3.17157 3.17157i −0.129804 0.129804i
\(598\) −0.928932 2.24264i −0.0379869 0.0917084i
\(599\) 34.6274i 1.41484i 0.706794 + 0.707419i \(0.250141\pi\)
−0.706794 + 0.707419i \(0.749859\pi\)
\(600\) −6.07107 + 2.51472i −0.247850 + 0.102663i
\(601\) 7.77817 18.7782i 0.317278 0.765978i −0.682118 0.731242i \(-0.738941\pi\)
0.999397 0.0347358i \(-0.0110590\pi\)
\(602\) 2.00000 + 0.828427i 0.0815139 + 0.0337642i
\(603\) −18.4853 + 18.4853i −0.752779 + 0.752779i
\(604\) 16.5858 16.5858i 0.674866 0.674866i
\(605\) 16.7782 + 6.94975i 0.682130 + 0.282547i
\(606\) 5.55635 13.4142i 0.225711 0.544915i
\(607\) −31.7279 + 13.1421i −1.28780 + 0.533423i −0.918328 0.395820i \(-0.870460\pi\)
−0.369469 + 0.929243i \(0.620460\pi\)
\(608\) 21.3137i 0.864385i
\(609\) −4.82843 11.6569i −0.195658 0.472360i
\(610\) 5.00000 + 5.00000i 0.202444 + 0.202444i
\(611\) 15.3137 0.619526
\(612\) 0 0
\(613\) −17.3137 −0.699294 −0.349647 0.936881i \(-0.613698\pi\)
−0.349647 + 0.936881i \(0.613698\pi\)
\(614\) 0.627417 + 0.627417i 0.0253205 + 0.0253205i
\(615\) −15.0711 36.3848i −0.607724 1.46718i
\(616\) 1.85786i 0.0748555i
\(617\) −3.12132 + 1.29289i −0.125660 + 0.0520499i −0.444627 0.895716i \(-0.646664\pi\)
0.318968 + 0.947766i \(0.396664\pi\)
\(618\) 1.85786 4.48528i 0.0747343 0.180424i
\(619\) 8.89949 + 3.68629i 0.357701 + 0.148165i 0.554295 0.832320i \(-0.312988\pi\)
−0.196594 + 0.980485i \(0.562988\pi\)
\(620\) 7.75736 7.75736i 0.311543 0.311543i
\(621\) 6.34315 6.34315i 0.254542 0.254542i
\(622\) −1.72792 0.715729i −0.0692834 0.0286981i
\(623\) −3.89949 + 9.41421i −0.156230 + 0.377173i
\(624\) 10.2426 4.24264i 0.410034 0.169842i
\(625\) 14.5563i 0.582254i
\(626\) −2.02082 4.87868i −0.0807680 0.194991i
\(627\) −9.65685 9.65685i −0.385658 0.385658i
\(628\) 3.02944 0.120888
\(629\) 0 0
\(630\) −3.17157 −0.126358
\(631\) −4.72792 4.72792i −0.188216 0.188216i 0.606709 0.794924i \(-0.292489\pi\)
−0.794924 + 0.606709i \(0.792489\pi\)
\(632\) −2.51472 6.07107i −0.100030 0.241494i
\(633\) 39.1127i 1.55459i
\(634\) 2.22183 0.920310i 0.0882400 0.0365502i
\(635\) 12.2426 29.5563i 0.485834 1.17291i
\(636\) 6.24264 + 2.58579i 0.247537 + 0.102533i
\(637\) 5.82843 5.82843i 0.230931 0.230931i
\(638\) −1.41421 + 1.41421i −0.0559893 + 0.0559893i
\(639\) 46.2132 + 19.1421i 1.82817 + 0.757251i
\(640\) −7.46447 + 18.0208i −0.295059 + 0.712335i
\(641\) −13.8492 + 5.73654i −0.547012 + 0.226580i −0.639036 0.769177i \(-0.720666\pi\)
0.0920237 + 0.995757i \(0.470666\pi\)
\(642\) 6.82843i 0.269497i
\(643\) 15.3431 + 37.0416i 0.605075 + 1.46078i 0.868297 + 0.496044i \(0.165215\pi\)
−0.263223 + 0.964735i \(0.584785\pi\)
\(644\) 5.79899 + 5.79899i 0.228512 + 0.228512i
\(645\) 23.3137 0.917976
\(646\) 0 0
\(647\) 2.82843 0.111197 0.0555985 0.998453i \(-0.482293\pi\)
0.0555985 + 0.998453i \(0.482293\pi\)
\(648\) 6.53553 + 6.53553i 0.256740 + 0.256740i
\(649\) −2.48528 6.00000i −0.0975558 0.235521i
\(650\) 0.928932i 0.0364357i
