Properties

Label 2880.2.t.c.721.1
Level $2880$
Weight $2$
Character 2880.721
Analytic conductor $22.997$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2880,2,Mod(721,2880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2880, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2880.721"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2880.t (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.9969157821\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 4 x^{14} + 7 x^{12} - 8 x^{11} - 28 x^{10} + 28 x^{9} + 17 x^{8} + 56 x^{7} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 721.1
Root \(-0.966675 - 1.03225i\) of defining polynomial
Character \(\chi\) \(=\) 2880.721
Dual form 2880.2.t.c.2161.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{5} -1.73696i q^{7} +(0.505430 - 0.505430i) q^{11} +(-1.88750 - 1.88750i) q^{13} -4.53524 q^{17} +(3.22022 + 3.22022i) q^{19} +8.85045i q^{23} -1.00000i q^{25} +(2.44059 + 2.44059i) q^{29} +5.70401 q^{31} +(1.22822 + 1.22822i) q^{35} +(-5.35670 + 5.35670i) q^{37} -10.0343i q^{41} +(2.10564 - 2.10564i) q^{43} +4.32303 q^{47} +3.98295 q^{49} +(1.37458 - 1.37458i) q^{53} +0.714786i q^{55} +(6.64140 - 6.64140i) q^{59} +(5.26208 + 5.26208i) q^{61} +2.66933 q^{65} +(10.5578 + 10.5578i) q^{67} -14.0437i q^{71} -6.63830i q^{73} +(-0.877914 - 0.877914i) q^{77} -4.27297 q^{79} +(9.15483 + 9.15483i) q^{83} +(3.20690 - 3.20690i) q^{85} -3.23826i q^{89} +(-3.27852 + 3.27852i) q^{91} -4.55407 q^{95} +1.94129 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{11} + 8 q^{19} + 16 q^{29} - 16 q^{37} - 8 q^{43} - 40 q^{47} - 16 q^{49} - 16 q^{53} - 8 q^{59} + 16 q^{61} - 40 q^{67} - 16 q^{77} - 16 q^{79} + 40 q^{83} - 16 q^{85} - 32 q^{91} + 32 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2880\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(641\) \(901\) \(2431\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.707107 + 0.707107i −0.316228 + 0.316228i
\(6\) 0 0
\(7\) 1.73696i 0.656511i −0.944589 0.328255i \(-0.893539\pi\)
0.944589 0.328255i \(-0.106461\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.505430 0.505430i 0.152393 0.152393i −0.626793 0.779186i \(-0.715633\pi\)
0.779186 + 0.626793i \(0.215633\pi\)
\(12\) 0 0
\(13\) −1.88750 1.88750i −0.523498 0.523498i 0.395128 0.918626i \(-0.370700\pi\)
−0.918626 + 0.395128i \(0.870700\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.53524 −1.09996 −0.549979 0.835178i \(-0.685364\pi\)
−0.549979 + 0.835178i \(0.685364\pi\)
\(18\) 0 0
\(19\) 3.22022 + 3.22022i 0.738768 + 0.738768i 0.972340 0.233571i \(-0.0750413\pi\)
−0.233571 + 0.972340i \(0.575041\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 8.85045i 1.84545i 0.385463 + 0.922723i \(0.374042\pi\)
−0.385463 + 0.922723i \(0.625958\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.44059 + 2.44059i 0.453205 + 0.453205i 0.896417 0.443212i \(-0.146161\pi\)
−0.443212 + 0.896417i \(0.646161\pi\)
\(30\) 0 0
\(31\) 5.70401 1.02447 0.512235 0.858845i \(-0.328818\pi\)
0.512235 + 0.858845i \(0.328818\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.22822 + 1.22822i 0.207607 + 0.207607i
\(36\) 0 0
\(37\) −5.35670 + 5.35670i −0.880636 + 0.880636i −0.993599 0.112963i \(-0.963966\pi\)
0.112963 + 0.993599i \(0.463966\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 10.0343i 1.56709i −0.621335 0.783545i \(-0.713409\pi\)
0.621335 0.783545i \(-0.286591\pi\)
\(42\) 0 0
\(43\) 2.10564 2.10564i 0.321107 0.321107i −0.528085 0.849192i \(-0.677090\pi\)
0.849192 + 0.528085i \(0.177090\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.32303 0.630578 0.315289 0.948996i \(-0.397899\pi\)
0.315289 + 0.948996i \(0.397899\pi\)
\(48\) 0 0
\(49\) 3.98295 0.568993
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.37458 1.37458i 0.188814 0.188814i −0.606369 0.795183i \(-0.707375\pi\)
0.795183 + 0.606369i \(0.207375\pi\)
\(54\) 0 0
\(55\) 0.714786i 0.0963817i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.64140 6.64140i 0.864637 0.864637i −0.127236 0.991872i \(-0.540611\pi\)
0.991872 + 0.127236i \(0.0406105\pi\)
\(60\) 0 0
\(61\) 5.26208 + 5.26208i 0.673741 + 0.673741i 0.958576 0.284836i \(-0.0919391\pi\)
−0.284836 + 0.958576i \(0.591939\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.66933 0.331089
\(66\) 0 0
\(67\) 10.5578 + 10.5578i 1.28984 + 1.28984i 0.934884 + 0.354954i \(0.115503\pi\)
0.354954 + 0.934884i \(0.384497\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 14.0437i 1.66668i −0.552764 0.833338i \(-0.686427\pi\)
0.552764 0.833338i \(-0.313573\pi\)
\(72\) 0 0
\(73\) 6.63830i 0.776954i −0.921458 0.388477i \(-0.873001\pi\)
