Properties

Label 289.10.a.f.1.16
Level $289$
Weight $10$
Character 289.1
Self dual yes
Analytic conductor $148.845$
Analytic rank $1$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [289,10,Mod(1,289)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("289.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(289, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 289 = 17^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 289.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(148.845356651\)
Analytic rank: \(1\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 17)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.16
Character \(\chi\) \(=\) 289.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+12.9147 q^{2} +101.422 q^{3} -345.210 q^{4} +2078.59 q^{5} +1309.84 q^{6} +2161.61 q^{7} -11070.6 q^{8} -9396.49 q^{9} +26844.4 q^{10} -13147.0 q^{11} -35012.1 q^{12} -17852.0 q^{13} +27916.6 q^{14} +210815. q^{15} +33773.6 q^{16} -121353. q^{18} -30951.0 q^{19} -717549. q^{20} +219236. q^{21} -169790. q^{22} -193663. q^{23} -1.12281e6 q^{24} +2.36740e6 q^{25} -230553. q^{26} -2.94931e6 q^{27} -746210. q^{28} +1.83211e6 q^{29} +2.72262e6 q^{30} -525734. q^{31} +6.10434e6 q^{32} -1.33340e6 q^{33} +4.49310e6 q^{35} +3.24376e6 q^{36} -1.78204e7 q^{37} -399723. q^{38} -1.81059e6 q^{39} -2.30113e7 q^{40} -1.53721e7 q^{41} +2.83137e6 q^{42} -4.23089e7 q^{43} +4.53848e6 q^{44} -1.95314e7 q^{45} -2.50111e6 q^{46} +5.91782e7 q^{47} +3.42540e6 q^{48} -3.56810e7 q^{49} +3.05743e7 q^{50} +6.16269e6 q^{52} -8.32863e7 q^{53} -3.80895e7 q^{54} -2.73272e7 q^{55} -2.39304e7 q^{56} -3.13913e6 q^{57} +2.36612e7 q^{58} +9.24034e7 q^{59} -7.27756e7 q^{60} -1.01929e8 q^{61} -6.78970e6 q^{62} -2.03115e7 q^{63} +6.15437e7 q^{64} -3.71069e7 q^{65} -1.72205e7 q^{66} +1.25363e8 q^{67} -1.96418e7 q^{69} +5.80271e7 q^{70} +2.14775e8 q^{71} +1.04025e8 q^{72} -1.02966e8 q^{73} -2.30145e8 q^{74} +2.40108e8 q^{75} +1.06846e7 q^{76} -2.84187e7 q^{77} -2.33833e7 q^{78} -9.58995e6 q^{79} +7.02013e7 q^{80} -1.14176e8 q^{81} -1.98526e8 q^{82} -6.13699e8 q^{83} -7.56824e7 q^{84} -5.46408e8 q^{86} +1.85817e8 q^{87} +1.45546e8 q^{88} +5.89040e8 q^{89} -2.52243e8 q^{90} -3.85890e7 q^{91} +6.68545e7 q^{92} -5.33212e7 q^{93} +7.64270e8 q^{94} -6.43343e7 q^{95} +6.19117e8 q^{96} +8.70682e8 q^{97} -4.60811e8 q^{98} +1.23536e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 5124 q^{4} + 108368 q^{9} - 244832 q^{13} - 127332 q^{15} - 279932 q^{16} + 888764 q^{18} - 2280212 q^{19} + 775748 q^{21} - 2762628 q^{25} - 3334452 q^{26} - 39084792 q^{30} + 2010240 q^{32} - 30349992 q^{33}+ \cdots + 4413444720 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 12.9147 0.570755 0.285378 0.958415i \(-0.407881\pi\)
0.285378 + 0.958415i \(0.407881\pi\)
\(3\) 101.422 0.722917 0.361459 0.932388i \(-0.382279\pi\)
0.361459 + 0.932388i \(0.382279\pi\)
\(4\) −345.210 −0.674238
\(5\) 2078.59 1.48732 0.743658 0.668560i \(-0.233089\pi\)
0.743658 + 0.668560i \(0.233089\pi\)
\(6\) 1309.84 0.412609
\(7\) 2161.61 0.340280 0.170140 0.985420i \(-0.445578\pi\)
0.170140 + 0.985420i \(0.445578\pi\)
\(8\) −11070.6 −0.955580
\(9\) −9396.49 −0.477391
\(10\) 26844.4 0.848893
\(11\) −13147.0 −0.270745 −0.135372 0.990795i \(-0.543223\pi\)
−0.135372 + 0.990795i \(0.543223\pi\)
\(12\) −35012.1 −0.487418
\(13\) −17852.0 −0.173357 −0.0866785 0.996236i \(-0.527625\pi\)
−0.0866785 + 0.996236i \(0.527625\pi\)
\(14\) 27916.6 0.194217
\(15\) 210815. 1.07521
\(16\) 33773.6 0.128836
\(17\) 0 0
\(18\) −121353. −0.272473
\(19\) −30951.0 −0.0544858 −0.0272429 0.999629i \(-0.508673\pi\)
−0.0272429 + 0.999629i \(0.508673\pi\)
\(20\) −717549. −1.00281
\(21\) 219236. 0.245994
\(22\) −169790. −0.154529
\(23\) −193663. −0.144302 −0.0721510 0.997394i \(-0.522986\pi\)
−0.0721510 + 0.997394i \(0.522986\pi\)
\(24\) −1.12281e6 −0.690805
\(25\) 2.36740e6 1.21211
\(26\) −230553. −0.0989444
\(27\) −2.94931e6 −1.06803
\(28\) −746210. −0.229430
\(29\) 1.83211e6 0.481017 0.240508 0.970647i \(-0.422686\pi\)
0.240508 + 0.970647i \(0.422686\pi\)
\(30\) 2.72262e6 0.613680
\(31\) −525734. −0.102244 −0.0511221 0.998692i \(-0.516280\pi\)
−0.0511221 + 0.998692i \(0.516280\pi\)
\(32\) 6.10434e6 1.02911
\(33\) −1.33340e6 −0.195726
\(34\) 0 0
\(35\) 4.49310e6 0.506104
\(36\) 3.24376e6 0.321875
\(37\) −1.78204e7 −1.56318 −0.781591 0.623791i \(-0.785592\pi\)
−0.781591 + 0.623791i \(0.785592\pi\)
\(38\) −399723. −0.0310981
\(39\) −1.81059e6 −0.125323
\(40\) −2.30113e7 −1.42125
\(41\) −1.53721e7 −0.849582 −0.424791 0.905291i \(-0.639652\pi\)
−0.424791 + 0.905291i \(0.639652\pi\)
\(42\) 2.83137e6 0.140402
\(43\) −4.23089e7 −1.88723 −0.943613 0.331051i \(-0.892597\pi\)
−0.943613 + 0.331051i \(0.892597\pi\)
\(44\) 4.53848e6 0.182547
\(45\) −1.95314e7 −0.710031
\(46\) −2.50111e6 −0.0823611
\(47\) 5.91782e7 1.76897 0.884487 0.466565i \(-0.154509\pi\)
0.884487 + 0.466565i \(0.154509\pi\)
\(48\) 3.42540e6 0.0931377
\(49\) −3.56810e7 −0.884210
\(50\) 3.05743e7 0.691817
\(51\) 0 0
\(52\) 6.16269e6 0.116884
\(53\) −8.32863e7 −1.44988 −0.724941 0.688811i \(-0.758133\pi\)
−0.724941 + 0.688811i \(0.758133\pi\)
\(54\) −3.80895e7 −0.609584
\(55\) −2.73272e7 −0.402683
\(56\) −2.39304e7 −0.325165
\(57\) −3.13913e6 −0.0393887
\(58\) 2.36612e7 0.274543
\(59\) 9.24034e7 0.992782 0.496391 0.868099i \(-0.334658\pi\)
0.496391 + 0.868099i \(0.334658\pi\)
\(60\) −7.27756e7 −0.724945