\(651\) −8.48528 + 3.51472i −0.332564 + 0.137753i
\(652\) −3.97056 + 9.58579i −0.155499 + 0.375408i
\(653\) −16.3640 6.77817i −0.640371 0.265250i 0.0387812 0.999248i \(-0.487652\pi\)
−0.679152 + 0.733997i \(0.737652\pi\)
\(654\) −3.27208 + 3.27208i −0.127948 + 0.127948i
\(655\) 0.242641 0.242641i 0.00948076 0.00948076i
\(656\) 22.6066 + 9.36396i 0.882640 + 0.365601i
\(657\) 7.84924 18.9497i 0.306228 0.739300i
\(658\) 4.48528 1.85786i 0.174854 0.0724271i
\(659\) 8.48528i 0.330540i −0.986248 0.165270i \(-0.947151\pi\)
0.986248 0.165270i \(-0.0528495\pi\)
\(660\) −3.65685 8.82843i −0.142343 0.343646i
\(661\) −29.1421 29.1421i −1.13350 1.13350i −0.989591 0.143906i \(-0.954034\pi\)
−0.143906 0.989591i \(-0.545966\pi\)
\(662\) 7.37258 0.286544
\(663\) 0 0
\(664\) 0.544156 0.0211173
\(665\) −6.82843 6.82843i −0.264795 0.264795i
\(666\) −2.32233 5.60660i −0.0899885 0.217251i
\(667\) 18.4853i 0.715753i
\(668\) −16.8995 + 7.00000i −0.653861 + 0.270838i
\(669\) 0.828427 2.00000i 0.0320288 0.0773245i
\(670\) 4.82843 + 2.00000i 0.186538 + 0.0772667i
\(671\) 7.07107 7.07107i 0.272976 0.272976i
\(672\) 8.82843 8.82843i 0.340564 0.340564i
\(673\) −0.292893 0.121320i −0.0112902 0.00467656i 0.377031 0.926201i \(-0.376945\pi\)
−0.388321 + 0.921524i \(0.626945\pi\)
\(674\) −5.46447 + 13.1924i −0.210483 + 0.508152i
\(675\) 3.17157 1.31371i 0.122074 0.0505647i
\(676\) 20.1127i 0.773565i
\(677\) −16.8076 40.5772i −0.645969 1.55951i −0.818502 0.574503i \(-0.805195\pi\)
0.172533 0.985004i \(-0.444805\pi\)
\(678\) −12.3848 12.3848i −0.475634 0.475634i
\(679\) 6.97056 0.267506
\(680\) 0 0
\(681\) 13.1716 0.504736
\(682\) 1.02944 + 1.02944i 0.0394192 + 0.0394192i
\(683\) 11.9706 + 28.8995i 0.458041 + 1.10581i 0.969190 + 0.246316i \(0.0792201\pi\)
−0.511149 + 0.859492i \(0.670780\pi\)
\(684\) 33.7990i 1.29234i
\(685\) 14.8995 6.17157i 0.569280 0.235804i
\(686\) 2.20101 5.31371i 0.0840350 0.202878i
\(687\) −55.1127 22.8284i −2.10268 0.870959i
\(688\) −10.2426 + 10.2426i −0.390497 + 0.390497i
\(689\) −1.41421 + 1.41421i −0.0538772 + 0.0538772i
\(690\) −7.65685 3.17157i −0.291491 0.120740i
\(691\) −15.5858 + 37.6274i −0.592911 + 1.43141i 0.287767 + 0.957700i \(0.407087\pi\)
−0.880679 + 0.473714i \(0.842913\pi\)
\(692\) 5.70711 2.36396i 0.216952 0.0898643i
\(693\) 4.48528i 0.170382i
\(694\) −0.615224 1.48528i −0.0233536 0.0563805i
\(695\) 19.5563 + 19.5563i 0.741815 + 0.741815i
\(696\) −18.4853 −0.700683
\(697\) 0 0
\(698\) −1.75736 −0.0665170
\(699\) 18.7279 + 18.7279i 0.708355 + 0.708355i
\(700\) 1.20101 + 2.89949i 0.0453939 + 0.109591i
\(701\) 21.6985i 0.819540i −0.912189 0.409770i \(-0.865609\pi\)
0.912189 0.409770i \(-0.134391\pi\)
\(702\) 1.17157 0.485281i 0.0442182 0.0183158i
\(703\) 7.07107 17.0711i 0.266690 0.643848i
\(704\) 4.17157 + 1.72792i 0.157222 + 0.0651235i
\(705\) 36.9706 36.9706i 1.39239 1.39239i
\(706\) −4.10051 + 4.10051i −0.154325 + 0.154325i
\(707\) −13.4142 5.55635i −0.504493 0.208968i
\(708\) 10.9706 26.4853i 0.412299 0.995378i