0.921458 0.388477i \(-0.126999\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.877914 0.877914i −0.100048 0.100048i
\(78\) 0 0
\(79\) −4.27297 −0.480746 −0.240373 0.970681i \(-0.577270\pi\)
−0.240373 + 0.970681i \(0.577270\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 9.15483 + 9.15483i 1.00487 + 1.00487i 0.999988 + 0.00488547i \(0.00155510\pi\)
0.00488547 + 0.999988i \(0.498445\pi\)
\(84\) 0 0
\(85\) 3.20690 3.20690i 0.347837 0.347837i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.23826i 0.343255i −0.985162 0.171627i \(-0.945097\pi\)
0.985162 0.171627i \(-0.0549025\pi\)
\(90\) 0 0
\(91\) −3.27852 + 3.27852i −0.343682 + 0.343682i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −4.55407 −0.467238
\(96\) 0 0
\(97\) 1.94129 0.197108 0.0985541 0.995132i \(-0.468578\pi\)
0.0985541 + 0.995132i \(0.468578\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −10.3395 + 10.3395i −1.02882 + 1.02882i −0.0292464 + 0.999572i \(0.509311\pi\)
−0.999572 + 0.0292464i \(0.990689\pi\)
\(102\) 0 0
\(103\) 4.96401i 0.489118i 0.969634 + 0.244559i \(0.0786433\pi\)
−0.969634 + 0.244559i \(0.921357\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.74631 + 2.74631i −0.265496 + 0.265496i −0.827282 0.561787i \(-0.810114\pi\)
0.561787 + 0.827282i \(0.310114\pi\)
\(108\) 0 0
\(109\) 6.99959 + 6.99959i 0.670439 + 0.670439i 0.957817 0.287378i \(-0.0927837\pi\)
−0.287378 + 0.957817i \(0.592784\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 6.53194 0.614474 0.307237 0.951633i \(-0.400596\pi\)
0.307237 + 0.951633i \(0.400596\pi\)
\(114\) 0 0
\(115\) −6.25821 6.25821i −0.583582 0.583582i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 7.87756i 0.722134i
\(120\) 0 0
\(121\) 10.4891i 0.953553i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0.707107 + 0.707107i 0.0632456 + 0.0632456i
\(126\) 0 0
\(127\) 2.50861 0.222603 0.111302 0.993787i \(-0.464498\pi\)
0.111302 + 0.993787i \(0.464498\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 8.55783 + 8.55783i 0.747701 + 0.747701i 0.974047 0.226346i \(-0.0726780\pi\)
−0.226346 + 0.974047i \(0.572678\pi\)
\(132\) 0 0
\(133\) 5.59340 5.59340i 0.485009 0.485009i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.47131i 0.552881i 0.961031 + 0.276440i \(0.0891549\pi\)
−0.961031 + 0.276440i \(0.910845\pi\)
\(138\) 0 0
\(139\) 16.4430 16.4430i 1.39468 1.39468i 0.580223 0.814458i \(-0.302965\pi\)
0.814458 0.580223i \(-0.197035\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.90800 −0.159555
\(144\) 0 0
\(145\) −3.45151 −0.286632
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2.72803 2.72803i 0.223489 0.223489i −0.586477 0.809966i \(-0.699486\pi\)
0.809966 + 0.586477i \(0.199486\pi\)
\(150\) 0 0
\(151\) 11.5196i 0.937453i 0.883343 + 0.468726i \(0.155287\pi\)
−0.883343 + 0.468726i \(0.844713\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4.03334 + 4.03334i −0.323966 + 0.323966i
\(156\) 0 0
\(157\) 3.28013 + 3.28013i 0.261783 + 0.261783i 0.825778 0.563995i \(-0.190736\pi\)
−0.563995 + 0.825778i \(0.690736\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 15.3729 1.21156
\(162\) 0 0
\(163\) 9.27367 + 9.27367i 0.726370 + 0.726370i 0.969895 0.243525i \(-0.0783037\pi\)
−0.243525 + 0.969895i \(0.578304\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 7.08065i 0.547917i 0.961742 + 0.273958i \(0.0883331\pi\)
−0.961742 + 0.273958i \(0.911667\pi\)
\(168\) 0 0
\(169\) 5.87470i 0.451900i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 5.21471 + 5.21471i 0.396467 + 0.396467i 0.876985 0.480518i \(-0.159551\pi\)
−0.480518 + 0.876985i \(0.659551\pi\)
\(174\) 0 0
\(175\) −1.73696 −0.131302
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 6.32196 + 6.32196i 0.472525 + 0.472525i 0.902731 0.430206i \(-0.141559\pi\)
−0.430206 + 0.902731i \(0.641559\pi\)
\(180\) 0 0
\(181\) 13.0695 13.0695i 0.971448 0.971448i −0.0281553 0.999604i \(-0.508963\pi\)
0.999604 + 0.0281553i \(0.00896329\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 7.57552i 0.556963i
\(186\) 0 0
\(187\) −2.29225 + 2.29225i −0.167626 + 0.167626i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −22.1722 −1.60433 −0.802164 0.597104i \(-0.796318\pi\)
−0.802164 + 0.597104i \(0.796318\pi\)
\(192\) 0 0
\(193\) 7.97695 0.574193 0.287097 0.957902i \(-0.407310\pi\)
0.287097 + 0.957902i \(0.407310\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −5.76327 + 5.76327i −0.410616 + 0.410616i −0.881953 0.471337i \(-0.843772\pi\)
0.471337 + 0.881953i \(0.343772\pi\)
\(198\) 0 0
\(199\) 5.38869i 0.381994i 0.981591 + 0.190997i \(0.0611721\pi\)
−0.981591 + 0.190997i \(0.938828\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 4.23921 4.23921i 0.297534 0.297534i
\(204\) 0 0
