L(s) = 1 | + (−0.707 + 0.707i)5-s − 1.73i·7-s + (0.505 − 0.505i)11-s + (−1.88 − 1.88i)13-s − 4.53·17-s + (3.22 + 3.22i)19-s + 8.85i·23-s − 1.00i·25-s + (2.44 + 2.44i)29-s + 5.70·31-s + (1.22 + 1.22i)35-s + (−5.35 + 5.35i)37-s − 10.0i·41-s + (2.10 − 2.10i)43-s + 4.32·47-s + ⋯ |
L(s) = 1 | + (−0.316 + 0.316i)5-s − 0.656i·7-s + (0.152 − 0.152i)11-s + (−0.523 − 0.523i)13-s − 1.09·17-s + (0.738 + 0.738i)19-s + 1.84i·23-s − 0.200i·25-s + (0.453 + 0.453i)29-s + 1.02·31-s + (0.207 + 0.207i)35-s + (−0.880 + 0.880i)37-s − 1.56i·41-s + (0.321 − 0.321i)43-s + 0.630·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.910 - 0.412i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2880 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.910 - 0.412i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.514716596\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.514716596\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.707 - 0.707i)T \) |
good | 7 | \( 1 + 1.73iT - 7T^{2} \) |
| 11 | \( 1 + (-0.505 + 0.505i)T - 11iT^{2} \) |
| 13 | \( 1 + (1.88 + 1.88i)T + 13iT^{2} \) |
| 17 | \( 1 + 4.53T + 17T^{2} \) |
| 19 | \( 1 + (-3.22 - 3.22i)T + 19iT^{2} \) |
| 23 | \( 1 - 8.85iT - 23T^{2} \) |
| 29 | \( 1 + (-2.44 - 2.44i)T + 29iT^{2} \) |
| 31 | \( 1 - 5.70T + 31T^{2} \) |
| 37 | \( 1 + (5.35 - 5.35i)T - 37iT^{2} \) |
| 41 | \( 1 + 10.0iT - 41T^{2} \) |
| 43 | \( 1 + (-2.10 + 2.10i)T - 43iT^{2} \) |
| 47 | \( 1 - 4.32T + 47T^{2} \) |
| 53 | \( 1 + (-1.37 + 1.37i)T - 53iT^{2} \) |
| 59 | \( 1 + (-6.64 + 6.64i)T - 59iT^{2} \) |
| 61 | \( 1 + (-5.26 - 5.26i)T + 61iT^{2} \) |
| 67 | \( 1 + (-10.5 - 10.5i)T + 67iT^{2} \) |
| 71 | \( 1 + 14.0iT - 71T^{2} \) |
| 73 | \( 1 + 6.63iT - 73T^{2} \) |
| 79 | \( 1 + 4.27T + 79T^{2} \) |
| 83 | \( 1 + (-9.15 - 9.15i)T + 83iT^{2} \) |
| 89 | \( 1 + 3.23iT - 89T^{2} \) |
| 97 | \( 1 - 1.94T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.770859334900572856678402049482, −7.980935102345099222621907061640, −7.26764851558440355198492269479, −6.77169730309990484903209178584, −5.69541584328655985025156466888, −4.97906023408319339544955797226, −3.91789091229275338888275798879, −3.34390822318326289725520575670, −2.18191738594498720835375407124, −0.872608034208744197971800362498,
0.64946134826685848737088672857, 2.18851946516140603382024544798, 2.83294359107631061236270559824, 4.24774181202237598059680256246, 4.66126576094150137691779392609, 5.60412031288861845154145224977, 6.60667447214444559136946598717, 7.04803450579820980283693072513, 8.176589174385742989000653576411, 8.682848627236624632502758475345