\(709\) −10.7071 + 4.43503i −0.402114 + 0.166561i −0.574569 0.818456i \(-0.694830\pi\)
0.172455 + 0.985017i \(0.444830\pi\)
\(710\) 10.0000i 0.375293i
\(711\) 6.07107 + 14.6569i 0.227683 + 0.549675i
\(712\) 10.5563 + 10.5563i 0.395616 + 0.395616i
\(713\) −13.4558 −0.503925
\(714\) 0 0
\(715\) 2.82843 0.105777
\(716\) 7.75736 + 7.75736i 0.289906 + 0.289906i
\(717\) 9.17157 + 22.1421i 0.342519 + 0.826913i
\(718\) 9.59798i 0.358193i
\(719\) 13.0000 5.38478i 0.484818 0.200818i −0.126867 0.991920i \(-0.540492\pi\)
0.611685 + 0.791102i \(0.290492\pi\)
\(720\) 8.12132 19.6066i 0.302664 0.730695i
\(721\) −4.48528 1.85786i −0.167041 0.0691905i
\(722\) −1.26346 + 1.26346i −0.0470210 + 0.0470210i
\(723\) 22.7279 22.7279i 0.845261 0.845261i
\(724\) −21.0919 8.73654i −0.783874 0.324691i
\(725\) 2.70711 6.53553i 0.100539 0.242724i
\(726\) −9.82843 + 4.07107i −0.364767 + 0.151091i
\(727\) 19.1127i 0.708851i −0.935084 0.354425i \(-0.884676\pi\)
0.935084 0.354425i \(-0.115324\pi\)
\(728\) 0.928932 + 2.24264i 0.0344285 + 0.0831178i
\(729\) −27.7782 27.7782i −1.02882 1.02882i
\(730\) −4.10051 −0.151767
\(731\) 0 0
\(732\) 44.1421 1.63154
\(733\) 8.51472 + 8.51472i 0.314498 + 0.314498i 0.846649 0.532151i \(-0.178616\pi\)
−0.532151 + 0.846649i \(0.678616\pi\)
\(734\) 4.17157 + 10.0711i 0.153976 + 0.371730i
\(735\) 28.1421i 1.03804i
\(736\) 16.8995 7.00000i 0.622924 0.258023i
\(737\) 2.82843 6.82843i 0.104186 0.251528i
\(738\) 11.9497 + 4.94975i 0.439876 + 0.182203i
\(739\) −24.2426 + 24.2426i −0.891780 + 0.891780i −0.994691 0.102911i \(-0.967184\pi\)
0.102911 + 0.994691i \(0.467184\pi\)
\(740\) 9.14214 9.14214i 0.336072 0.336072i
\(741\) 16.4853 + 6.82843i 0.605602 + 0.250849i
\(742\) −0.242641 + 0.585786i −0.00890762 + 0.0215049i
\(743\) 45.5269 18.8579i 1.67022 0.691828i 0.671433 0.741065i \(-0.265679\pi\)
0.998787 + 0.0492371i \(0.0156790\pi\)
\(744\) 13.4558i 0.493315i
\(745\) −12.0000 28.9706i −0.439646 1.06140i
\(746\) −5.72792 5.72792i −0.209714 0.209714i
\(747\) −1.31371 −0.0480661
\(748\) 0 0
\(749\) −6.82843 −0.249505
\(750\) −9.31371 9.31371i −0.340089 0.340089i
\(751\) 10.0294 + 24.2132i 0.365979 + 0.883552i 0.994400 + 0.105679i \(0.0337016\pi\)
−0.628421 + 0.777873i \(0.716298\pi\)
\(752\) 32.4853i 1.18462i
\(753\) 8.48528 3.51472i 0.309221 0.128083i
\(754\) 1.00000 2.41421i 0.0364179 0.0879205i
\(755\) 21.8995 + 9.07107i 0.797004 + 0.330130i
\(756\) −3.02944 + 3.02944i −0.110180 + 0.110180i
\(757\) −37.7990 + 37.7990i −1.37383 + 1.37383i −0.519136 + 0.854692i \(0.673746\pi\)
−0.854692 + 0.519136i \(0.826254\pi\)
\(758\) 0.414214 + 0.171573i 0.0150449 + 0.00623181i
\(759\) −4.48528 + 10.8284i −0.162805 + 0.393047i
\(760\) −13.0711 + 5.41421i −0.474137 + 0.196394i
\(761\) 21.6985i 0.786569i 0.919417 + 0.393285i \(0.128661\pi\)
−0.919417 + 0.393285i \(0.871339\pi\)
\(762\) 7.17157 + 17.3137i 0.259799 + 0.627209i
\(763\) 3.27208 + 3.27208i 0.118457 + 0.118457i
\(764\) 36.5685 1.32300