\(205\) 7.09530 + 7.09530i 0.495557 + 0.495557i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 3.25519 0.225166
\(210\) 0 0
\(211\) −10.7547 10.7547i −0.740384 0.740384i 0.232268 0.972652i \(-0.425385\pi\)
−0.972652 + 0.232268i \(0.925385\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2.97782i 0.203086i
\(216\) 0 0
\(217\) 9.90766i 0.672576i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 8.56026 + 8.56026i 0.575826 + 0.575826i
\(222\) 0 0
\(223\) 3.98714 0.266998 0.133499 0.991049i \(-0.457379\pi\)
0.133499 + 0.991049i \(0.457379\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3.82103 3.82103i −0.253611 0.253611i 0.568839 0.822449i \(-0.307393\pi\)
−0.822449 + 0.568839i \(0.807393\pi\)
\(228\) 0 0
\(229\) −8.80687 + 8.80687i −0.581974 + 0.581974i −0.935445 0.353471i \(-0.885001\pi\)
0.353471 + 0.935445i \(0.385001\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 16.6042i 1.08778i −0.839157 0.543889i \(-0.816951\pi\)
0.839157 0.543889i \(-0.183049\pi\)
\(234\) 0 0
\(235\) −3.05684 + 3.05684i −0.199406 + 0.199406i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3.81234 0.246600 0.123300 0.992369i \(-0.460652\pi\)
0.123300 + 0.992369i \(0.460652\pi\)
\(240\) 0 0
\(241\) 9.54985 0.615160 0.307580 0.951522i \(-0.400481\pi\)
0.307580 + 0.951522i \(0.400481\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2.81637 + 2.81637i −0.179932 + 0.179932i
\(246\) 0 0
\(247\) 12.1563i 0.773487i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 11.9933 11.9933i 0.757010 0.757010i −0.218767 0.975777i \(-0.570203\pi\)
0.975777 + 0.218767i \(0.0702034\pi\)
\(252\) 0 0
\(253\) 4.47328 + 4.47328i 0.281233 + 0.281233i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −18.8752 −1.17740 −0.588702 0.808350i \(-0.700361\pi\)
−0.588702 + 0.808350i \(0.700361\pi\)
\(258\) 0 0
\(259\) 9.30440 + 9.30440i 0.578147 + 0.578147i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 23.1398i 1.42686i −0.700727 0.713429i \(-0.747141\pi\)
0.700727 0.713429i \(-0.252859\pi\)
\(264\) 0 0
\(265\) 1.94396i 0.119416i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 10.6368 + 10.6368i 0.648539 + 0.648539i 0.952640 0.304101i \(-0.0983560\pi\)
−0.304101 + 0.952640i \(0.598356\pi\)
\(270\) 0 0
\(271\) −19.9763 −1.21348 −0.606738 0.794902i \(-0.707522\pi\)
−0.606738 + 0.794902i \(0.707522\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.505430 0.505430i −0.0304786 0.0304786i
\(276\) 0 0
\(277\) −16.1534 + 16.1534i −0.970563 + 0.970563i −0.999579 0.0290160i \(-0.990763\pi\)
0.0290160 + 0.999579i \(0.490763\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 9.43520i 0.562857i 0.959582 + 0.281429i \(0.0908082\pi\)
−0.959582 + 0.281429i \(0.909192\pi\)
\(282\) 0 0
\(283\) −8.71287 + 8.71287i −0.517926 + 0.517926i −0.916943 0.399017i \(-0.869351\pi\)
0.399017 + 0.916943i \(0.369351\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −17.4292 −1.02881
\(288\) 0 0
\(289\) 3.56843 0.209908
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 11.1045 11.1045i 0.648729 0.648729i −0.303957 0.952686i \(-0.598308\pi\)
0.952686 + 0.303957i \(0.0983079\pi\)
\(294\) 0 0
\(295\) 9.39236i 0.546844i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 16.7052 16.7052i 0.966087 0.966087i
\(300\) 0 0
\(301\) −3.65742 3.65742i −0.210810 0.210810i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −7.44171 −0.426111
\(306\) 0 0
\(307\) 2.99854 + 2.99854i 0.171136 + 0.171136i 0.787478 0.616343i \(-0.211386\pi\)
−0.616343 + 0.787478i \(0.711386\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 9.06099i 0.513802i 0.966438 + 0.256901i \(0.0827014\pi\)
−0.966438 + 0.256901i \(0.917299\pi\)
\(312\) 0 0
\(313\) 19.5699i 1.10616i 0.833129 + 0.553078i \(0.186547\pi\)
−0.833129 + 0.553078i \(0.813453\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 11.1019 + 11.1019i 0.623546 + 0.623546i 0.946436 0.322890i \(-0.104654\pi\)
−0.322890 + 0.946436i \(0.604654\pi\)
\(318\) 0 0
\(319\) 2.46709 0.138131
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −14.6045 14.6045i −0.812614 0.812614i
\(324\) 0 0
\(325\) −1.88750 + 1.88750i −0.104700 + 0.104700i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 7.50894i 0.413981i
\(330\) 0 0
\(331\) 8.14718 8.14718i 0.447810 0.447810i −0.446816 0.894626i \(-0.647442\pi\)
0.894626 + 0.446816i \(0.147442\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −14.9309 −0.815765
\(336\) 0 0
\(337\) −25.1380 −1.36935 −0.684677 0.728847i \(-0.740057\pi\)
−0.684677 + 0.728847i \(0.740057\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.88298 2.88298i 0.156122 0.156122i
\(342\) 0 0