\(61\) −1.01929e8 −0.942568 −0.471284 0.881981i \(-0.656209\pi\)
−0.471284 + 0.881981i \(0.656209\pi\)
\(62\) −6.78970e6 −0.0583564
\(63\) −2.03115e7 −0.162447
\(64\) 6.15437e7 0.458536
\(65\) −3.71069e7 −0.257837
\(66\) −1.72205e7 −0.111712
\(67\) 1.25363e8 0.760031 0.380015 0.924980i \(-0.375919\pi\)
0.380015 + 0.924980i \(0.375919\pi\)
\(68\) 0 0
\(69\) −1.96418e7 −0.104318
\(70\) 5.80271e7 0.288861
\(71\) 2.14775e8 1.00305 0.501523 0.865144i \(-0.332773\pi\)
0.501523 + 0.865144i \(0.332773\pi\)
\(72\) 1.04025e8 0.456185
\(73\) −1.02966e8 −0.424365 −0.212182 0.977230i \(-0.568057\pi\)
−0.212182 + 0.977230i \(0.568057\pi\)
\(74\) −2.30145e8 −0.892194
\(75\) 2.40108e8 0.876254
\(76\) 1.06846e7 0.0367364
\(77\) −2.84187e7 −0.0921290
\(78\) −2.33833e7 −0.0715286
\(79\) −9.58995e6 −0.0277009 −0.0138505 0.999904i \(-0.504409\pi\)
−0.0138505 + 0.999904i \(0.504409\pi\)
\(80\) 7.02013e7 0.191620
\(81\) −1.14176e8 −0.294707
\(82\) −1.98526e8 −0.484904
\(83\) −6.13699e8 −1.41940 −0.709699 0.704505i \(-0.751169\pi\)
−0.709699 + 0.704505i \(0.751169\pi\)
\(84\) −7.56824e7 −0.165859
\(85\) 0 0
\(86\) −5.46408e8 −1.07714
\(87\) 1.85817e8 0.347735
\(88\) 1.45546e8 0.258718
\(89\) 5.89040e8 0.995153 0.497576 0.867420i \(-0.334223\pi\)
0.497576 + 0.867420i \(0.334223\pi\)
\(90\) −2.52243e8 −0.405254
\(91\) −3.85890e7 −0.0589899
\(92\) 6.68545e7 0.0972939
\(93\) −5.33212e7 −0.0739140
\(94\) 7.64270e8 1.00965
\(95\) −6.43343e7 −0.0810376
\(96\) 6.19117e8 0.743964
\(97\) 8.70682e8 0.998589 0.499295 0.866432i \(-0.333593\pi\)
0.499295 + 0.866432i \(0.333593\pi\)
\(98\) −4.60811e8 −0.504667
\(99\) 1.23536e8 0.129251
\(100\) −8.17250e8 −0.817250
\(101\) −1.76796e9 −1.69054 −0.845271 0.534338i \(-0.820561\pi\)
−0.845271 + 0.534338i \(0.820561\pi\)
\(102\) 0 0
\(103\) 8.32197e8 0.728549 0.364275 0.931292i \(-0.381317\pi\)
0.364275 + 0.931292i \(0.381317\pi\)
\(104\) 1.97633e8 0.165657
\(105\) 4.55701e8 0.365871
\(106\) −1.07562e9 −0.827527
\(107\) −1.49690e9 −1.10399 −0.551994 0.833848i \(-0.686133\pi\)
−0.551994 + 0.833848i \(0.686133\pi\)
\(108\) 1.01813e9 0.720108
\(109\) 1.25120e9 0.848998 0.424499 0.905428i \(-0.360450\pi\)
0.424499 + 0.905428i \(0.360450\pi\)
\(110\) −3.52923e8 −0.229833
\(111\) −1.80739e9 −1.13005
\(112\) 7.30053e7 0.0438403
\(113\) −2.62190e9 −1.51274 −0.756369 0.654145i \(-0.773029\pi\)
−0.756369 + 0.654145i \(0.773029\pi\)
\(114\) −4.05409e7 −0.0224813
\(115\) −4.02546e8 −0.214623
\(116\) −6.32462e8 −0.324320
\(117\) 1.67746e8 0.0827591
\(118\) 1.19336e9 0.566636
\(119\) 0 0
\(120\) −2.33386e9 −1.02745
\(121\) −2.18510e9 −0.926697
\(122\) −1.31638e9 −0.537976
\(123\) −1.55907e9 −0.614178
\(124\) 1.81489e8 0.0689369
\(125\) 8.61107e8 0.315473
\(126\) −2.62318e8 −0.0927172
\(127\) −3.13001e9 −1.06765 −0.533825 0.845595i \(-0.679246\pi\)
−0.533825 + 0.845595i \(0.679246\pi\)
\(128\) −2.33060e9 −0.767402
\(129\) −4.29107e9 −1.36431
\(130\) −4.79225e8 −0.147162
\(131\) 1.31489e9 0.390094 0.195047 0.980794i \(-0.437514\pi\)
0.195047 + 0.980794i \(0.437514\pi\)
\(132\) 4.60304e8 0.131966
\(133\) −6.69040e7 −0.0185404
\(134\) 1.61902e9 0.433792
\(135\) −6.13040e9 −1.58850
\(136\) 0 0
\(137\) 5.14400e8 0.124755 0.0623775 0.998053i \(-0.480132\pi\)
0.0623775 + 0.998053i \(0.480132\pi\)
\(138\) −2.53668e8 −0.0595402
\(139\) −7.81812e9 −1.77638 −0.888189 0.459478i \(-0.848037\pi\)
−0.888189 + 0.459478i \(0.848037\pi\)
\(140\) −1.55106e9 −0.341235
\(141\) 6.00200e9 1.27882
\(142\) 2.77376e9 0.572494
\(143\) 2.34700e8 0.0469355
\(144\) −3.17353e8 −0.0615051
\(145\) 3.80820e9 0.715424
\(146\) −1.32977e9 −0.242208
\(147\) −3.61886e9 −0.639210
\(148\) 6.15178e9 1.05396
\(149\) 8.47199e9 1.40814 0.704072 0.710128i \(-0.251363\pi\)
0.704072 + 0.710128i \(0.251363\pi\)
\(150\) 3.10092e9 0.500127
\(151\) −1.13940e9 −0.178353 −0.0891766 0.996016i \(-0.528424\pi\)
−0.0891766 + 0.996016i \(0.528424\pi\)
\(152\) 3.42647e8 0.0520656
\(153\) 0 0
\(154\) −3.67020e8 −0.0525831
\(155\) −1.09278e9 −0.152069
\(156\) 6.25035e8 0.0844974
\(157\) −3.27009e9 −0.429547 −0.214774 0.976664i \(-0.568901\pi\)
−0.214774 + 0.976664i \(0.568901\pi\)
\(158\) −1.23851e8 −0.0158105
\(159\) −8.44711e9 −1.04814
\(160\) 1.26884e10 1.53062
\(161\) −4.18625e8 −0.0491030
\(162\) −1.47454e9 −0.168206
\(163\) −2.09512e9 −0.232468 −0.116234 0.993222i \(-0.537082\pi\)
−0.116234 + 0.993222i \(0.537082\pi\)
\(164\) 5.30660e9 0.572821
\(165\) −2.77159e9 −0.291106
\(166\) −7.92575e9 −0.810129
\(167\) 1.40830e10 1.40110 0.700551 0.713603i \(-0.252938\pi\)
0.700551 + 0.713603i \(0.252938\pi\)
\(168\) −2.42708e9 −0.235067
\(169\) −1.02858e10 −0.969947
\(170\) 0 0
\(171\) 2.90831e8 0.0260110
\(172\) 1.46055e10 1.27244
\(173\) −3.98665e9 −0.338377 −0.169188 0.985584i \(-0.554115\pi\)
−0.169188 + 0.985584i \(0.554115\pi\)
\(174\) 2.39977e9 0.198472
\(175\) 5.11740e9 0.412456
\(176\) −4.44022e8 −0.0348817
\(177\) 9.37178e9 0.717699
\(178\) 7.60728e9 0.567989
\(179\) 1.82891e10 1.33154 0.665769 0.746158i \(-0.268104\pi\)
0.665769 + 0.746158i \(0.268104\pi\)
\(180\) 6.74244e9 0.478730
\(181\) −1.12163e10 −0.776775 −0.388387 0.921496i \(-0.626968\pi\)
−0.388387 + 0.921496i \(0.626968\pi\)
\(182\) −4.98367e8 −0.0336688
\(183\) −1.03379e10 −0.681399
\(184\) 2.14397e9 0.137892
\(185\) −3.70412e10 −2.32495
\(186\) −6.88628e8 −0.0421868
\(187\) 0 0
\(188\) −2.04289e10 −1.19271
\(189\) −6.37527e9 −0.363430
\(190\) −8.30860e8 −0.0462526
\(191\) −6.63597e9 −0.360790 −0.180395 0.983594i \(-0.557738\pi\)