\(765\) 0 0
\(766\) −2.28427 −0.0825341
\(767\) 6.00000 + 6.00000i 0.216647 + 0.216647i
\(768\) 3.97056 + 9.58579i 0.143275 + 0.345897i
\(769\) 12.7279i 0.458981i −0.973311 0.229490i \(-0.926294\pi\)
0.973311 0.229490i \(-0.0737059\pi\)
\(770\) 0.828427 0.343146i 0.0298544 0.0123661i
\(771\) −22.1421 + 53.4558i −0.797430 + 1.92517i
\(772\) 9.36396 + 3.87868i 0.337016 + 0.139597i
\(773\) 3.41421 3.41421i 0.122801 0.122801i −0.643036 0.765836i \(-0.722325\pi\)
0.765836 + 0.643036i \(0.222325\pi\)
\(774\) −5.41421 + 5.41421i −0.194610 + 0.194610i
\(775\) −4.75736 1.97056i −0.170889 0.0707847i
\(776\) 3.90812 9.43503i 0.140293 0.338698i
\(777\) −10.0000 + 4.14214i −0.358748 + 0.148598i
\(778\) 6.68629i 0.239715i
\(779\) 15.0711 + 36.3848i 0.539977 + 1.30362i
\(780\) 8.82843 + 8.82843i 0.316108 + 0.316108i
\(781\) −14.1421 −0.506045
\(782\) 0 0
\(783\) 9.65685 0.345108
\(784\) 12.3640 + 12.3640i 0.441570 + 0.441570i
\(785\) 1.17157 + 2.82843i 0.0418152 + 0.100951i
\(786\) 0.201010i 0.00716979i
\(787\) −45.8701 + 19.0000i −1.63509 + 0.677277i −0.995789 0.0916786i \(-0.970777\pi\)
−0.639302 + 0.768955i \(0.720777\pi\)
\(788\) −10.4350 + 25.1924i −0.371733 + 0.897442i
\(789\) 15.6569 + 6.48528i 0.557399 + 0.230882i
\(790\) 2.24264 2.24264i 0.0797896 0.0797896i
\(791\) −12.3848 + 12.3848i −0.440352 + 0.440352i
\(792\) 6.07107 + 2.51472i 0.215726 + 0.0893566i
\(793\) −5.00000 + 12.0711i −0.177555 + 0.428656i
\(794\) −10.4350 + 4.32233i −0.370325 + 0.153394i
\(795\) 6.82843i 0.242179i
\(796\) 1.20101 + 2.89949i 0.0425687 + 0.102770i
\(797\) 12.1716 + 12.1716i 0.431139 + 0.431139i 0.889016 0.457877i \(-0.151390\pi\)
−0.457877 + 0.889016i \(0.651390\pi\)
\(798\) 5.65685 0.200250
\(799\) 0 0
\(800\) 7.00000 0.247487
\(801\) −25.4853 25.4853i −0.900478 0.900478i
\(802\) 2.70711 + 6.53553i 0.0955913 + 0.230778i
\(803\) 5.79899i 0.204642i
\(804\) 30.1421 12.4853i 1.06303 0.440322i
\(805\) −3.17157 + 7.65685i −0.111783 + 0.269869i
\(806\) −1.75736 0.727922i −0.0619003 0.0256400i
\(807\) 11.7574 11.7574i 0.413879 0.413879i
\(808\) −15.0416 + 15.0416i −0.529163 + 0.529163i
\(809\) −27.5061 11.3934i −0.967063 0.400571i −0.157445 0.987528i \(-0.550326\pi\)
−0.809618 + 0.586957i \(0.800326\pi\)
\(810\) −1.70711 + 4.12132i −0.0599816 + 0.144808i
\(811\) 40.8995 16.9411i 1.43618 0.594883i 0.477308 0.878736i \(-0.341613\pi\)
0.958868 + 0.283853i \(0.0916127\pi\)
\(812\) 8.82843i 0.309817i
\(813\) −6.14214 14.8284i −0.215414 0.520056i
\(814\) 1.21320 + 1.21320i 0.0425228 + 0.0425228i
\(815\) −10.4853 −0.367283
\(816\) 0 0
\(817\) −23.3137 −0.815643
\(818\) 5.65685 + 5.65685i 0.197787 + 0.197787i
\(819\) −2.24264 5.41421i −0.0783642 0.189188i
\(820\) 27.5563i 0.962309i
\(821\) −13.2929 + 5.50610i −0.463925 + 0.192164i −0.602388 0.798204i \(-0.705784\pi\)
0.138463 + 0.990368i \(0.455784\pi\)
\(822\) −3.61522 + 8.72792i −0.126095 + 0.304421i
\(823\) 21.7279 + 9.00000i 0.757388 + 0.313720i 0.727752 0.685840i \(-0.240565\pi\)