\(343\) 19.0770i 1.03006i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7.36719 7.36719i 0.395491 0.395491i −0.481148 0.876639i \(-0.659780\pi\)
0.876639 + 0.481148i \(0.159780\pi\)
\(348\) 0 0
\(349\) −3.25982 3.25982i −0.174494 0.174494i 0.614457 0.788951i \(-0.289375\pi\)
−0.788951 + 0.614457i \(0.789375\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −0.502832 −0.0267630 −0.0133815 0.999910i \(-0.504260\pi\)
−0.0133815 + 0.999910i \(0.504260\pi\)
\(354\) 0 0
\(355\) 9.93037 + 9.93037i 0.527049 + 0.527049i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 5.95161i 0.314114i −0.987590 0.157057i \(-0.949799\pi\)
0.987590 0.157057i \(-0.0502007\pi\)
\(360\) 0 0
\(361\) 1.73958i 0.0915571i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 4.69399 + 4.69399i 0.245695 + 0.245695i
\(366\) 0 0
\(367\) −1.95365 −0.101980 −0.0509898 0.998699i \(-0.516238\pi\)
−0.0509898 + 0.998699i \(0.516238\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −2.38760 2.38760i −0.123958 0.123958i
\(372\) 0 0
\(373\) −18.6509 + 18.6509i −0.965708 + 0.965708i −0.999431 0.0337233i \(-0.989264\pi\)
0.0337233 + 0.999431i \(0.489264\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 9.21320i 0.474504i
\(378\) 0 0
\(379\) 3.85143 3.85143i 0.197835 0.197835i −0.601236 0.799071i \(-0.705325\pi\)
0.799071 + 0.601236i \(0.205325\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 2.29258 0.117145 0.0585726 0.998283i \(-0.481345\pi\)
0.0585726 + 0.998283i \(0.481345\pi\)
\(384\) 0 0
\(385\) 1.24156 0.0632757
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −4.90500 + 4.90500i −0.248693 + 0.248693i −0.820434 0.571741i \(-0.806268\pi\)
0.571741 + 0.820434i \(0.306268\pi\)
\(390\) 0 0
\(391\) 40.1389i 2.02991i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3.02144 3.02144i 0.152025 0.152025i
\(396\) 0 0
\(397\) −10.8616 10.8616i −0.545126 0.545126i 0.379901 0.925027i \(-0.375958\pi\)
−0.925027 + 0.379901i \(0.875958\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 7.10783 0.354948 0.177474 0.984125i \(-0.443207\pi\)
0.177474 + 0.984125i \(0.443207\pi\)
\(402\) 0 0
\(403\) −10.7663 10.7663i −0.536308 0.536308i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 5.41487i 0.268405i
\(408\) 0 0
\(409\) 29.1697i 1.44235i −0.692752 0.721176i \(-0.743602\pi\)
0.692752 0.721176i \(-0.256398\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −11.5359 11.5359i −0.567643 0.567643i
\(414\) 0 0
\(415\) −12.9469 −0.635538
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 3.06616 + 3.06616i 0.149792 + 0.149792i 0.778025 0.628233i \(-0.216222\pi\)
−0.628233 + 0.778025i \(0.716222\pi\)
\(420\) 0 0
\(421\) −0.532242 + 0.532242i −0.0259399 + 0.0259399i −0.719958 0.694018i \(-0.755839\pi\)
0.694018 + 0.719958i \(0.255839\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 4.53524i 0.219992i
\(426\) 0 0
\(427\) 9.14005 9.14005i 0.442318 0.442318i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 16.7237 0.805555 0.402777 0.915298i \(-0.368045\pi\)
0.402777 + 0.915298i \(0.368045\pi\)
\(432\) 0 0
\(433\) 28.3675 1.36326 0.681628 0.731699i \(-0.261272\pi\)
0.681628 + 0.731699i \(0.261272\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −28.5004 + 28.5004i −1.36336 + 1.36336i
\(438\) 0 0
\(439\) 13.5018i 0.644405i 0.946671 + 0.322203i \(0.104423\pi\)
−0.946671 + 0.322203i \(0.895577\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −9.55246 + 9.55246i −0.453851 + 0.453851i −0.896630 0.442780i \(-0.853992\pi\)
0.442780 + 0.896630i \(0.353992\pi\)
\(444\) 0 0
\(445\) 2.28980 + 2.28980i 0.108547 + 0.108547i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 9.35573 0.441524 0.220762 0.975328i \(-0.429146\pi\)
0.220762 + 0.975328i \(0.429146\pi\)
\(450\) 0 0
\(451\) −5.07162 5.07162i −0.238813 0.238813i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 4.63652i 0.217364i
\(456\) 0 0
\(457\) 6.84779i 0.320326i −0.987091 0.160163i \(-0.948798\pi\)
0.987091 0.160163i \(-0.0512020\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 11.7403 + 11.7403i 0.546801 + 0.546801i 0.925514 0.378713i \(-0.123633\pi\)
−0.378713 + 0.925514i \(0.623633\pi\)
\(462\) 0 0
\(463\) 26.6096 1.23665 0.618326 0.785922i \(-0.287811\pi\)
0.618326 + 0.785922i \(0.287811\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.47583 + 1.47583i 0.0682933 + 0.0682933i 0.740428 0.672135i \(-0.234623\pi\)
−0.672135 + 0.740428i \(0.734623\pi\)
\(468\) 0 0
\(469\) 18.3385 18.3385i 0.846792 0.846792i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.12851i 0.0978688i
\(474\) 0 0
\(475\) 3.22022 3.22022i 0.147754 0.147754i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −2.78600 −0.127296 −0.0636479 0.997972i \(-0.520273\pi\)
−0.0636479 + 0.997972i \(0.520273\pi\)