−0.180395 + 0.983594i \(0.557738\pi\)
\(192\) 6.24191e9 0.331484
\(193\) 1.28453e10 0.666404 0.333202 0.942856i \(-0.391871\pi\)
0.333202 + 0.942856i \(0.391871\pi\)
\(194\) 1.12446e10 0.569950
\(195\) −3.76347e9 −0.186395
\(196\) 1.23175e10 0.596168
\(197\) −9.15030e9 −0.432850 −0.216425 0.976299i \(-0.569440\pi\)
−0.216425 + 0.976299i \(0.569440\pi\)
\(198\) 1.59543e9 0.0737707
\(199\) −4.02134e10 −1.81774 −0.908870 0.417079i \(-0.863054\pi\)
−0.908870 + 0.417079i \(0.863054\pi\)
\(200\) −2.62086e10 −1.15827
\(201\) 1.27146e10 0.549439
\(202\) −2.28327e10 −0.964886
\(203\) 3.96030e9 0.163680
\(204\) 0 0
\(205\) −3.19522e10 −1.26360
\(206\) 1.07476e10 0.415823
\(207\) 1.81975e9 0.0688884
\(208\) −6.02925e8 −0.0223346
\(209\) 4.06913e8 0.0147517
\(210\) 5.88525e9 0.208823
\(211\) 9.07065e9 0.315041 0.157521 0.987516i \(-0.449650\pi\)
0.157521 + 0.987516i \(0.449650\pi\)
\(212\) 2.87513e10 0.977566
\(213\) 2.17830e10 0.725119
\(214\) −1.93320e10 −0.630107
\(215\) −8.79428e10 −2.80690
\(216\) 3.26507e10 1.02059
\(217\) −1.13643e9 −0.0347916
\(218\) 1.61589e10 0.484570
\(219\) −1.04430e10 −0.306781
\(220\) 9.43363e9 0.271504
\(221\) 0 0
\(222\) −2.33419e10 −0.644982
\(223\) 2.83923e10 0.768827 0.384414 0.923161i \(-0.374404\pi\)
0.384414 + 0.923161i \(0.374404\pi\)
\(224\) 1.31952e10 0.350187
\(225\) −2.22452e10 −0.578650
\(226\) −3.38611e10 −0.863403
\(227\) −7.74085e10 −1.93496 −0.967480 0.252946i \(-0.918600\pi\)
−0.967480 + 0.252946i \(0.918600\pi\)
\(228\) 1.08366e9 0.0265574
\(229\) −1.04661e9 −0.0251492 −0.0125746 0.999921i \(-0.504003\pi\)
−0.0125746 + 0.999921i \(0.504003\pi\)
\(230\) −5.19877e9 −0.122497
\(231\) −2.88230e9 −0.0666016
\(232\) −2.02826e10 −0.459650
\(233\) 6.08121e10 1.35172 0.675862 0.737028i \(-0.263771\pi\)
0.675862 + 0.737028i \(0.263771\pi\)
\(234\) 2.16639e9 0.0472352
\(235\) 1.23007e11 2.63102
\(236\) −3.18986e10 −0.669372
\(237\) −9.72636e8 −0.0200255
\(238\) 0 0
\(239\) −4.87053e10 −0.965574 −0.482787 0.875738i \(-0.660375\pi\)
−0.482787 + 0.875738i \(0.660375\pi\)
\(240\) 7.11999e9 0.138525
\(241\) −8.61021e10 −1.64413 −0.822067 0.569391i \(-0.807179\pi\)
−0.822067 + 0.569391i \(0.807179\pi\)
\(242\) −2.82200e10 −0.528917
\(243\) 4.64714e10 0.854982
\(244\) 3.51869e10 0.635516
\(245\) −7.41662e10 −1.31510
\(246\) −2.01350e10 −0.350545
\(247\) 5.52537e8 0.00944550
\(248\) 5.82020e9 0.0977025
\(249\) −6.22429e10 −1.02611
\(250\) 1.11209e10 0.180058
\(251\) 1.62824e10 0.258933 0.129466 0.991584i \(-0.458674\pi\)
0.129466 + 0.991584i \(0.458674\pi\)
\(252\) 7.01175e9 0.109528
\(253\) 2.54609e9 0.0390690
\(254\) −4.04232e10 −0.609366
\(255\) 0 0
\(256\) −6.16094e10 −0.896535
\(257\) −5.50549e10 −0.787221 −0.393611 0.919277i \(-0.628774\pi\)
−0.393611 + 0.919277i \(0.628774\pi\)
\(258\) −5.54180e10 −0.778686
\(259\) −3.85208e10 −0.531919
\(260\) 1.28097e10 0.173843
\(261\) −1.72154e10 −0.229633
\(262\) 1.69814e10 0.222648
\(263\) 1.36741e10 0.176237 0.0881186 0.996110i \(-0.471915\pi\)
0.0881186 + 0.996110i \(0.471915\pi\)
\(264\) 1.47616e10 0.187032
\(265\) −1.73118e11 −2.15643
\(266\) −8.64046e8 −0.0105820
\(267\) 5.97419e10 0.719413
\(268\) −4.32764e10 −0.512442
\(269\) 9.50088e10 1.10631 0.553157 0.833077i \(-0.313423\pi\)
0.553157 + 0.833077i \(0.313423\pi\)
\(270\) −7.91724e10 −0.906645
\(271\) 7.91380e10 0.891299 0.445650 0.895208i \(-0.352973\pi\)
0.445650 + 0.895208i \(0.352973\pi\)
\(272\) 0 0
\(273\) −3.91380e9 −0.0426448
\(274\) 6.64333e9 0.0712046
\(275\) −3.11242e10 −0.328172
\(276\) 6.78055e9 0.0703354
\(277\) −2.52889e10 −0.258090 −0.129045 0.991639i \(-0.541191\pi\)
−0.129045 + 0.991639i \(0.541191\pi\)
\(278\) −1.00969e11 −1.01388
\(279\) 4.94005e9 0.0488104
\(280\) −4.97414e10 −0.483623
\(281\) 9.53062e8 0.00911891 0.00455946 0.999990i \(-0.498549\pi\)
0.00455946 + 0.999990i \(0.498549\pi\)
\(282\) 7.75141e10 0.729894
\(283\) −3.78782e10 −0.351035 −0.175517 0.984476i \(-0.556160\pi\)
−0.175517 + 0.984476i \(0.556160\pi\)
\(284\) −7.41425e10 −0.676292
\(285\) −6.52495e9 −0.0585835
\(286\) 3.03109e9 0.0267887
\(287\) −3.32285e10 −0.289096
\(288\) −5.73593e10 −0.491290
\(289\) 0 0
\(290\) 4.91818e10 0.408332
\(291\) 8.83067e10 0.721897
\(292\) 3.55448e10 0.286123
\(293\) −1.17365e11 −0.930325 −0.465163 0.885225i \(-0.654004\pi\)
−0.465163 + 0.885225i \(0.654004\pi\)
\(294\) −4.67365e10 −0.364833
\(295\) 1.92069e11 1.47658
\(296\) 1.97283e11 1.49375
\(297\) 3.87747e10 0.289164
\(298\) 1.09413e11 0.803706
\(299\) 3.45727e9 0.0250157
\(300\) −8.28875e10 −0.590804
\(301\) −9.14554e10 −0.642185
\(302\) −1.47151e10 −0.101796
\(303\) −1.79311e11 −1.22212
\(304\) −1.04533e9 −0.00701973
\(305\) −2.11868e11 −1.40190
\(306\) 0 0
\(307\) −8.18712e10 −0.526028 −0.263014 0.964792i \(-0.584717\pi\)
−0.263014 + 0.964792i \(0.584717\pi\)
\(308\) 9.81043e9 0.0621169
\(309\) 8.44035e10 0.526681
\(310\) −1.41130e10 −0.0867943
\(311\) 1.69662e11 1.02840 0.514201 0.857670i \(-0.328088\pi\)
0.514201 + 0.857670i \(0.328088\pi\)
\(312\) 2.00444e10 0.119756
\(313\) 3.25773e11 1.91852 0.959258 0.282533i \(-0.0911747\pi\)
0.959258 + 0.282533i \(0.0911747\pi\)
\(314\) −4.22323e10 −0.245166
\(315\) −4.22193e10 −0.241609
\(316\) 3.31055e9 0.0186770
\(317\) 1.30550e11 0.726124 0.363062 0.931765i \(-0.381731\pi\)
0.363062 + 0.931765i \(0.381731\pi\)
\(318\) −1.09092e11 −0.598234
\(319\) −2.40868e10 −0.130233
\(320\) 1.27924e11 0.681988