0.0296358 + 0.999561i \(0.490565\pi\)
\(824\) −5.02944 + 5.02944i −0.175209 + 0.175209i
\(825\) −3.17157 + 3.17157i −0.110420 + 0.110420i
\(826\) 2.48528 + 1.02944i 0.0864740 + 0.0358187i
\(827\) 13.2843 32.0711i 0.461939 1.11522i −0.505661 0.862732i \(-0.668751\pi\)
0.967600 0.252488i \(-0.0812488\pi\)
\(828\) −26.7990 + 11.1005i −0.931329 + 0.385769i
\(829\) 13.9411i 0.484195i 0.970252 + 0.242098i \(0.0778354\pi\)
−0.970252 + 0.242098i \(0.922165\pi\)
\(830\) 0.100505 + 0.242641i 0.00348858 + 0.00842218i
\(831\) 40.7279 + 40.7279i 1.41284 + 1.41284i
\(832\) −5.89949 −0.204528
\(833\) 0 0
\(834\) −16.2010 −0.560995
\(835\) −13.0711 13.0711i −0.452343 0.452343i
\(836\) 3.65685 + 8.82843i 0.126475 + 0.305338i
\(837\) 7.02944i 0.242973i
\(838\) 10.3137 4.27208i 0.356281 0.147576i
\(839\) 1.48528 3.58579i 0.0512776 0.123795i −0.896165 0.443721i \(-0.853658\pi\)
0.947443 + 0.319926i \(0.103658\pi\)
\(840\) 7.65685 + 3.17157i 0.264187 + 0.109430i
\(841\) −6.43503 + 6.43503i −0.221898 + 0.221898i
\(842\) 5.10051 5.10051i 0.175775 0.175775i
\(843\) 43.2132 + 17.8995i 1.48834 + 0.616491i
\(844\) 10.4731 25.2843i 0.360499 0.870321i
\(845\) 18.7782 7.77817i 0.645989 0.267577i
\(846\) 17.1716i 0.590371i
\(847\) 4.07107 + 9.82843i 0.139884 + 0.337709i
\(848\) −3.00000 3.00000i −0.103020 0.103020i
\(849\) −59.7990 −2.05230
\(850\) 0 0
\(851\) −15.8579 −0.543601
\(852\) −44.1421 44.1421i −1.51228 1.51228i
\(853\) −16.2929 39.3345i −0.557858 1.34679i −0.911459 0.411392i \(-0.865043\pi\)
0.353601 0.935397i \(-0.384957\pi\)
\(854\) 4.14214i 0.141741i
\(855\) 31.5563 13.0711i 1.07920 0.447021i
\(856\) −3.82843 + 9.24264i −0.130853 + 0.315907i
\(857\) −3.53553 1.46447i −0.120772 0.0500252i 0.321479 0.946917i \(-0.395820\pi\)
−0.442251 + 0.896891i \(0.645820\pi\)
\(858\) −1.17157 + 1.17157i −0.0399968 + 0.0399968i
\(859\) 0.727922 0.727922i 0.0248364 0.0248364i −0.694580 0.719416i \(-0.744410\pi\)
0.719416 + 0.694580i \(0.244410\pi\)
\(860\) −15.0711 6.24264i −0.513919 0.212872i
\(861\) 8.82843 21.3137i 0.300872 0.726369i
\(862\) 15.2426 6.31371i 0.519166 0.215046i
\(863\) 34.6274i 1.17873i −0.807867 0.589365i \(-0.799378\pi\)
0.807867 0.589365i \(-0.200622\pi\)
\(864\) 3.65685 + 8.82843i 0.124409 + 0.300349i
\(865\) 4.41421 + 4.41421i 0.150088 + 0.150088i
\(866\) 6.28427 0.213548
\(867\) 0 0
\(868\) 6.42641 0.218126
\(869\) −3.17157 3.17157i −0.107588 0.107588i
\(870\) −3.41421 8.24264i −0.115753 0.279452i
\(871\) 9.65685i 0.327210i
\(872\) 6.26346 2.59441i 0.212107 0.0878578i
\(873\) −9.43503 + 22.7782i −0.319327 + 0.770924i
\(874\) 7.65685 + 3.17157i 0.258997 + 0.107280i
\(875\) −9.31371 + 9.31371i −0.314861 + 0.314861i
\(876\) −18.1005 + 18.1005i −0.611559 + 0.611559i
\(877\) −34.7782 14.4056i −1.17438 0.486442i −0.291739 0.956498i \(-0.594234\pi\)
−0.882637 + 0.470056i \(0.844234\pi\)
\(878\) 1.72792 4.17157i 0.0583145 0.140784i
\(879\) 57.1127 23.6569i 1.92636 0.797926i