\(480\) 0 0
\(481\) 20.2215 0.922022
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.37270 + 1.37270i −0.0623311 + 0.0623311i
\(486\) 0 0
\(487\) 16.9499i 0.768073i 0.923318 + 0.384036i \(0.125466\pi\)
−0.923318 + 0.384036i \(0.874534\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −22.8390 + 22.8390i −1.03071 + 1.03071i −0.0311972 + 0.999513i \(0.509932\pi\)
−0.999513 + 0.0311972i \(0.990068\pi\)
\(492\) 0 0
\(493\) −11.0687 11.0687i −0.498507 0.498507i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −24.3933 −1.09419
\(498\) 0 0
\(499\) −2.33906 2.33906i −0.104711 0.104711i 0.652811 0.757521i \(-0.273590\pi\)
−0.757521 + 0.652811i \(0.773590\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 1.58801i 0.0708057i 0.999373 + 0.0354029i \(0.0112714\pi\)
−0.999373 + 0.0354029i \(0.988729\pi\)
\(504\) 0 0
\(505\) 14.6223i 0.650682i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 3.61613 + 3.61613i 0.160282 + 0.160282i 0.782692 0.622410i \(-0.213846\pi\)
−0.622410 + 0.782692i \(0.713846\pi\)
\(510\) 0 0
\(511\) −11.5305 −0.510079
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −3.51009 3.51009i −0.154673 0.154673i
\(516\) 0 0
\(517\) 2.18499 2.18499i 0.0960956 0.0960956i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 8.93031i 0.391244i 0.980679 + 0.195622i \(0.0626725\pi\)
−0.980679 + 0.195622i \(0.937327\pi\)
\(522\) 0 0
\(523\) −15.0355 + 15.0355i −0.657455 + 0.657455i −0.954777 0.297323i \(-0.903906\pi\)
0.297323 + 0.954777i \(0.403906\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −25.8691 −1.12687
\(528\) 0 0
\(529\) −55.3305 −2.40567
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −18.9397 + 18.9397i −0.820368 + 0.820368i
\(534\) 0 0
\(535\) 3.88387i 0.167914i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.01310 2.01310i 0.0867106 0.0867106i
\(540\) 0 0
\(541\) 5.57591 + 5.57591i 0.239727 + 0.239727i 0.816737 0.577010i \(-0.195781\pi\)
−0.577010 + 0.816737i \(0.695781\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −9.89891 −0.424023
\(546\) 0 0
\(547\) −32.8366 32.8366i −1.40399 1.40399i −0.786856 0.617136i \(-0.788293\pi\)
−0.617136 0.786856i \(-0.711707\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 15.7184i 0.669628i
\(552\) 0 0
\(553\) 7.42199i 0.315615i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −24.2077 24.2077i −1.02571 1.02571i −0.999661 0.0260537i \(-0.991706\pi\)
−0.0260537 0.999661i \(-0.508294\pi\)
\(558\) 0 0
\(559\) −7.94877 −0.336197
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 22.3407 + 22.3407i 0.941547 + 0.941547i 0.998384 0.0568365i \(-0.0181014\pi\)
−0.0568365 + 0.998384i \(0.518101\pi\)
\(564\) 0 0
\(565\) −4.61878 + 4.61878i −0.194314 + 0.194314i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 29.3339i 1.22974i −0.788629 0.614870i \(-0.789209\pi\)
0.788629 0.614870i \(-0.210791\pi\)
\(570\) 0 0
\(571\) −23.9934 + 23.9934i −1.00409 + 1.00409i −0.00410070 + 0.999992i \(0.501305\pi\)
−0.999992 + 0.00410070i \(0.998695\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 8.85045 0.369089
\(576\) 0 0
\(577\) −31.9232 −1.32898 −0.664490 0.747297i \(-0.731351\pi\)
−0.664490 + 0.747297i \(0.731351\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 15.9016 15.9016i 0.659710 0.659710i
\(582\) 0 0
\(583\) 1.38951i 0.0575477i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −26.2847 + 26.2847i −1.08488 + 1.08488i −0.0888379 + 0.996046i \(0.528315\pi\)
−0.996046 + 0.0888379i \(0.971685\pi\)
\(588\) 0 0
\(589\) 18.3681 + 18.3681i 0.756846 + 0.756846i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 38.2085 1.56904 0.784518 0.620106i \(-0.212910\pi\)
0.784518 + 0.620106i \(0.212910\pi\)
\(594\) 0 0
\(595\) −5.57027 5.57027i −0.228359 0.228359i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 25.1150i 1.02617i −0.858337 0.513086i \(-0.828502\pi\)
0.858337 0.513086i \(-0.171498\pi\)
\(600\) 0 0
\(601\) 22.2022i 0.905647i −0.891600 0.452823i \(-0.850417\pi\)
0.891600 0.452823i \(-0.149583\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −7.41690 7.41690i −0.301540 0.301540i
\(606\) 0 0
\(607\) −12.9648 −0.526226 −0.263113 0.964765i \(-0.584749\pi\)
−0.263113 + 0.964765i \(0.584749\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −8.15970 8.15970i −0.330106 0.330106i
\(612\) 0 0
\(613\) 7.42804 7.42804i 0.300016 0.300016i −0.541004 0.841020i \(-0.681956\pi\)
0.841020 + 0.541004i \(0.181956\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 23.2743i 0.936989i −0.883467 0.468494i \(-0.844797\pi\)
0.883467 0.468494i \(-0.155203\pi\)
\(618\) 0 0
\(619\) 31.6213 31.6213i 1.27097 1.27097i 0.325386 0.945581i \(-0.394506\pi\)