\(321\) −1.51819e11 −0.798092
\(322\) −5.40642e9 −0.0280258
\(323\) 0 0
\(324\) 3.94145e10 0.198703
\(325\) −4.22628e10 −0.210128
\(326\) −2.70578e10 −0.132683
\(327\) 1.26900e11 0.613755
\(328\) 1.70179e11 0.811844
\(329\) 1.27920e11 0.601946
\(330\) −3.57943e10 −0.166151
\(331\) 1.07749e11 0.493385 0.246692 0.969094i \(-0.420656\pi\)
0.246692 + 0.969094i \(0.420656\pi\)
\(332\) 2.11855e11 0.957013
\(333\) 1.67449e11 0.746249
\(334\) 1.81877e11 0.799686
\(335\) 2.60577e11 1.13041
\(336\) 7.40438e9 0.0316929
\(337\) −2.54399e11 −1.07444 −0.537218 0.843444i \(-0.680525\pi\)
−0.537218 + 0.843444i \(0.680525\pi\)
\(338\) −1.32838e11 −0.553603
\(339\) −2.65920e11 −1.09358
\(340\) 0 0
\(341\) 6.91183e9 0.0276821
\(342\) 3.75599e9 0.0148459
\(343\) −1.64357e11 −0.641159
\(344\) 4.68386e11 1.80340
\(345\) −4.08272e10 −0.155154
\(346\) −5.14864e10 −0.193130
\(347\) 4.03414e10 0.149372 0.0746859 0.997207i \(-0.476205\pi\)
0.0746859 + 0.997207i \(0.476205\pi\)
\(348\) −6.41459e10 −0.234456
\(349\) −2.78080e11 −1.00336 −0.501679 0.865054i \(-0.667284\pi\)
−0.501679 + 0.865054i \(0.667284\pi\)
\(350\) 6.60897e10 0.235412
\(351\) 5.26511e10 0.185151
\(352\) −8.02538e10 −0.278627
\(353\) 2.25144e11 0.771746 0.385873 0.922552i \(-0.373900\pi\)
0.385873 + 0.922552i \(0.373900\pi\)
\(354\) 1.21034e11 0.409630
\(355\) 4.46428e11 1.49185
\(356\) −2.03343e11 −0.670970
\(357\) 0 0
\(358\) 2.36198e11 0.759982
\(359\) 2.26898e11 0.720952 0.360476 0.932768i \(-0.382614\pi\)
0.360476 + 0.932768i \(0.382614\pi\)
\(360\) 2.16225e11 0.678492
\(361\) −3.21730e11 −0.997031
\(362\) −1.44855e11 −0.443348
\(363\) −2.21619e11 −0.669925
\(364\) 1.33213e10 0.0397733
\(365\) −2.14023e11 −0.631164
\(366\) −1.33511e11 −0.388912
\(367\) −3.78313e11 −1.08856 −0.544281 0.838903i \(-0.683198\pi\)
−0.544281 + 0.838903i \(0.683198\pi\)
\(368\) −6.54070e9 −0.0185913
\(369\) 1.44444e11 0.405583
\(370\) −4.78377e11 −1.32697
\(371\) −1.80033e11 −0.493365
\(372\) 1.84070e10 0.0498357
\(373\) 6.56421e11 1.75587 0.877935 0.478779i \(-0.158921\pi\)
0.877935 + 0.478779i \(0.158921\pi\)
\(374\) 0 0
\(375\) 8.73355e10 0.228061
\(376\) −6.55140e11 −1.69040
\(377\) −3.27068e10 −0.0833876
\(378\) −8.23348e10 −0.207429
\(379\) −5.04568e11 −1.25615 −0.628077 0.778151i \(-0.716158\pi\)
−0.628077 + 0.778151i \(0.716158\pi\)
\(380\) 2.22089e10 0.0546387
\(381\) −3.17453e11 −0.771822
\(382\) −8.57017e10 −0.205923
\(383\) −3.41936e11 −0.811990 −0.405995 0.913875i \(-0.633075\pi\)
−0.405995 + 0.913875i \(0.633075\pi\)
\(384\) −2.36375e11 −0.554768
\(385\) −5.90708e10 −0.137025
\(386\) 1.65894e11 0.380353
\(387\) 3.97555e11 0.900945
\(388\) −3.00568e11 −0.673287
\(389\) 7.41610e11 1.64211 0.821055 0.570849i \(-0.193386\pi\)
0.821055 + 0.570849i \(0.193386\pi\)
\(390\) −4.86042e10 −0.106386
\(391\) 0 0
\(392\) 3.95012e11 0.844933
\(393\) 1.33359e11 0.282005
\(394\) −1.18174e11 −0.247051
\(395\) −1.99335e10 −0.0412000
\(396\) −4.26458e10 −0.0871461
\(397\) 2.44352e11 0.493695 0.246848 0.969054i \(-0.420605\pi\)
0.246848 + 0.969054i \(0.420605\pi\)
\(398\) −5.19345e11 −1.03748
\(399\) −6.78557e9 −0.0134032
\(400\) 7.99555e10 0.156163
\(401\) 4.19091e11 0.809392 0.404696 0.914451i \(-0.367377\pi\)
0.404696 + 0.914451i \(0.367377\pi\)
\(402\) 1.64205e11 0.313595
\(403\) 9.38539e9 0.0177247
\(404\) 6.10317e11 1.13983
\(405\) −2.37324e11 −0.438322
\(406\) 5.11462e10 0.0934214
\(407\) 2.34285e11 0.423223
\(408\) 0 0
\(409\) −5.47241e11 −0.966994 −0.483497 0.875346i \(-0.660634\pi\)
−0.483497 + 0.875346i \(0.660634\pi\)
\(410\) −4.12654e11 −0.721205
\(411\) 5.21717e10 0.0901876
\(412\) −2.87283e11 −0.491216
\(413\) 1.99740e11 0.337824
\(414\) 2.35016e10 0.0393184
\(415\) −1.27563e12 −2.11109
\(416\) −1.08975e11 −0.178404
\(417\) −7.92933e11 −1.28417
\(418\) 5.25517e9 0.00841964
\(419\) 6.31112e11 1.00033 0.500165 0.865930i \(-0.333273\pi\)
0.500165 + 0.865930i \(0.333273\pi\)
\(420\) −1.57313e11 −0.246684
\(421\) 2.59316e11 0.402309 0.201154 0.979560i \(-0.435531\pi\)
0.201154 + 0.979560i \(0.435531\pi\)
\(422\) 1.17145e11 0.179811
\(423\) −5.56067e11 −0.844492
\(424\) 9.22032e11 1.38548
\(425\) 0 0
\(426\) 2.81321e11 0.413866
\(427\) −2.20330e11 −0.320737
\(428\) 5.16744e11 0.744351
\(429\) 2.38039e10 0.0339305
\(430\) −1.13576e12 −1.60205
\(431\) −3.20451e11 −0.447315 −0.223658 0.974668i \(-0.571800\pi\)
−0.223658 + 0.974668i \(0.571800\pi\)
\(432\) −9.96088e10 −0.137601
\(433\) 6.08153e11 0.831414 0.415707 0.909499i \(-0.363534\pi\)
0.415707 + 0.909499i \(0.363534\pi\)
\(434\) −1.46767e10 −0.0198575
\(435\) 3.86237e11 0.517192
\(436\) −4.31926e11 −0.572427
\(437\) 5.99407e9 0.00786241
\(438\) −1.34869e11 −0.175097
\(439\) −9.67705e11 −1.24352 −0.621760 0.783208i \(-0.713582\pi\)
−0.621760 + 0.783208i \(0.713582\pi\)
\(440\) 3.02529e11 0.384796
\(441\) 3.35276e11 0.422114
\(442\) 0 0
\(443\) 9.00554e11 1.11095 0.555473 0.831535i \(-0.312537\pi\)
0.555473 + 0.831535i \(0.312537\pi\)
\(444\) 6.23929e11 0.761924
\(445\) 1.22437e12 1.48011
\(446\) 3.66679e11 0.438812
\(447\) 8.59250e11 1.01797
\(448\) 1.33034e11 0.156031
\(449\) −2.53168e11 −0.293968 −0.146984 0.989139i \(-0.546957\pi\)
−0.146984 + 0.989139i \(0.546957\pi\)
\(450\) −2.87291e11 −0.330267
\(451\) 2.02097e11 0.230020
\(452\) 9.05108e11 1.01995
\(453\) −1.15561e11 −0.128935
\(454\) −9.99708e11 −1.10439
\(455\) −8.02107e10 −0.0877366
\(456\) 3.47521e10 0.0376391
\(457\) 1.51148e12 1.62099 0.810495 0.585745i \(-0.199198\pi\)
