Defining parameters
Level: | \( N \) | = | \( 289 = 17^{2} \) |
Weight: | \( k \) | = | \( 10 \) |
Nonzero newspaces: | \( 8 \) | ||
Sturm bound: | \(69360\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_1(289))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 31412 | 31181 | 231 |
Cusp forms | 31012 | 30812 | 200 |
Eisenstein series | 400 | 369 | 31 |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_1(289))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
289.10.a | \(\chi_{289}(1, \cdot)\) | 289.10.a.a | 5 | 1 |
289.10.a.b | 7 | |||
289.10.a.c | 12 | |||
289.10.a.d | 12 | |||
289.10.a.e | 12 | |||
289.10.a.f | 24 | |||
289.10.a.g | 36 | |||
289.10.a.h | 36 | |||
289.10.a.i | 52 | |||
289.10.b | \(\chi_{289}(288, \cdot)\) | n/a | 196 | 1 |
289.10.c | \(\chi_{289}(38, \cdot)\) | n/a | 392 | 2 |
289.10.d | \(\chi_{289}(110, \cdot)\) | n/a | 780 | 4 |
289.10.f | \(\chi_{289}(18, \cdot)\) | n/a | 3648 | 16 |
289.10.g | \(\chi_{289}(16, \cdot)\) | n/a | 3648 | 16 |
289.10.h | \(\chi_{289}(4, \cdot)\) | n/a | 7296 | 32 |
289.10.i | \(\chi_{289}(2, \cdot)\) | n/a | 14656 | 64 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_1(289))\) into lower level spaces
\( S_{10}^{\mathrm{old}}(\Gamma_1(289)) \cong \) \(S_{10}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 2}\)