0.945581 0.325386i \(-0.105494\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −5.62474 −0.225351
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 24.2939 24.2939i 0.968663 0.968663i
\(630\) 0 0
\(631\) 29.9258i 1.19133i 0.803234 + 0.595663i \(0.203111\pi\)
−0.803234 + 0.595663i \(0.796889\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −1.77386 + 1.77386i −0.0703933 + 0.0703933i
\(636\) 0 0
\(637\) −7.51782 7.51782i −0.297867 0.297867i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −10.2240 −0.403825 −0.201912 0.979404i \(-0.564716\pi\)
−0.201912 + 0.979404i \(0.564716\pi\)
\(642\) 0 0
\(643\) 13.7202 + 13.7202i 0.541074 + 0.541074i 0.923844 0.382770i \(-0.125030\pi\)
−0.382770 + 0.923844i \(0.625030\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 18.6767i 0.734255i −0.930171 0.367128i \(-0.880341\pi\)
0.930171 0.367128i \(-0.119659\pi\)
\(648\) 0 0
\(649\) 6.71353i 0.263529i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −12.7935 12.7935i −0.500647 0.500647i 0.410992 0.911639i \(-0.365183\pi\)
−0.911639 + 0.410992i \(0.865183\pi\)
\(654\) 0 0
\(655\) −12.1026 −0.472888
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 12.3193 + 12.3193i 0.479893 + 0.479893i 0.905097 0.425204i \(-0.139798\pi\)
−0.425204 + 0.905097i \(0.639798\pi\)
\(660\) 0 0
\(661\) −24.0352 + 24.0352i −0.934862 + 0.934862i −0.998005 0.0631421i \(-0.979888\pi\)
0.0631421 + 0.998005i \(0.479888\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 7.91026i 0.306747i
\(666\) 0 0
\(667\) −21.6003 + 21.6003i −0.836367 + 0.836367i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 5.31923 0.205347
\(672\) 0 0
\(673\) −21.5360 −0.830150 −0.415075 0.909787i \(-0.636245\pi\)
−0.415075 + 0.909787i \(0.636245\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −13.1852 + 13.1852i −0.506750 + 0.506750i −0.913527 0.406778i \(-0.866652\pi\)
0.406778 + 0.913527i \(0.366652\pi\)
\(678\) 0 0
\(679\) 3.37195i 0.129404i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 30.6011 30.6011i 1.17092 1.17092i 0.188926 0.981991i \(-0.439499\pi\)
0.981991 0.188926i \(-0.0605008\pi\)
\(684\) 0 0
\(685\) −4.57590 4.57590i −0.174836 0.174836i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −5.18905 −0.197687
\(690\) 0 0
\(691\) 25.2675 + 25.2675i 0.961220 + 0.961220i 0.999276 0.0380558i \(-0.0121165\pi\)
−0.0380558 + 0.999276i \(0.512116\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 23.2540i 0.882074i
\(696\) 0 0
\(697\) 45.5079i 1.72373i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −18.5583 18.5583i −0.700937 0.700937i 0.263675 0.964612i \(-0.415065\pi\)
−0.964612 + 0.263675i \(0.915065\pi\)
\(702\) 0 0
\(703\) −34.4995 −1.30117
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 17.9593 + 17.9593i 0.675431 + 0.675431i
\(708\) 0 0
\(709\) 4.38093 4.38093i 0.164529 0.164529i −0.620040 0.784570i \(-0.712884\pi\)
0.784570 + 0.620040i \(0.212884\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 50.4831i 1.89061i
\(714\) 0 0
\(715\) 1.34916 1.34916i 0.0504556 0.0504556i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1.61691 0.0603007 0.0301503 0.999545i \(-0.490401\pi\)
0.0301503 + 0.999545i \(0.490401\pi\)
\(720\) 0 0
\(721\) 8.62231 0.321112
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.44059 2.44059i 0.0906411 0.0906411i
\(726\) 0 0
\(727\) 39.3600i 1.45978i 0.683563 + 0.729891i \(0.260429\pi\)
−0.683563 + 0.729891i \(0.739571\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −9.54958 + 9.54958i −0.353204 + 0.353204i
\(732\) 0 0
\(733\) −34.0787 34.0787i −1.25873 1.25873i −0.951701 0.307026i \(-0.900666\pi\)
−0.307026 0.951701i \(-0.599334\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 10.6724 0.393124
\(738\) 0 0
\(739\) −15.4278 15.4278i −0.567520 0.567520i 0.363913 0.931433i \(-0.381441\pi\)
−0.931433 + 0.363913i \(0.881441\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 23.5004i 0.862147i −0.902317 0.431074i \(-0.858135\pi\)
0.902317 0.431074i \(-0.141865\pi\)
\(744\) 0 0
\(745\) 3.85801i 0.141347i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 4.77024 + 4.77024i 0.174301 + 0.174301i
\(750\) 0 0
\(751\) −10.8586 −0.396236 −0.198118 0.980178i \(-0.563483\pi\)
−0.198118 + 0.980178i \(0.563483\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −8.14560 8.14560i −0.296449 0.296449i
\(756\) 0 0
\(757\) 18.8434 18.8434i 0.684874 0.684874i −0.276220 0.961094i \(-0.589082\pi\)
0.961094 + 0.276220i \(0.0890819\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 22.2837i 0.807783i −0.914807 0.403891i \(-0.867657\pi\)
0.914807 0.403891i \(-0.132343\pi\)
\(762\) 0 0
\(763\) 12.1580 12.1580i 0.440151 0.440151i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −25.0713 −0.905271
