Properties

Label 80.2.l.a.61.6
Level $80$
Weight $2$
Character 80.61
Analytic conductor $0.639$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [80,2,Mod(21,80)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(80, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("80.21"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 80.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.638803216170\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 4 x^{14} + 7 x^{12} - 8 x^{11} - 28 x^{10} + 28 x^{9} + 17 x^{8} + 56 x^{7} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 61.6
Root \(-0.966675 + 1.03225i\) of defining polynomial
Character \(\chi\) \(=\) 80.61
Dual form 80.2.l.a.21.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.562546 + 1.29751i) q^{2} +(0.209571 + 0.209571i) q^{3} +(-1.36708 + 1.45982i) q^{4} +(0.707107 - 0.707107i) q^{5} +(-0.154028 + 0.389815i) q^{6} +1.73696i q^{7} +(-2.66319 - 0.952595i) q^{8} -2.91216i q^{9} +(1.31526 + 0.519701i) q^{10} +(0.505430 - 0.505430i) q^{11} +(-0.592438 + 0.0194351i) q^{12} +(-1.88750 - 1.88750i) q^{13} +(-2.25374 + 0.977122i) q^{14} +0.296378 q^{15} +(-0.262159 - 3.99140i) q^{16} +4.53524 q^{17} +(3.77857 - 1.63822i) q^{18} +(-3.22022 - 3.22022i) q^{19} +(0.0655751 + 1.99892i) q^{20} +(-0.364018 + 0.364018i) q^{21} +(0.940130 + 0.371475i) q^{22} +8.85045i q^{23} +(-0.358491 - 0.757764i) q^{24} -1.00000i q^{25} +(1.38725 - 3.51086i) q^{26} +(1.23902 - 1.23902i) q^{27} +(-2.53566 - 2.37458i) q^{28} +(-2.44059 - 2.44059i) q^{29} +(0.166726 + 0.384555i) q^{30} -5.70401 q^{31} +(5.03142 - 2.58550i) q^{32} +0.211847 q^{33} +(2.55128 + 5.88454i) q^{34} +(1.22822 + 1.22822i) q^{35} +(4.25123 + 3.98117i) q^{36} +(-5.35670 + 5.35670i) q^{37} +(2.36676 - 5.98979i) q^{38} -0.791130i q^{39} +(-2.55674 + 1.20957i) q^{40} +10.0343i q^{41} +(-0.677095 - 0.267541i) q^{42} +(-2.10564 + 2.10564i) q^{43} +(0.0468722 + 1.42880i) q^{44} +(-2.05921 - 2.05921i) q^{45} +(-11.4836 + 4.97878i) q^{46} +4.32303 q^{47} +(0.781541 - 0.891424i) q^{48} +3.98295 q^{49} +(1.29751 - 0.562546i) q^{50} +(0.950456 + 0.950456i) q^{51} +(5.33578 - 0.175041i) q^{52} +(-1.37458 + 1.37458i) q^{53} +(2.30465 + 0.910639i) q^{54} -0.714786i q^{55} +(1.65462 - 4.62586i) q^{56} -1.34973i q^{57} +(1.79375 - 4.53964i) q^{58} +(6.64140 - 6.64140i) q^{59} +(-0.405174 + 0.432660i) q^{60} +(5.26208 + 5.26208i) q^{61} +(-3.20877 - 7.40103i) q^{62} +5.05832 q^{63} +(6.18513 + 5.07388i) q^{64} -2.66933 q^{65} +(0.119174 + 0.274875i) q^{66} +(-10.5578 - 10.5578i) q^{67} +(-6.20006 + 6.62065i) q^{68} +(-1.85480 + 1.85480i) q^{69} +(-0.902702 + 2.28456i) q^{70} -14.0437i q^{71} +(-2.77411 + 7.75563i) q^{72} -6.63830i q^{73} +(-9.96378 - 3.93700i) q^{74} +(0.209571 - 0.209571i) q^{75} +(9.10325 - 0.298634i) q^{76} +(0.877914 + 0.877914i) q^{77} +(1.02650 - 0.445047i) q^{78} +4.27297 q^{79} +(-3.00772 - 2.63697i) q^{80} -8.21715 q^{81} +(-13.0196 + 5.64474i) q^{82} +(9.15483 + 9.15483i) q^{83} +(-0.0337580 - 1.02904i) q^{84} +(3.20690 - 3.20690i) q^{85} +(-3.91661 - 1.54758i) q^{86} -1.02295i q^{87} +(-1.82752 + 0.864585i) q^{88} +3.23826i q^{89} +(1.51345 - 3.83025i) q^{90} +(3.27852 - 3.27852i) q^{91} +(-12.9201 - 12.0993i) q^{92} +(-1.19540 - 1.19540i) q^{93} +(2.43190 + 5.60919i) q^{94} -4.55407 q^{95} +(1.59629 + 0.512594i) q^{96} +1.94129 q^{97} +(2.24059 + 5.16794i) q^{98} +(-1.47189 - 1.47189i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{4} - 12 q^{6} + 4 q^{10} - 8 q^{11} - 12 q^{12} + 4 q^{14} - 8 q^{15} + 16 q^{16} - 8 q^{19} + 8 q^{20} - 20 q^{22} + 8 q^{24} - 16 q^{26} + 24 q^{27} - 4 q^{28} - 16 q^{29} + 16 q^{34} - 4 q^{36}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/80\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(21\) \(31\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.562546 + 1.29751i 0.397780 + 0.917481i
\(3\) 0.209571 + 0.209571i 0.120996 + 0.120996i 0.765012 0.644016i \(-0.222733\pi\)
−0.644016 + 0.765012i \(0.722733\pi\)
\(4\) −1.36708 + 1.45982i −0.683542 + 0.729911i
\(5\) 0.707107 0.707107i 0.316228 0.316228i
\(6\) −0.154028 + 0.389815i −0.0628817 + 0.159141i
\(7\) 1.73696i 0.656511i 0.944589 + 0.328255i \(0.106461\pi\)
−0.944589 + 0.328255i \(0.893539\pi\)
\(8\) −2.66319 0.952595i −0.941579 0.336793i
\(9\) 2.91216i 0.970720i
\(10\) 1.31526 + 0.519701i 0.415922 + 0.164344i
\(11\) 0.505430 0.505430i 0.152393 0.152393i −0.626793 0.779186i \(-0.715633\pi\)
0.779186 + 0.626793i \(0.215633\pi\)
\(12\) −0.592438 + 0.0194351i −0.171022 + 0.00561042i
\(13\) −1.88750 1.88750i −0.523498 0.523498i 0.395128 0.918626i \(-0.370700\pi\)
−0.918626 + 0.395128i \(0.870700\pi\)
\(14\) −2.25374 + 0.977122i −0.602336 + 0.261147i
\(15\) 0.296378 0.0765246
\(16\) −0.262159 3.99140i −0.0655399 0.997850i
\(17\) 4.53524 1.09996 0.549979 0.835178i \(-0.314636\pi\)
0.549979 + 0.835178i \(0.314636\pi\)
\(18\) 3.77857 1.63822i 0.890617 0.386133i
\(19\) −3.22022 3.22022i −0.738768 0.738768i 0.233571 0.972340i \(-0.424959\pi\)
−0.972340 + 0.233571i \(0.924959\pi\)
\(20\) 0.0655751 + 1.99892i 0.0146630 + 0.446973i
\(21\) −0.364018 + 0.364018i −0.0794352 + 0.0794352i
\(22\) 0.940130 + 0.371475i 0.200436 + 0.0791987i
\(23\) 8.85045i 1.84545i 0.385463 + 0.922723i \(0.374042\pi\)
−0.385463 + 0.922723i \(0.625958\pi\)
\(24\) −0.358491 0.757764i −0.0731766 0.154678i
\(25\) 1.00000i 0.200000i
\(26\) 1.38725 3.51086i 0.272062 0.688536i
\(27\) 1.23902 1.23902i 0.238449 0.238449i
\(28\) −2.53566 2.37458i −0.479195 0.448753i
\(29\) −2.44059 2.44059i −0.453205 0.453205i 0.443212 0.896417i \(-0.353839\pi\)
−0.896417 + 0.443212i \(0.853839\pi\)
\(30\) 0.166726 + 0.384555i 0.0304399 + 0.0702098i
\(31\) −5.70401 −1.02447 −0.512235 0.858845i \(-0.671182\pi\)
−0.512235 + 0.858845i \(0.671182\pi\)