0.810495 + 0.585745i \(0.199198\pi\)
\(458\) −1.35166e10 −0.0143540
\(459\) 0 0
\(460\) 1.38963e11 0.144707
\(461\) 8.09197e11 0.834450 0.417225 0.908803i \(-0.363003\pi\)
0.417225 + 0.908803i \(0.363003\pi\)
\(462\) −3.72241e10 −0.0380132
\(463\) 1.55999e12 1.57764 0.788819 0.614625i \(-0.210693\pi\)
0.788819 + 0.614625i \(0.210693\pi\)
\(464\) 6.18768e10 0.0619722
\(465\) −1.10833e11 −0.109933
\(466\) 7.85371e11 0.771504
\(467\) 3.66882e11 0.356944 0.178472 0.983945i \(-0.442885\pi\)
0.178472 + 0.983945i \(0.442885\pi\)
\(468\) −5.79076e10 −0.0557993
\(469\) 2.70985e11 0.258623
\(470\) 1.58860e12 1.50167
\(471\) −3.31660e11 −0.310527
\(472\) −1.02296e12 −0.948683
\(473\) 5.56236e11 0.510957
\(474\) −1.25613e10 −0.0114296
\(475\) −7.32734e10 −0.0660427
\(476\) 0 0
\(477\) 7.82599e11 0.692160
\(478\) −6.29015e11 −0.551106
\(479\) 5.73621e11 0.497869 0.248935 0.968520i \(-0.419920\pi\)
0.248935 + 0.968520i \(0.419920\pi\)
\(480\) 1.28689e12 1.10651
\(481\) 3.18129e11 0.270989
\(482\) −1.11198e12 −0.938398
\(483\) −4.24579e10 −0.0354974
\(484\) 7.54320e11 0.624815
\(485\) 1.80979e12 1.48522
\(486\) 6.00164e11 0.487986
\(487\) 1.56412e12 1.26006 0.630028 0.776572i \(-0.283043\pi\)
0.630028 + 0.776572i \(0.283043\pi\)
\(488\) 1.12842e12 0.900700
\(489\) −2.12492e11 −0.168055
\(490\) −9.57835e11 −0.750600
\(491\) −1.20510e11 −0.0935743 −0.0467872 0.998905i \(-0.514898\pi\)
−0.0467872 + 0.998905i \(0.514898\pi\)
\(492\) 5.38208e11 0.414102
\(493\) 0 0
\(494\) 7.13585e9 0.00539107
\(495\) 2.56780e11 0.192237
\(496\) −1.77559e10 −0.0131727
\(497\) 4.64260e11 0.341316
\(498\) −8.03849e11 −0.585656
\(499\) 4.96049e11 0.358156 0.179078 0.983835i \(-0.442689\pi\)
0.179078 + 0.983835i \(0.442689\pi\)
\(500\) −2.97263e11 −0.212704
\(501\) 1.42833e12 1.01288
\(502\) 2.10283e11 0.147787
\(503\) −1.48407e11 −0.103371 −0.0516853 0.998663i \(-0.516459\pi\)
−0.0516853 + 0.998663i \(0.516459\pi\)
\(504\) 2.24861e11 0.155231
\(505\) −3.67486e12 −2.51437
\(506\) 3.28821e10 0.0222988
\(507\) −1.04321e12 −0.701191
\(508\) 1.08051e12 0.719850
\(509\) 8.49687e11 0.561085 0.280543 0.959842i \(-0.409486\pi\)
0.280543 + 0.959842i \(0.409486\pi\)
\(510\) 0 0
\(511\) −2.22572e11 −0.144403
\(512\) 3.97599e11 0.255700
\(513\) 9.12842e10 0.0581925
\(514\) −7.11018e11 −0.449311
\(515\) 1.72979e12 1.08358
\(516\) 1.48132e12 0.919869
\(517\) −7.78017e11 −0.478941
\(518\) −4.97485e11 −0.303596
\(519\) −4.04336e11 −0.244618
\(520\) 4.10797e11 0.246384
\(521\) 4.63859e11 0.275814 0.137907 0.990445i \(-0.455962\pi\)
0.137907 + 0.990445i \(0.455962\pi\)
\(522\) −2.22332e11 −0.131064
\(523\) −3.01502e11 −0.176211 −0.0881054 0.996111i \(-0.528081\pi\)
−0.0881054 + 0.996111i \(0.528081\pi\)
\(524\) −4.53913e11 −0.263016
\(525\) 5.19019e11 0.298172
\(526\) 1.76597e11 0.100588
\(527\) 0 0
\(528\) −4.50338e10 −0.0252165
\(529\) −1.76365e12 −0.979177
\(530\) −2.23577e12 −1.23079
\(531\) −8.68267e11 −0.473945
\(532\) 2.30959e10 0.0125007
\(533\) 2.74422e11 0.147281
\(534\) 7.71550e11 0.410609
\(535\) −3.11143e12 −1.64198
\(536\) −1.38784e12 −0.726271
\(537\) 1.85492e12 0.962591
\(538\) 1.22701e12 0.631435
\(539\) 4.69099e11 0.239395
\(540\) 2.11628e12 1.07103
\(541\) 2.05647e12 1.03213 0.516066 0.856549i \(-0.327396\pi\)
0.516066 + 0.856549i \(0.327396\pi\)
\(542\) 1.02205e12 0.508714
\(543\) −1.13758e12 −0.561544
\(544\) 0 0
\(545\) 2.60072e12 1.26273
\(546\) −5.05456e10 −0.0243398
\(547\) 3.11555e12 1.48796 0.743981 0.668201i \(-0.232935\pi\)
0.743981 + 0.668201i \(0.232935\pi\)
\(548\) −1.77576e11 −0.0841147
\(549\) 9.57773e11 0.449973
\(550\) −4.01961e11 −0.187306
\(551\) −5.67056e10 −0.0262086
\(552\) 2.17447e11 0.0996845
\(553\) −2.07297e10 −0.00942607
\(554\) −3.26599e11 −0.147306
\(555\) −3.75681e12 −1.68074
\(556\) 2.69889e12 1.19770
\(557\) 2.06457e12 0.908828 0.454414 0.890791i \(-0.349849\pi\)
0.454414 + 0.890791i \(0.349849\pi\)
\(558\) 6.37993e10 0.0278588
\(559\) 7.55298e11 0.327164
\(560\) 1.51748e11 0.0652043
\(561\) 0 0
\(562\) 1.23085e10 0.00520467
\(563\) 3.11121e12 1.30509 0.652547 0.757748i \(-0.273700\pi\)
0.652547 + 0.757748i \(0.273700\pi\)
\(564\) −2.07195e12 −0.862231
\(565\) −5.44986e12 −2.24992
\(566\) −4.89186e11 −0.200355
\(567\) −2.46803e11 −0.100283
\(568\) −2.37769e12 −0.958491
\(569\) 4.33084e11 0.173207 0.0866037 0.996243i \(-0.472399\pi\)
0.0866037 + 0.996243i \(0.472399\pi\)
\(570\) −8.42678e10 −0.0334368
\(571\) −4.07139e12 −1.60280 −0.801402 0.598126i \(-0.795912\pi\)
−0.801402 + 0.598126i \(0.795912\pi\)
\(572\) −8.10209e10 −0.0316457
\(573\) −6.73037e11 −0.260821
\(574\) −4.29136e11 −0.165003
\(575\) −4.58478e11 −0.174910
\(576\) −5.78295e11 −0.218901
\(577\) −2.10704e12 −0.791375 −0.395687 0.918385i \(-0.629494\pi\)
−0.395687 + 0.918385i \(0.629494\pi\)
\(578\) 0 0
\(579\) 1.30280e12 0.481754
\(580\) −1.31463e12 −0.482366
\(581\) −1.32658e12 −0.482993
\(582\) 1.14046e12 0.412027
\(583\) 1.09497e12 0.392548
\(584\) 1.13989e12 0.405515
\(585\) 3.48675e11 0.123089
\(586\) −1.51574e12 −0.530988
\(587\) −1.65360e12 −0.574857 −0.287428 0.957802i \(-0.592800\pi\)
−0.287428 + 0.957802i \(0.592800\pi\)
\(588\) 1.24927e12 0.430980
\(589\) 1.62720e10 0.00557085
\(590\) 2.48051e12 0.842766
\(591\) −9.28046e11 −0.312915
\(592\) −6.01858e11 −0.201394
\(593\) −1.28308e12 −0.426096 −0.213048 0.977042i \(-0.568339\pi\)
−0.213048 + 0.977042i \(0.568339\pi\)
\(594\) 5.00764e11 0.165042