\(880\) 6.00000i 0.202260i
\(881\) −7.09188 17.1213i −0.238932 0.576832i 0.758241 0.651974i \(-0.226059\pi\)
−0.997173 + 0.0751422i \(0.976059\pi\)
\(882\) 6.53553 + 6.53553i 0.220063 + 0.220063i
\(883\) 8.00000 0.269221 0.134611 0.990899i \(-0.457022\pi\)
0.134611 + 0.990899i \(0.457022\pi\)
\(884\) 0 0
\(885\) 28.9706 0.973835
\(886\) 4.62742 + 4.62742i 0.155461 + 0.155461i
\(887\) −18.6985 45.1421i −0.627834 1.51572i −0.842309 0.538995i \(-0.818804\pi\)
0.214475 0.976729i \(-0.431196\pi\)
\(888\) 15.8579i 0.532155i
\(889\) 17.3137 7.17157i 0.580683 0.240527i
\(890\) −2.75736 + 6.65685i −0.0924269 + 0.223138i
\(891\) 5.82843 + 2.41421i 0.195260 + 0.0808792i
\(892\) −1.07107 + 1.07107i −0.0358620 + 0.0358620i
\(893\) −36.9706 + 36.9706i −1.23717 + 1.23717i
\(894\) 16.9706 + 7.02944i 0.567581 + 0.235100i
\(895\) −4.24264 + 10.2426i −0.141816 + 0.342374i
\(896\) −10.5563 + 4.37258i −0.352663 + 0.146078i
\(897\) 15.3137i 0.511310i
\(898\) −2.97918 7.19239i −0.0994167 0.240013i
\(899\) −10.2426 10.2426i −0.341611 0.341611i
\(900\) −11.1005 −0.370017
\(901\) 0 0
\(902\) −3.65685 −0.121760
\(903\) 9.65685 + 9.65685i 0.321360 + 0.321360i
\(904\) 9.81981 + 23.7071i 0.326602 + 0.788487i
\(905\) 23.0711i 0.766908i
\(906\) −12.8284 + 5.31371i −0.426196 + 0.176536i
\(907\) 9.58579 23.1421i 0.318291 0.768422i −0.681054 0.732233i \(-0.738478\pi\)
0.999345 0.0361889i \(-0.0115218\pi\)
\(908\) −8.51472 3.52691i −0.282571 0.117045i
\(909\) 36.3137 36.3137i 1.20445 1.20445i
\(910\) −0.828427 + 0.828427i −0.0274621 + 0.0274621i
\(911\) −7.82843 3.24264i −0.259367 0.107433i 0.249211 0.968449i \(-0.419829\pi\)
−0.508578 + 0.861016i \(0.669829\pi\)
\(912\) −14.4853 + 34.9706i −0.479656 + 1.15799i
\(913\) 0.343146 0.142136i 0.0113565 0.00470400i
\(914\) 7.79899i 0.257968i
\(915\) 17.0711 + 41.2132i 0.564352 + 1.36247i
\(916\) 29.5147 + 29.5147i 0.975194 + 0.975194i
\(917\) 0.201010 0.00663794
\(918\) 0 0
\(919\) −3.31371 −0.109309 −0.0546546 0.998505i \(-0.517406\pi\)
−0.0546546 + 0.998505i \(0.517406\pi\)
\(920\) 8.58579 + 8.58579i 0.283065 + 0.283065i
\(921\) 2.14214 + 5.17157i 0.0705858 + 0.170409i
\(922\) 9.95837i 0.327961i
\(923\) 17.0711 7.07107i 0.561901 0.232747i
\(924\) 2.14214 5.17157i 0.0704711 0.170132i
\(925\) −5.60660 2.32233i −0.184344 0.0763578i
\(926\) 8.97056 8.97056i 0.294791 0.294791i
\(927\) 12.1421 12.1421i 0.398800 0.398800i
\(928\) 18.1924 + 7.53553i 0.597194 + 0.247366i
\(929\) −8.02082 + 19.3640i −0.263154 + 0.635311i −0.999130 0.0416968i \(-0.986724\pi\)
0.735976 + 0.677008i \(0.236724\pi\)
\(930\) −6.00000 + 2.48528i −0.196748 + 0.0814956i
\(931\) 28.1421i 0.922321i
\(932\) −7.09188 17.1213i −0.232302 0.560827i
\(933\) −8.34315 8.34315i −0.273142 0.273142i
\(934\) −5.23045 −0.171145
\(935\) 0 0
\(936\) −8.58579 −0.280635
\(937\) −2.51472 2.51472i −0.0821523 0.0821523i 0.664837 0.746989i \(-0.268501\pi\)
−0.746989 + 0.664837i \(0.768501\pi\)
\(938\) 1.17157 + 2.82843i 0.0382532 + 0.0923514i