\(32\) 5.03142 2.58550i 0.889438 0.457056i
\(33\) 0.211847 0.0368779
\(34\) 2.55128 + 5.88454i 0.437541 + 1.00919i
\(35\) 1.22822 + 1.22822i 0.207607 + 0.207607i
\(36\) 4.25123 + 3.98117i 0.708539 + 0.663528i
\(37\) −5.35670 + 5.35670i −0.880636 + 0.880636i −0.993599 0.112963i \(-0.963966\pi\)
0.112963 + 0.993599i \(0.463966\pi\)
\(38\) 2.36676 5.98979i 0.383939 0.971673i
\(39\) 0.791130i 0.126682i
\(40\) −2.55674 + 1.20957i −0.404257 + 0.191250i
\(41\) 10.0343i 1.56709i 0.621335 + 0.783545i \(0.286591\pi\)
−0.621335 + 0.783545i \(0.713409\pi\)
\(42\) −0.677095 0.267541i −0.104478 0.0412825i
\(43\) −2.10564 + 2.10564i −0.321107 + 0.321107i −0.849192 0.528085i \(-0.822910\pi\)
0.528085 + 0.849192i \(0.322910\pi\)
\(44\) 0.0468722 + 1.42880i 0.00706625 + 0.215400i
\(45\) −2.05921 2.05921i −0.306969 0.306969i
\(46\) −11.4836 + 4.97878i −1.69316 + 0.734082i
\(47\) 4.32303 0.630578 0.315289 0.948996i \(-0.397899\pi\)
0.315289 + 0.948996i \(0.397899\pi\)
\(48\) 0.781541 0.891424i 0.112806 0.128666i
\(49\) 3.98295 0.568993
\(50\) 1.29751 0.562546i 0.183496 0.0795560i
\(51\) 0.950456 + 0.950456i 0.133091 + 0.133091i
\(52\) 5.33578 0.175041i 0.739940 0.0242739i
\(53\) −1.37458 + 1.37458i −0.188814 + 0.188814i −0.795183 0.606369i \(-0.792625\pi\)
0.606369 + 0.795183i \(0.292625\pi\)
\(54\) 2.30465 + 0.910639i 0.313623 + 0.123922i
\(55\) 0.714786i 0.0963817i
\(56\) 1.65462 4.62586i 0.221108 0.618157i
\(57\) 1.34973i 0.178776i
\(58\) 1.79375 4.53964i 0.235531 0.596083i
\(59\) 6.64140 6.64140i 0.864637 0.864637i −0.127236 0.991872i \(-0.540611\pi\)
0.991872 + 0.127236i \(0.0406105\pi\)
\(60\) −0.405174 + 0.432660i −0.0523078 + 0.0558561i
\(61\) 5.26208 + 5.26208i 0.673741 + 0.673741i 0.958576 0.284836i \(-0.0919391\pi\)
−0.284836 + 0.958576i \(0.591939\pi\)
\(62\) −3.20877 7.40103i −0.407514 0.939932i
\(63\) 5.05832 0.637288
\(64\) 6.18513 + 5.07388i 0.773141 + 0.634234i
\(65\) −2.66933 −0.331089
\(66\) 0.119174 + 0.274875i 0.0146693 + 0.0338347i
\(67\) −10.5578 10.5578i −1.28984 1.28984i −0.934884 0.354954i \(-0.884497\pi\)
−0.354954 0.934884i \(-0.615503\pi\)
\(68\) −6.20006 + 6.62065i −0.751868 + 0.802871i
\(69\) −1.85480 + 1.85480i −0.223292 + 0.223292i
\(70\) −0.902702 + 2.28456i −0.107894 + 0.273057i
\(71\) 14.0437i 1.66668i −0.552764 0.833338i \(-0.686427\pi\)
0.552764 0.833338i \(-0.313573\pi\)
\(72\) −2.77411 + 7.75563i −0.326932 + 0.914009i
\(73\) 6.63830i 0.776954i −0.921458 0.388477i \(-0.873001\pi\)
0.921458 0.388477i \(-0.126999\pi\)
\(74\) −9.96378 3.93700i −1.15827 0.457667i
\(75\) 0.209571 0.209571i 0.0241992 0.0241992i
\(76\) 9.10325 0.298634i 1.04421 0.0342557i
\(77\) 0.877914 + 0.877914i 0.100048 + 0.100048i
\(78\) 1.02650 0.445047i 0.116229 0.0503917i
\(79\) 4.27297 0.480746 0.240373 0.970681i \(-0.422730\pi\)
0.240373 + 0.970681i \(0.422730\pi\)
\(80\) −3.00772 2.63697i −0.336273 0.294822i