\(595\) 0 0
\(596\) −2.92462e12 −0.949425
\(597\) −4.07854e12 −1.31408
\(598\) 4.46497e10 0.0142779
\(599\) 2.16567e12 0.687341 0.343671 0.939090i \(-0.388330\pi\)
0.343671 + 0.939090i \(0.388330\pi\)
\(600\) −2.65814e12 −0.837331
\(601\) 7.68293e11 0.240210 0.120105 0.992761i \(-0.461677\pi\)
0.120105 + 0.992761i \(0.461677\pi\)
\(602\) −1.18112e12 −0.366531
\(603\) −1.17797e12 −0.362832
\(604\) 3.93333e11 0.120253
\(605\) −4.54193e12 −1.37829
\(606\) −2.31575e12 −0.697532
\(607\) 2.89113e12 0.864406 0.432203 0.901776i \(-0.357736\pi\)
0.432203 + 0.901776i \(0.357736\pi\)
\(608\) −1.88935e11 −0.0560721
\(609\) 4.01664e11 0.118327
\(610\) −2.73621e12 −0.800140
\(611\) −1.05645e12 −0.306664
\(612\) 0 0
\(613\) −5.08236e12 −1.45376 −0.726881 0.686763i \(-0.759031\pi\)
−0.726881 + 0.686763i \(0.759031\pi\)
\(614\) −1.05734e12 −0.300233
\(615\) −3.24067e12 −0.913476
\(616\) 3.14613e11 0.0880367
\(617\) −2.83974e12 −0.788852 −0.394426 0.918928i \(-0.629056\pi\)
−0.394426 + 0.918928i \(0.629056\pi\)
\(618\) 1.09005e12 0.300606
\(619\) 2.75485e12 0.754206 0.377103 0.926171i \(-0.376920\pi\)
0.377103 + 0.926171i \(0.376920\pi\)
\(620\) 3.77240e11 0.102531
\(621\) 5.71174e11 0.154119
\(622\) 2.19114e12 0.586966
\(623\) 1.27328e12 0.338630
\(624\) −6.11502e10 −0.0161461
\(625\) −2.83394e12 −0.742901
\(626\) 4.20726e12 1.09500
\(627\) 4.12701e10 0.0106643
\(628\) 1.12887e12 0.289617
\(629\) 0 0
\(630\) −5.45250e11 −0.137900
\(631\) 4.35581e12 1.09380 0.546899 0.837199i \(-0.315808\pi\)
0.546899 + 0.837199i \(0.315808\pi\)
\(632\) 1.06167e11 0.0264705
\(633\) 9.19968e11 0.227749
\(634\) 1.68602e12 0.414439
\(635\) −6.50599e12 −1.58793
\(636\) 2.91603e12 0.706699
\(637\) 6.36978e11 0.153284
\(638\) −3.11074e11 −0.0743310
\(639\) −2.01813e12 −0.478845
\(640\) −4.84436e12 −1.14137
\(641\) 9.78124e11 0.228840 0.114420 0.993432i \(-0.463499\pi\)
0.114420 + 0.993432i \(0.463499\pi\)
\(642\) −1.96070e12 −0.455515
\(643\) −6.72829e11 −0.155223 −0.0776114 0.996984i \(-0.524729\pi\)
−0.0776114 + 0.996984i \(0.524729\pi\)
\(644\) 1.44513e11 0.0331072
\(645\) −8.91937e12 −2.02916
\(646\) 0 0
\(647\) −6.23882e12 −1.39969 −0.699847 0.714293i \(-0.746748\pi\)
−0.699847 + 0.714293i \(0.746748\pi\)
\(648\) 1.26399e12 0.281616
\(649\) −1.21483e12 −0.268791
\(650\) −5.45812e11 −0.119931
\(651\) −1.15260e11 −0.0251515
\(652\) 7.23255e11 0.156739
\(653\) 9.10099e12 1.95875 0.979375 0.202049i \(-0.0647601\pi\)
0.979375 + 0.202049i \(0.0647601\pi\)
\(654\) 1.63887e12 0.350304
\(655\) 2.73311e12 0.580192
\(656\) −5.19170e11 −0.109457
\(657\) 9.67515e11 0.202588
\(658\) 1.65205e12 0.343564
\(659\) −5.03909e12 −1.04080 −0.520400 0.853922i \(-0.674217\pi\)
−0.520400 + 0.853922i \(0.674217\pi\)
\(660\) 9.56782e11 0.196275
\(661\) −8.54137e12 −1.74029 −0.870144 0.492798i \(-0.835974\pi\)
−0.870144 + 0.492798i \(0.835974\pi\)
\(662\) 1.39154e12 0.281602
\(663\) 0 0
\(664\) 6.79404e12 1.35635
\(665\) −1.39066e11 −0.0275755
\(666\) 2.16256e12 0.425925
\(667\) −3.54812e11 −0.0694116
\(668\) −4.86158e12 −0.944676
\(669\) 2.87962e12 0.555798
\(670\) 3.36528e12 0.645185
\(671\) 1.34006e12 0.255195
\(672\) 1.33829e12 0.253156
\(673\) −1.57979e12 −0.296846 −0.148423 0.988924i \(-0.547420\pi\)
−0.148423 + 0.988924i \(0.547420\pi\)
\(674\) −3.28549e12 −0.613240
\(675\) −6.98220e12 −1.29457
\(676\) 3.55076e12 0.653976
\(677\) 1.28465e12 0.235037 0.117519 0.993071i \(-0.462506\pi\)
0.117519 + 0.993071i \(0.462506\pi\)
\(678\) −3.43428e12 −0.624169
\(679\) 1.88208e12 0.339800
\(680\) 0 0
\(681\) −7.85096e12 −1.39882
\(682\) 8.92643e10 0.0157997
\(683\) 7.81658e12 1.37443 0.687217 0.726453i \(-0.258832\pi\)
0.687217 + 0.726453i \(0.258832\pi\)
\(684\) −1.00398e11 −0.0175376
\(685\) 1.06922e12 0.185550
\(686\) −2.12263e12 −0.365945
\(687\) −1.06149e11 −0.0181808
\(688\) −1.42892e12 −0.243143
\(689\) 1.48683e12 0.251347
\(690\) −5.27272e11 −0.0885551
\(691\) −5.29472e12 −0.883470 −0.441735 0.897146i \(-0.645637\pi\)
−0.441735 + 0.897146i \(0.645637\pi\)
\(692\) 1.37623e12 0.228147
\(693\) 2.67036e11 0.0439816
\(694\) 5.20998e11 0.0852547
\(695\) −1.62506e13 −2.64204
\(696\) −2.05711e12 −0.332289
\(697\) 0 0
\(698\) −3.59133e12 −0.572672
\(699\) 6.16771e12 0.977185
\(700\) −1.76658e12 −0.278094
\(701\) −4.08705e12 −0.639262 −0.319631 0.947542i \(-0.603559\pi\)
−0.319631 + 0.947542i \(0.603559\pi\)
\(702\) 6.79974e11 0.105676
\(703\) 5.51559e11 0.0851712
\(704\) −8.09116e11 −0.124146
\(705\) 1.24757e13 1.90201
\(706\) 2.90767e12 0.440478
\(707\) −3.82164e12 −0.575257
\(708\) −3.23523e12 −0.483900
\(709\) 7.02438e12 1.04400 0.522000 0.852946i \(-0.325186\pi\)
0.522000 + 0.852946i \(0.325186\pi\)
\(710\) 5.76550e12 0.851479
\(711\) 9.01118e10 0.0132242
\(712\) −6.52104e12 −0.950948
\(713\) 1.01815e11 0.0147540
\(714\) 0 0
\(715\) 4.87845e11 0.0698079
\(716\) −6.31358e12 −0.897773
\(717\) −4.93981e12 −0.698030
\(718\) 2.93033e12 0.411487
\(719\) 1.05283e13 1.46919 0.734594 0.678507i \(-0.237373\pi\)
0.734594 + 0.678507i \(0.237373\pi\)
\(720\) −6.59646e11 −0.0914775
\(721\) 1.79889e12 0.247911
\(722\) −4.15505e12 −0.569061
\(723\) −8.73269e12 −1.18857
\(724\) 3.87197e12 0.523731
\(725\) 4.33733e12 0.583044
\(726\) −2.86214e12 −0.382363
\(727\) −9.94519e11 −0.132041 −0.0660204 0.997818i \(-0.521030\pi\)
−0.0660204 + 0.997818i \(0.521030\pi\)
\(728\) 4.27205e11 0.0563696
\(729\) 6.96056e12 0.912788
\(730\) −2.76405e12 −0.360240
\(731\) 0 0