\(768\) 0 0
\(769\) 10.5399 0.380077 0.190039 0.981777i \(-0.439139\pi\)
0.190039 + 0.981777i \(0.439139\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −4.07768 + 4.07768i −0.146664 + 0.146664i −0.776626 0.629962i \(-0.783070\pi\)
0.629962 + 0.776626i \(0.283070\pi\)
\(774\) 0 0
\(775\) 5.70401i 0.204894i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 32.3125 32.3125i 1.15772 1.15772i
\(780\) 0 0
\(781\) −7.09809 7.09809i −0.253990 0.253990i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −4.63881 −0.165566
\(786\) 0 0
\(787\) 8.16669 + 8.16669i 0.291111 + 0.291111i 0.837519 0.546408i \(-0.184005\pi\)
−0.546408 + 0.837519i \(0.684005\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 11.3458i 0.403409i
\(792\) 0 0
\(793\) 19.8643i 0.705403i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −17.9971 17.9971i −0.637491 0.637491i 0.312445 0.949936i \(-0.398852\pi\)
−0.949936 + 0.312445i \(0.898852\pi\)
\(798\) 0 0
\(799\) −19.6060 −0.693609
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −3.35520 3.35520i −0.118402 0.118402i
\(804\) 0 0
\(805\) −10.8703 + 10.8703i −0.383128 + 0.383128i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 42.0296i 1.47768i −0.673879 0.738841i \(-0.735373\pi\)
0.673879 0.738841i \(-0.264627\pi\)
\(810\) 0 0
\(811\) −18.7601 + 18.7601i −0.658757 + 0.658757i −0.955086 0.296329i \(-0.904238\pi\)
0.296329 + 0.955086i \(0.404238\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −13.1149 −0.459397
\(816\) 0 0
\(817\) 13.5612 0.474447
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 21.4050 21.4050i 0.747038 0.747038i −0.226884 0.973922i \(-0.572854\pi\)
0.973922 + 0.226884i \(0.0728538\pi\)
\(822\) 0 0
\(823\) 43.7323i 1.52441i −0.647334 0.762206i \(-0.724116\pi\)
0.647334 0.762206i \(-0.275884\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −19.9621 + 19.9621i −0.694149 + 0.694149i −0.963142 0.268993i \(-0.913309\pi\)
0.268993 + 0.963142i \(0.413309\pi\)
\(828\) 0 0
\(829\) 31.3869 + 31.3869i 1.09011 + 1.09011i 0.995516 + 0.0945964i \(0.0301561\pi\)
0.0945964 + 0.995516i \(0.469844\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −18.0637 −0.625869
\(834\) 0 0
\(835\) −5.00677 5.00677i −0.173267 0.173267i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 54.5335i 1.88271i 0.337423 + 0.941353i \(0.390445\pi\)
−0.337423 + 0.941353i \(0.609555\pi\)
\(840\) 0 0
\(841\) 17.0871i 0.589210i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 4.15404 + 4.15404i 0.142903 + 0.142903i
\(846\) 0 0
\(847\) 18.2192 0.626018
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −47.4092 47.4092i −1.62517 1.62517i
\(852\) 0 0
\(853\) 21.5932 21.5932i 0.739336 0.739336i −0.233114 0.972449i \(-0.574891\pi\)
0.972449 + 0.233114i \(0.0748914\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 41.3609i 1.41286i 0.707782 + 0.706431i \(0.249696\pi\)
−0.707782 + 0.706431i \(0.750304\pi\)
\(858\) 0 0
\(859\) 0.700596 0.700596i 0.0239040 0.0239040i −0.695054 0.718958i \(-0.744619\pi\)
0.718958 + 0.695054i \(0.244619\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 55.0780 1.87488 0.937439 0.348150i \(-0.113190\pi\)
0.937439 + 0.348150i \(0.113190\pi\)
\(864\) 0 0
\(865\) −7.37471 −0.250748
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −2.15969 + 2.15969i −0.0732623 + 0.0732623i
\(870\) 0 0
\(871\) 39.8556i 1.35045i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.22822 1.22822i 0.0415214 0.0415214i
\(876\) 0 0
\(877\) −36.5100 36.5100i −1.23285 1.23285i −0.962863 0.269992i \(-0.912979\pi\)
−0.269992 0.962863i \(-0.587021\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −54.3503 −1.83111 −0.915554 0.402196i \(-0.868247\pi\)
−0.915554 + 0.402196i \(0.868247\pi\)
\(882\) 0 0
\(883\) −35.5476 35.5476i −1.19627 1.19627i −0.975274 0.220999i \(-0.929068\pi\)
−0.220999 0.975274i \(-0.570932\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0.817003i 0.0274323i −0.999906 0.0137161i \(-0.995634\pi\)
0.999906 0.0137161i \(-0.00436612\pi\)
\(888\) 0 0
\(889\) 4.35737i 0.146141i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 13.9211 + 13.9211i 0.465851 + 0.465851i
\(894\) 0 0
\(895\) −8.94060 −0.298851
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 13.9211 + 13.9211i 0.464296 + 0.464296i
\(900\) 0 0
\(901\) −6.23407 + 6.23407i −0.207687 + 0.207687i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 18.4831i 0.614398i
\(906\) 0 0
\(907\) 3.36159 3.36159i 0.111620 0.111620i −0.649091 0.760711i \(-0.724851\pi\)
0.760711 + 0.649091i \(0.224851\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 34.6568 1.14823 0.574116 0.818774i \(-0.305346\pi\)