\(939\) 33.3137i 1.08715i
\(940\) −33.7990 + 14.0000i −1.10240 + 0.456630i
\(941\) −7.15076 + 17.2635i −0.233108 + 0.562773i −0.996540 0.0831158i \(-0.973513\pi\)
0.763432 + 0.645888i \(0.223513\pi\)
\(942\) −1.65685 0.686292i −0.0539832 0.0223606i
\(943\) 23.8995 23.8995i 0.778275 0.778275i
\(944\) −12.7279 + 12.7279i −0.414259 + 0.414259i
\(945\) −4.00000 1.65685i −0.130120 0.0538975i
\(946\) 0.828427 2.00000i 0.0269345 0.0650256i
\(947\) 13.7279 5.68629i 0.446098 0.184780i −0.148315 0.988940i \(-0.547385\pi\)
0.594412 + 0.804161i \(0.297385\pi\)
\(948\) 19.7990i 0.643041i
\(949\) −2.89949 7.00000i −0.0941216 0.227230i
\(950\) 2.24264 + 2.24264i 0.0727609 + 0.0727609i
\(951\) 15.1716 0.491972
\(952\) 0 0
\(953\) −9.69848 −0.314165 −0.157082 0.987586i \(-0.550209\pi\)
−0.157082 + 0.987586i \(0.550209\pi\)
\(954\) −1.58579 1.58579i −0.0513417 0.0513417i
\(955\) 14.1421 + 34.1421i 0.457629 + 1.10481i
\(956\) 16.7696i 0.542366i
\(957\) −11.6569 + 4.82843i −0.376813 + 0.156081i
\(958\) −5.48528 + 13.2426i −0.177221 + 0.427850i
\(959\) 8.72792 + 3.61522i 0.281839 + 0.116742i
\(960\) −14.2426 + 14.2426i −0.459679 + 0.459679i
\(961\) 14.4645 14.4645i 0.466596 0.466596i
\(962\) −2.07107 0.857864i −0.0667739 0.0276587i
\(963\) 9.24264 22.3137i 0.297840 0.719049i
\(964\) −20.7782 + 8.60660i −0.669220 + 0.277200i
\(965\) 10.2426i 0.329722i
\(966\) −1.85786 4.48528i −0.0597758 0.144312i
\(967\) −22.8701 22.8701i −0.735451 0.735451i 0.236243 0.971694i \(-0.424084\pi\)
−0.971694 + 0.236243i \(0.924084\pi\)
\(968\) 15.5858 0.500946
\(969\) 0 0
\(970\) 4.92893 0.158258
\(971\) 39.4142 + 39.4142i 1.26486 + 1.26486i 0.948708 + 0.316155i \(0.102392\pi\)
0.316155 + 0.948708i \(0.397608\pi\)
\(972\) 15.2010 + 36.6985i 0.487573 + 1.17710i
\(973\) 16.2010i 0.519381i
\(974\) 1.68629 0.698485i 0.0540323 0.0223809i
\(975\) 2.24264 5.41421i 0.0718220 0.173394i
\(976\) −25.6066 10.6066i −0.819647 0.339509i
\(977\) −1.14214 + 1.14214i −0.0365402 + 0.0365402i −0.725141 0.688601i \(-0.758225\pi\)
0.688601 + 0.725141i \(0.258225\pi\)
\(978\) 4.34315 4.34315i 0.138878 0.138878i
\(979\) 9.41421 + 3.89949i 0.300880 + 0.124628i
\(980\) −7.53553 + 18.1924i −0.240714 + 0.581135i
\(981\) −15.1213 + 6.26346i −0.482787 + 0.199977i
\(982\) 10.4020i 0.331942i
\(983\) 9.00000 + 21.7279i 0.287055 + 0.693013i 0.999966 0.00824183i \(-0.00262348\pi\)
−0.712911 + 0.701255i \(0.752623\pi\)
\(984\) −23.8995 23.8995i −0.761888 0.761888i
\(985\) −27.5563 −0.878018
\(986\) 0 0
\(987\) 30.6274 0.974881
\(988\) −8.82843 8.82843i −0.280870 0.280870i
\(989\) 7.65685 + 18.4853i 0.243474 + 0.587798i
\(990\) 3.17157i 0.100799i
\(991\) 29.6274 12.2721i 0.941146 0.389835i 0.141250 0.989974i \(-0.454888\pi\)
0.799896 + 0.600139i \(0.204888\pi\)
\(992\) 5.48528 13.2426i 0.174158 0.420454i
\(993\) 42.9706 + 17.7990i 1.36363 + 0.564834i
\(994\) 4.14214 4.14214i 0.131381 0.131381i
\(995\) −2.24264 + 2.24264i −0.0710965 + 0.0710965i