\(81\) −8.21715 −0.913017
\(82\) −13.0196 + 5.64474i −1.43778 + 0.623357i
\(83\) 9.15483 + 9.15483i 1.00487 + 1.00487i 0.999988 + 0.00488547i \(0.00155510\pi\)
0.00488547 + 0.999988i \(0.498445\pi\)
\(84\) −0.0337580 1.02904i −0.00368330 0.112278i
\(85\) 3.20690 3.20690i 0.347837 0.347837i
\(86\) −3.91661 1.54758i −0.422339 0.166879i
\(87\) 1.02295i 0.109672i
\(88\) −1.82752 + 0.864585i −0.194815 + 0.0921650i
\(89\) 3.23826i 0.343255i 0.985162 + 0.171627i \(0.0549025\pi\)
−0.985162 + 0.171627i \(0.945097\pi\)
\(90\) 1.51345 3.83025i 0.159532 0.403744i
\(91\) 3.27852 3.27852i 0.343682 0.343682i
\(92\) −12.9201 12.0993i −1.34701 1.26144i
\(93\) −1.19540 1.19540i −0.123957 0.123957i
\(94\) 2.43190 + 5.60919i 0.250831 + 0.578543i
\(95\) −4.55407 −0.467238
\(96\) 1.59629 + 0.512594i 0.162920 + 0.0523164i
\(97\) 1.94129 0.197108 0.0985541 0.995132i \(-0.468578\pi\)
0.0985541 + 0.995132i \(0.468578\pi\)
\(98\) 2.24059 + 5.16794i 0.226334 + 0.522041i
\(99\) −1.47189 1.47189i −0.147931 0.147931i
\(100\) 1.45982 + 1.36708i 0.145982 + 0.136708i
\(101\) 10.3395 10.3395i 1.02882 1.02882i 0.0292464 0.999572i \(-0.490689\pi\)
0.999572 0.0292464i \(-0.00931074\pi\)
\(102\) −0.698555 + 1.76791i −0.0691673 + 0.175049i
\(103\) 4.96401i 0.489118i −0.969634 0.244559i \(-0.921357\pi\)
0.969634 0.244559i \(-0.0786433\pi\)
\(104\) 3.22874 + 6.82478i 0.316604 + 0.669225i
\(105\) 0.514799i 0.0502392i
\(106\) −2.55681 1.01028i −0.248339 0.0981266i
\(107\) −2.74631 + 2.74631i −0.265496 + 0.265496i −0.827282 0.561787i \(-0.810114\pi\)
0.561787 + 0.827282i \(0.310114\pi\)
\(108\) 0.114903 + 3.50259i 0.0110566 + 0.337037i
\(109\) 6.99959 + 6.99959i 0.670439 + 0.670439i 0.957817 0.287378i \(-0.0927837\pi\)
−0.287378 + 0.957817i \(0.592784\pi\)
\(110\) 0.927445 0.402100i 0.0884284 0.0383387i
\(111\) −2.24522 −0.213107
\(112\) 6.93292 0.455362i 0.655099 0.0430276i
\(113\) −6.53194 −0.614474 −0.307237 0.951633i \(-0.599404\pi\)
−0.307237 + 0.951633i \(0.599404\pi\)
\(114\) 1.75129 0.759284i 0.164024 0.0711135i
\(115\) 6.25821 + 6.25821i 0.583582 + 0.583582i
\(116\) 6.89931 0.226333i 0.640585 0.0210145i
\(117\) −5.49670 + 5.49670i −0.508170 + 0.508170i
\(118\) 12.3534 + 4.88122i 1.13722 + 0.449353i
\(119\) 7.87756i 0.722134i
\(120\) −0.789311 0.282329i −0.0720539 0.0257730i
\(121\) 10.4891i 0.953553i
\(122\) −3.86746 + 9.78779i −0.350144 + 0.886145i
\(123\) −2.10289 + 2.10289i −0.189612 + 0.189612i
\(124\) 7.79786 8.32684i 0.700269 0.747772i
\(125\) −0.707107 0.707107i −0.0632456 0.0632456i
\(126\) 2.84554 + 6.56324i 0.253500 + 0.584700i
\(127\) −2.50861 −0.222603 −0.111302 0.993787i \(-0.535502\pi\)
−0.111302 + 0.993787i \(0.535502\pi\)
\(128\) −3.10401 + 10.8796i −0.274358 + 0.961628i
\(129\) −0.882562 −0.0777053
\(130\) −1.50162 3.46349i −0.131701 0.303768i
\(131\) 8.55783 + 8.55783i 0.747701 + 0.747701i 0.974047 0.226346i \(-0.0726780\pi\)