\(732\) 3.56874e12 0.459425
\(733\) 3.00202e12 0.384101 0.192051 0.981385i \(-0.438486\pi\)
0.192051 + 0.981385i \(0.438486\pi\)
\(734\) −4.88580e12 −0.621303
\(735\) −7.52211e12 −0.950708
\(736\) −1.18219e12 −0.148503
\(737\) −1.64814e12 −0.205774
\(738\) 1.86545e12 0.231489
\(739\) −1.31885e13 −1.62665 −0.813325 0.581810i \(-0.802345\pi\)
−0.813325 + 0.581810i \(0.802345\pi\)
\(740\) 1.27870e13 1.56757
\(741\) 5.60396e10 0.00682831
\(742\) −2.32507e12 −0.281591
\(743\) −4.22387e12 −0.508464 −0.254232 0.967143i \(-0.581823\pi\)
−0.254232 + 0.967143i \(0.581823\pi\)
\(744\) 5.90299e11 0.0706308
\(745\) 1.76098e13 2.09436
\(746\) 8.47749e12 1.00217
\(747\) 5.76662e12 0.677608
\(748\) 0 0
\(749\) −3.23571e12 −0.375665
\(750\) 1.12791e12 0.130167
\(751\) −8.30449e12 −0.952649 −0.476325 0.879270i \(-0.658031\pi\)
−0.476325 + 0.879270i \(0.658031\pi\)
\(752\) 1.99866e12 0.227907
\(753\) 1.65140e12 0.187187
\(754\) −4.22399e11 −0.0475939
\(755\) −2.36835e12 −0.265268
\(756\) 2.20081e12 0.245038
\(757\) −9.58086e12 −1.06041 −0.530204 0.847870i \(-0.677885\pi\)
−0.530204 + 0.847870i \(0.677885\pi\)
\(758\) −6.51635e12 −0.716957
\(759\) 2.58231e11 0.0282436
\(760\) 7.12221e11 0.0774379
\(761\) −3.82260e12 −0.413169 −0.206585 0.978429i \(-0.566235\pi\)
−0.206585 + 0.978429i \(0.566235\pi\)
\(762\) −4.09982e12 −0.440521
\(763\) 2.70460e12 0.288897
\(764\) 2.29081e12 0.243259
\(765\) 0 0
\(766\) −4.41601e12 −0.463448
\(767\) −1.64958e12 −0.172106
\(768\) −6.24858e12 −0.648121
\(769\) −1.25991e13 −1.29919 −0.649595 0.760281i \(-0.725061\pi\)
−0.649595 + 0.760281i \(0.725061\pi\)
\(770\) −7.62883e11 −0.0782077
\(771\) −5.58380e12 −0.569096
\(772\) −4.43434e12 −0.449315
\(773\) 3.83859e12 0.386691 0.193345 0.981131i \(-0.438066\pi\)
0.193345 + 0.981131i \(0.438066\pi\)
\(774\) 5.13431e12 0.514219
\(775\) −1.24462e12 −0.123931
\(776\) −9.63900e12 −0.954232
\(777\) −3.90687e12 −0.384534
\(778\) 9.57768e12 0.937243
\(779\) 4.75781e11 0.0462902
\(780\) 1.29919e12 0.125674
\(781\) −2.82365e12 −0.271570
\(782\) 0 0
\(783\) −5.40346e12 −0.513741
\(784\) −1.20508e12 −0.113918
\(785\) −6.79716e12 −0.638873
\(786\) 1.72230e12 0.160956
\(787\) 2.26189e12 0.210177 0.105089 0.994463i \(-0.466487\pi\)
0.105089 + 0.994463i \(0.466487\pi\)
\(788\) 3.15878e12 0.291844
\(789\) 1.38686e12 0.127405
\(790\) −2.57436e11 −0.0235151
\(791\) −5.66754e12 −0.514754
\(792\) −1.36762e12 −0.123510
\(793\) 1.81963e12 0.163401
\(794\) 3.15574e12 0.281779
\(795\) −1.75580e13 −1.55892
\(796\) 1.38821e13 1.22559
\(797\) 1.88804e13 1.65748 0.828741 0.559632i \(-0.189058\pi\)
0.828741 + 0.559632i \(0.189058\pi\)
\(798\) −8.76337e10 −0.00764994
\(799\) 0 0
\(800\) 1.44514e13 1.24740
\(801\) −5.53491e12 −0.475077
\(802\) 5.41245e12 0.461965
\(803\) 1.35369e12 0.114895
\(804\) −4.38920e12 −0.370453
\(805\) −8.70148e11 −0.0730317
\(806\) 1.21210e11 0.0101165
\(807\) 9.63602e12 0.799773
\(808\) 1.95724e13 1.61545
\(809\) 3.59571e11 0.0295132 0.0147566 0.999891i \(-0.495303\pi\)
0.0147566 + 0.999891i \(0.495303\pi\)
\(810\) −3.06497e12 −0.250175
\(811\) 1.94199e13 1.57635 0.788174 0.615452i \(-0.211027\pi\)
0.788174 + 0.615452i \(0.211027\pi\)
\(812\) −1.36714e12 −0.110360
\(813\) 8.02637e12 0.644335
\(814\) 3.02572e12 0.241557
\(815\) −4.35488e12 −0.345754
\(816\) 0 0
\(817\) 1.30950e12 0.102827
\(818\) −7.06746e12 −0.551917
\(819\) 3.62601e11 0.0281612
\(820\) 1.10302e13 0.851966
\(821\) 1.20567e13 0.926153 0.463077 0.886318i \(-0.346745\pi\)
0.463077 + 0.886318i \(0.346745\pi\)
\(822\) 6.73783e11 0.0514750
\(823\) −1.80283e13 −1.36979 −0.684897 0.728640i \(-0.740153\pi\)
−0.684897 + 0.728640i \(0.740153\pi\)
\(824\) −9.21295e12 −0.696187
\(825\) −3.15670e12 −0.237241
\(826\) 2.57959e12 0.192815
\(827\) 1.53472e13 1.14092 0.570458 0.821326i \(-0.306766\pi\)
0.570458 + 0.821326i \(0.306766\pi\)
\(828\) −6.28198e11 −0.0464472
\(829\) 1.06941e13 0.786412 0.393206 0.919450i \(-0.371366\pi\)
0.393206 + 0.919450i \(0.371366\pi\)
\(830\) −1.64744e13 −1.20492
\(831\) −2.56487e12 −0.186578
\(832\) −1.09868e12 −0.0794905
\(833\) 0 0
\(834\) −1.02405e13 −0.732949
\(835\) 2.92726e13 2.08388
\(836\) −1.40471e11 −0.00994620
\(837\) 1.55055e12 0.109200
\(838\) 8.15064e12 0.570944
\(839\) 1.24511e13 0.867518 0.433759 0.901029i \(-0.357187\pi\)
0.433759 + 0.901029i \(0.357187\pi\)
\(840\) −5.04489e12 −0.349619
\(841\) −1.11505e13 −0.768623
\(842\) 3.34899e12 0.229620
\(843\) 9.66619e10 0.00659222
\(844\) −3.13128e12 −0.212413
\(845\) −2.13799e13 −1.44262
\(846\) −7.18145e12 −0.481998
\(847\) −4.72334e12 −0.315336
\(848\) −2.81288e12 −0.186797
\(849\) −3.84170e12 −0.253769
\(850\) 0 0
\(851\) 3.45116e12 0.225570
\(852\) −7.51971e12 −0.488903
\(853\) 1.72550e13 1.11595 0.557974 0.829858i \(-0.311579\pi\)
0.557974 + 0.829858i \(0.311579\pi\)
\(854\) −2.84551e12 −0.183062
\(855\) 6.04517e11 0.0386866
\(856\) 1.65716e13 1.05495
\(857\) 5.66030e12 0.358447 0.179224 0.983808i \(-0.442641\pi\)
0.179224 + 0.983808i \(0.442641\pi\)
\(858\) 3.07420e11 0.0193660
\(859\) −6.43103e12 −0.403006 −0.201503 0.979488i \(-0.564583\pi\)
−0.201503 + 0.979488i \(0.564583\pi\)
\(860\) 3.03587e13 1.89252
\(861\) −3.37011e12 −0.208992
\(862\) −4.13853e12 −0.255307
\(863\) −1.51972e13 −0.932645 −0.466322 0.884615i \(-0.654421\pi\)
−0.466322 + 0.884615i \(0.654421\pi\)
\(864\) −1.80036e13 −1.09913
\(865\) −8.28660e12 −0.503273
\(866\) 7.85412e12 0.474534
\(867\) 0 0
\(868\) 3.92308e11 0.0234578