\(996\) 1.51472 + 0.627417i 0.0479957 + 0.0198805i
\(997\) 2.94975 7.12132i 0.0934194 0.225534i −0.870262 0.492589i \(-0.836050\pi\)
0.963681 + 0.267055i \(0.0860505\pi\)
\(998\) −14.1716 + 5.87006i −0.448593 + 0.185813i
\(999\) 8.28427i 0.262103i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 289.2.d.c.134.1 4
17.2 even 8 289.2.d.a.179.1 4
17.3 odd 16 289.2.b.b.288.4 4
17.4 even 4 289.2.d.a.155.1 4
17.5 odd 16 289.2.a.f.1.1 4
17.6 odd 16 289.2.c.c.251.4 8
17.7 odd 16 289.2.c.c.38.2 8
17.8 even 8 inner 289.2.d.c.110.1 4
17.9 even 8 289.2.d.b.110.1 4
17.10 odd 16 289.2.c.c.38.1 8
17.11 odd 16 289.2.c.c.251.3 8
17.12 odd 16 289.2.a.f.1.2 4
17.13 even 4 17.2.d.a.2.1 4
17.14 odd 16 289.2.b.b.288.3 4
17.15 even 8 17.2.d.a.9.1 yes 4
17.16 even 2 289.2.d.b.134.1 4
51.5 even 16 2601.2.a.bb.1.4 4
51.29 even 16 2601.2.a.bb.1.3 4
51.32 odd 8 153.2.l.c.145.1 4
51.47 odd 4 153.2.l.c.19.1 4
68.15 odd 8 272.2.v.d.145.1 4
68.39 even 16 4624.2.a.bp.1.4 4
68.47 odd 4 272.2.v.d.257.1 4
68.63 even 16 4624.2.a.bp.1.1 4
85.13 odd 4 425.2.n.a.274.1 4
85.29 odd 16 7225.2.a.u.1.3 4
85.32 odd 8 425.2.n.a.349.1 4
85.39 odd 16 7225.2.a.u.1.4 4
85.47 odd 4 425.2.n.b.274.1 4
85.49 even 8 425.2.m.a.26.1 4
85.64 even 4 425.2.m.a.376.1 4
85.83 odd 8 425.2.n.b.349.1 4
119.13 odd 4 833.2.l.a.393.1 4
119.30 even 12 833.2.v.b.410.1 8
119.32 even 24 833.2.v.b.128.1 8
119.47 odd 12 833.2.v.a.410.1 8
119.66 odd 24 833.2.v.a.128.1 8
119.81 even 12 833.2.v.b.716.1 8
119.83 odd 8 833.2.l.a.638.1 4
119.100 even 24 833.2.v.b.655.1 8
119.115 odd 12 833.2.v.a.716.1 8
119.117 odd 24 833.2.v.a.655.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.2.d.a.2.1 4 17.13 even 4
17.2.d.a.9.1 yes 4 17.15 even 8
153.2.l.c.19.1 4 51.47 odd 4
153.2.l.c.145.1 4 51.32 odd 8
272.2.v.d.145.1 4 68.15 odd 8
272.2.v.d.257.1 4 68.47 odd 4
289.2.a.f.1.1 4 17.5 odd 16
289.2.a.f.1.2 4 17.12 odd 16
289.2.b.b.288.3 4 17.14 odd 16
289.2.b.b.288.4 4 17.3 odd 16
289.2.c.c.38.1 8 17.10 odd 16
289.2.c.c.38.2 8 17.7 odd 16
289.2.c.c.251.3 8 17.11 odd 16
289.2.c.c.251.4 8 17.6 odd 16
289.2.d.a.155.1 4 17.4 even 4
289.2.d.a.179.1 4 17.2 even 8
289.2.d.b.110.1 4 17.9 even 8
289.2.d.b.134.1 4 17.16 even 2
289.2.d.c.110.1 4 17.8 even 8 inner
289.2.d.c.134.1 4 1.1 even 1 trivial
425.2.m.a.26.1 4 85.49 even 8
425.2.m.a.376.1 4 85.64 even 4
425.2.n.a.274.1 4 85.13 odd 4
425.2.n.a.349.1 4 85.32 odd 8
425.2.n.b.274.1 4 85.47 odd 4
425.2.n.b.349.1 4 85.83 odd 8
833.2.l.a.393.1 4 119.13 odd 4
833.2.l.a.638.1 4 119.83 odd 8
833.2.v.a.128.1 8 119.66 odd 24
833.2.v.a.410.1 8 119.47 odd 12
833.2.v.a.655.1 8 119.117 odd 24
833.2.v.a.716.1 8 119.115 odd 12
833.2.v.b.128.1 8 119.32 even 24
833.2.v.b.410.1 8 119.30 even 12
833.2.v.b.655.1 8 119.100 even 24
833.2.v.b.716.1 8 119.81 even 12
2601.2.a.bb.1.3 4 51.29 even 16
2601.2.a.bb.1.4 4 51.5 even 16
4624.2.a.bp.1.1 4 68.63 even 16
4624.2.a.bp.1.4 4 68.39 even 16
7225.2.a.u.1.3 4 85.29 odd 16
7225.2.a.u.1.4 4 85.39 odd 16