0.574116 + 0.818774i \(0.305346\pi\)
\(912\) 0 0
\(913\) 9.25426 0.306271
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 14.8646 14.8646i 0.490874 0.490874i
\(918\) 0 0
\(919\) 24.3452i 0.803074i 0.915843 + 0.401537i \(0.131524\pi\)
−0.915843 + 0.401537i \(0.868476\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −26.5074 + 26.5074i −0.872501 + 0.872501i
\(924\) 0 0
\(925\) 5.35670 + 5.35670i 0.176127 + 0.176127i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −3.16600 −0.103873 −0.0519366 0.998650i \(-0.516539\pi\)
−0.0519366 + 0.998650i \(0.516539\pi\)
\(930\) 0 0
\(931\) 12.8260 + 12.8260i 0.420354 + 0.420354i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 3.24173i 0.106016i
\(936\) 0 0
\(937\) 23.4847i 0.767211i 0.923497 + 0.383606i \(0.125318\pi\)
−0.923497 + 0.383606i \(0.874682\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −27.7583 27.7583i −0.904896 0.904896i 0.0909585 0.995855i \(-0.471007\pi\)
−0.995855 + 0.0909585i \(0.971007\pi\)
\(942\) 0 0
\(943\) 88.8078 2.89198
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −27.2916 27.2916i −0.886857 0.886857i 0.107363 0.994220i \(-0.465759\pi\)
−0.994220 + 0.107363i \(0.965759\pi\)
\(948\) 0 0
\(949\) −12.5298 + 12.5298i −0.406734 + 0.406734i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 12.1516i 0.393630i 0.980441 + 0.196815i \(0.0630598\pi\)
−0.980441 + 0.196815i \(0.936940\pi\)
\(954\) 0 0
\(955\) 15.6781 15.6781i 0.507333 0.507333i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 11.2404 0.362972
\(960\) 0 0
\(961\) 1.53571 0.0495392
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −5.64056 + 5.64056i −0.181576 + 0.181576i
\(966\) 0 0
\(967\) 48.2694i 1.55224i −0.630585 0.776120i \(-0.717185\pi\)
0.630585 0.776120i \(-0.282815\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 5.92047 5.92047i 0.189997 0.189997i −0.605698 0.795695i \(-0.707106\pi\)
0.795695 + 0.605698i \(0.207106\pi\)
\(972\) 0 0
\(973\) −28.5610 28.5610i −0.915623 0.915623i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 27.7522 0.887872 0.443936 0.896059i \(-0.353582\pi\)
0.443936 + 0.896059i \(0.353582\pi\)
\(978\) 0 0
\(979\) −1.63671 1.63671i −0.0523096 0.0523096i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 28.3604i 0.904556i 0.891877 + 0.452278i \(0.149389\pi\)
−0.891877 + 0.452278i \(0.850611\pi\)
\(984\) 0 0
\(985\) 8.15050i 0.259697i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 18.6358 + 18.6358i 0.592585 + 0.592585i
\(990\) 0 0
\(991\) 43.7506 1.38979 0.694893 0.719114i \(-0.255452\pi\)
0.694893 + 0.719114i \(0.255452\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −3.81038 3.81038i −0.120797 0.120797i
\(996\) 0 0
\(997\) 10.5572 10.5572i 0.334349 0.334349i −0.519887 0.854235i \(-0.674026\pi\)
0.854235 + 0.519887i \(0.174026\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2880.2.t.c.721.1 16
3.2 odd 2 320.2.l.a.81.4 16
4.3 odd 2 720.2.t.c.541.3 16
12.11 even 2 80.2.l.a.61.6 yes 16
15.2 even 4 1600.2.q.g.849.4 16
15.8 even 4 1600.2.q.h.849.5 16
15.14 odd 2 1600.2.l.i.401.5 16
16.5 even 4 inner 2880.2.t.c.2161.4 16
16.11 odd 4 720.2.t.c.181.3 16
24.5 odd 2 640.2.l.a.161.5 16
24.11 even 2 640.2.l.b.161.4 16
48.5 odd 4 320.2.l.a.241.4 16
48.11 even 4 80.2.l.a.21.6 16
48.29 odd 4 640.2.l.a.481.5 16
48.35 even 4 640.2.l.b.481.4 16
60.23 odd 4 400.2.q.g.349.7 16
60.47 odd 4 400.2.q.h.349.2 16
60.59 even 2 400.2.l.h.301.3 16
96.5 odd 8 5120.2.a.t.1.6 8
96.11 even 8 5120.2.a.s.1.6 8
96.53 odd 8 5120.2.a.u.1.3 8
96.59 even 8 5120.2.a.v.1.3 8
240.53 even 4 1600.2.q.g.49.4 16
240.59 even 4 400.2.l.h.101.3 16
240.107 odd 4 400.2.q.g.149.7 16
240.149 odd 4 1600.2.l.i.1201.5 16
240.197 even 4 1600.2.q.h.49.5 16
240.203 odd 4 400.2.q.h.149.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.2.l.a.21.6 16 48.11 even 4
80.2.l.a.61.6 yes 16 12.11 even 2
320.2.l.a.81.4 16 3.2 odd 2
320.2.l.a.241.4 16 48.5 odd 4
400.2.l.h.101.3 16 240.59 even 4
400.2.l.h.301.3 16 60.59 even 2
400.2.q.g.149.7 16 240.107 odd 4
400.2.q.g.349.7 16 60.23 odd 4
400.2.q.h.149.2 16 240.203 odd 4
400.2.q.h.349.2 16 60.47 odd 4
640.2.l.a.161.5 16 24.5 odd 2
640.2.l.a.481.5 16 48.29 odd 4
640.2.l.b.161.4 16 24.11 even 2
640.2.l.b.481.4 16 48.35 even 4
720.2.t.c.181.3 16 16.11 odd 4
720.2.t.c.541.3 16 4.3 odd 2
1600.2.l.i.401.5 16 15.14 odd 2
1600.2.l.i.1201.5 16 240.149 odd 4
1600.2.q.g.49.4 16 240.53 even 4
1600.2.q.g.849.4 16 15.2 even 4
1600.2.q.h.49.5 16 240.197 even 4
1600.2.q.h.849.5 16 15.8 even 4
2880.2.t.c.721.1 16 1.1 even 1 trivial
2880.2.t.c.2161.4 16 16.5 even 4 inner
5120.2.a.s.1.6 8 96.11 even 8
5120.2.a.t.1.6 8 96.5 odd 8
5120.2.a.u.1.3 8 96.53 odd 8
5120.2.a.v.1.3 8 96.59 even 8