\(869\) 1.26079e11 0.00749988
\(870\) 4.98814e12 0.295190
\(871\) −2.23797e12 −0.131757
\(872\) −1.38515e13 −0.811286
\(873\) −8.18135e12 −0.476718
\(874\) 7.74117e10 0.00448751
\(875\) 1.86138e12 0.107349
\(876\) 3.60504e12 0.206843
\(877\) 1.55933e13 0.890104 0.445052 0.895505i \(-0.353185\pi\)
0.445052 + 0.895505i \(0.353185\pi\)
\(878\) −1.24976e13 −0.709745
\(879\) −1.19035e13 −0.672548
\(880\) −9.22938e11 −0.0518800
\(881\) 6.53525e12 0.365486 0.182743 0.983161i \(-0.441502\pi\)
0.182743 + 0.983161i \(0.441502\pi\)
\(882\) 4.33000e12 0.240924
\(883\) 7.83304e12 0.433618 0.216809 0.976214i \(-0.430435\pi\)
0.216809 + 0.976214i \(0.430435\pi\)
\(884\) 0 0
\(885\) 1.94801e13 1.06745
\(886\) 1.16304e13 0.634078
\(887\) 1.69970e13 0.921967 0.460983 0.887409i \(-0.347497\pi\)
0.460983 + 0.887409i \(0.347497\pi\)
\(888\) 2.00089e13 1.07985
\(889\) −6.76586e12 −0.363300
\(890\) 1.58124e13 0.844779
\(891\) 1.50107e12 0.0797904
\(892\) −9.80131e12 −0.518373
\(893\) −1.83162e12 −0.0963840
\(894\) 1.10970e13 0.581013
\(895\) 3.80154e13 1.98042
\(896\) −5.03785e12 −0.261132
\(897\) 3.50645e11 0.0180843
\(898\) −3.26959e12 −0.167784
\(899\) −9.63201e11 −0.0491811
\(900\) 7.67928e12 0.390148
\(901\) 0 0
\(902\) 2.61003e12 0.131285
\(903\) −9.27563e12 −0.464247
\(904\) 2.90261e13 1.44554
\(905\) −2.33140e13 −1.15531
\(906\) −1.49244e12 −0.0735901
\(907\) −2.70047e13 −1.32497 −0.662486 0.749075i \(-0.730498\pi\)
−0.662486 + 0.749075i \(0.730498\pi\)
\(908\) 2.67222e13 1.30462
\(909\) 1.66126e13 0.807049
\(910\) −1.03590e12 −0.0500761
\(911\) −4.11523e13 −1.97953 −0.989763 0.142722i \(-0.954415\pi\)
−0.989763 + 0.142722i \(0.954415\pi\)
\(912\) −1.06019e11 −0.00507468
\(913\) 8.06832e12 0.384295
\(914\) 1.95204e13 0.925189
\(915\) −2.14882e13 −1.01345
\(916\) 3.61299e11 0.0169566
\(917\) 2.84228e12 0.132741
\(918\) 0 0
\(919\) −3.01787e12 −0.139566 −0.0697832 0.997562i \(-0.522231\pi\)
−0.0697832 + 0.997562i \(0.522231\pi\)
\(920\) 4.45644e12 0.205089
\(921\) −8.30358e12 −0.380274
\(922\) 1.04506e13 0.476267
\(923\) −3.83416e12 −0.173885
\(924\) 9.94998e11 0.0449054
\(925\) −4.21880e13 −1.89475
\(926\) 2.01468e13 0.900445
\(927\) −7.81973e12 −0.347803
\(928\) 1.11838e13 0.495021
\(929\) 2.85800e13 1.25890 0.629449 0.777041i \(-0.283280\pi\)
0.629449 + 0.777041i \(0.283280\pi\)
\(930\) −1.43137e12 −0.0627451
\(931\) 1.10436e12 0.0481769
\(932\) −2.09929e13 −0.911385
\(933\) 1.72075e13 0.743450
\(934\) 4.73818e12 0.203728
\(935\) 0 0
\(936\) −1.85705e12 −0.0790829
\(937\) −3.78192e13 −1.60282 −0.801409 0.598117i \(-0.795916\pi\)
−0.801409 + 0.598117i \(0.795916\pi\)
\(938\) 3.49969e12 0.147611
\(939\) 3.30407e13 1.38693
\(940\) −4.24633e13 −1.77394
\(941\) −2.17056e13 −0.902441 −0.451220 0.892413i \(-0.649011\pi\)
−0.451220 + 0.892413i \(0.649011\pi\)
\(942\) −4.28330e12 −0.177235
\(943\) 2.97701e12 0.122596
\(944\) 3.12079e12 0.127906
\(945\) −1.32515e13 −0.540535
\(946\) 7.18363e12 0.291631
\(947\) −1.29191e13 −0.521986 −0.260993 0.965341i \(-0.584050\pi\)
−0.260993 + 0.965341i \(0.584050\pi\)
\(948\) 3.35764e11 0.0135019
\(949\) 1.83814e12 0.0735666
\(950\) −9.46305e11 −0.0376942
\(951\) 1.32407e13 0.524927
\(952\) 0 0
\(953\) 2.66939e13 1.04832 0.524159 0.851620i \(-0.324380\pi\)
0.524159 + 0.851620i \(0.324380\pi\)
\(954\) 1.01070e13 0.395054
\(955\) −1.37935e13 −0.536609
\(956\) 1.68135e13 0.651027
\(957\) −2.44294e12 −0.0941475
\(958\) 7.40815e12 0.284162
\(959\) 1.11193e12 0.0424517
\(960\) 1.29744e13 0.493021
\(961\) −2.61632e13 −0.989546
\(962\) 4.10855e12 0.154668
\(963\) 1.40656e13 0.527034
\(964\) 2.97233e13 1.10854
\(965\) 2.67001e13 0.991153
\(966\) −5.48332e11 −0.0202603
\(967\) 2.52091e13 0.927124 0.463562 0.886064i \(-0.346571\pi\)
0.463562 + 0.886064i \(0.346571\pi\)
\(968\) 2.41905e13 0.885534
\(969\) 0 0
\(970\) 2.33729e13 0.847696
\(971\) −3.23630e13 −1.16832 −0.584161 0.811638i \(-0.698576\pi\)
−0.584161 + 0.811638i \(0.698576\pi\)
\(972\) −1.60424e13 −0.576462
\(973\) −1.68997e13 −0.604466
\(974\) 2.02002e13 0.719184
\(975\) −4.28640e12 −0.151905
\(976\) −3.44250e12 −0.121437
\(977\) −3.01878e13 −1.06000 −0.530001 0.847997i \(-0.677808\pi\)
−0.530001 + 0.847997i \(0.677808\pi\)
\(978\) −2.74427e12 −0.0959184
\(979\) −7.74412e12 −0.269432
\(980\) 2.56029e13 0.886690
\(981\) −1.17569e13 −0.405304
\(982\) −1.55635e12 −0.0534080
\(983\) −4.00385e13 −1.36769 −0.683843 0.729629i \(-0.739693\pi\)
−0.683843 + 0.729629i \(0.739693\pi\)
\(984\) 1.72599e13 0.586896
\(985\) −1.90197e13 −0.643785
\(986\) 0 0
\(987\) 1.29740e13 0.435157
\(988\) −1.90741e11 −0.00636852
\(989\) 8.19369e12 0.272330
\(990\) 3.31624e12 0.109720
\(991\) 1.77191e13 0.583593 0.291796 0.956480i \(-0.405747\pi\)
0.291796 + 0.956480i \(0.405747\pi\)
\(992\) −3.20926e12 −0.105221
\(993\) 1.09281e13 0.356676
\(994\) 5.99578e12 0.194808
\(995\) −8.35870e13 −2.70355
\(996\) 2.14869e13 0.691841
\(997\) −1.52000e13 −0.487210 −0.243605 0.969875i \(-0.578330\pi\)
−0.243605 + 0.969875i \(0.578330\pi\)
\(998\) 6.40633e12 0.204419
\(999\) 5.25579e13 1.66953
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 289.10.a.f.1.16 24
17.8 even 8 17.10.c.a.13.5 yes 24
17.15 even 8 17.10.c.a.4.8 24
17.16 even 2 inner 289.10.a.f.1.15 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.10.c.a.4.8 24 17.15 even 8
17.10.c.a.13.5 yes 24 17.8 even 8
289.10.a.f.1.15 24 17.16 even 2 inner
289.10.a.f.1.16 24 1.1 even 1 trivial