−0.226346 + 0.974047i \(0.572678\pi\)
\(132\) −0.289613 + 0.309259i −0.0252076 + 0.0269176i
\(133\) 5.59340 5.59340i 0.485009 0.485009i
\(134\) 7.75963 19.6381i 0.670330 1.69647i
\(135\) 1.75224i 0.150809i
\(136\) −12.0782 4.32025i −1.03570 0.370458i
\(137\) 6.47131i 0.552881i −0.961031 0.276440i \(-0.910845\pi\)
0.961031 0.276440i \(-0.0891549\pi\)
\(138\) −3.45004 1.36322i −0.293687 0.116045i
\(139\) −16.4430 + 16.4430i −1.39468 + 1.39468i −0.580223 + 0.814458i \(0.697035\pi\)
−0.814458 + 0.580223i \(0.802965\pi\)
\(140\) −3.47206 + 0.113902i −0.293443 + 0.00962645i
\(141\) 0.905982 + 0.905982i 0.0762974 + 0.0762974i
\(142\) 18.2218 7.90020i 1.52914 0.662970i
\(143\) −1.90800 −0.159555
\(144\) −11.6236 + 0.763450i −0.968633 + 0.0636209i
\(145\) −3.45151 −0.286632
\(146\) 8.61329 3.73435i 0.712841 0.309057i
\(147\) 0.834712 + 0.834712i 0.0688459 + 0.0688459i
\(148\) −0.496766 15.1429i −0.0408339 1.24474i
\(149\) −2.72803 + 2.72803i −0.223489 + 0.223489i −0.809966 0.586477i \(-0.800514\pi\)
0.586477 + 0.809966i \(0.300514\pi\)
\(150\) 0.389815 + 0.154028i 0.0318283 + 0.0125763i
\(151\) 11.5196i 0.937453i −0.883343 0.468726i \(-0.844713\pi\)
0.883343 0.468726i \(-0.155287\pi\)
\(152\) 5.50848 + 11.6436i 0.446796 + 0.944420i
\(153\) 13.2074i 1.06775i
\(154\) −0.645239 + 1.63297i −0.0519948 + 0.131589i
\(155\) −4.03334 + 4.03334i −0.323966 + 0.323966i
\(156\) 1.15491 + 1.08154i 0.0924668 + 0.0865927i
\(157\) 3.28013 + 3.28013i 0.261783 + 0.261783i 0.825778 0.563995i \(-0.190736\pi\)
−0.563995 + 0.825778i \(0.690736\pi\)
\(158\) 2.40374 + 5.54423i 0.191231 + 0.441076i
\(159\) −0.576147 −0.0456914
\(160\) 1.72953 5.38598i 0.136731 0.425799i
\(161\) −15.3729 −1.21156
\(162\) −4.62253 10.6619i −0.363180 0.837676i
\(163\) −9.27367 9.27367i −0.726370 0.726370i 0.243525 0.969895i \(-0.421696\pi\)
−0.969895 + 0.243525i \(0.921696\pi\)
\(164\) −14.6482 13.7177i −1.14384 1.07117i
\(165\) 0.149799 0.149799i 0.0116618 0.0116618i
\(166\) −6.72851 + 17.0285i −0.522234 + 1.32167i
\(167\) 7.08065i 0.547917i 0.961742 + 0.273958i \(0.0883331\pi\)
−0.961742 + 0.273958i \(0.911667\pi\)
\(168\) 1.31621 0.622686i 0.101548 0.0480413i
\(169\) 5.87470i 0.451900i
\(170\) 5.96503 + 2.35697i 0.457497 + 0.180771i
\(171\) −9.37778 + 9.37778i −0.717137 + 0.717137i
\(172\) −0.195271 5.95244i −0.0148893 0.453869i
\(173\) −5.21471 5.21471i −0.396467 0.396467i 0.480518 0.876985i \(-0.340449\pi\)
−0.876985 + 0.480518i \(0.840449\pi\)
\(174\) 1.32730 0.575458i 0.100622 0.0436254i
\(175\) 1.73696 0.131302
\(176\) −2.14988 1.88487i −0.162053 0.142077i
\(177\) 2.78369 0.209235
\(178\) −4.20169 + 1.82167i −0.314930 + 0.136540i
\(179\) 6.32196 + 6.32196i 0.472525 + 0.472525i 0.902731 0.430206i \(-0.141559\pi\)
−0.430206 + 0.902731i \(0.641559\pi\)
\(180\) 5.82119 0.190965i 0.433886 0.0142337i
\(181\) 13.0695 13.0695i 0.971448 0.971448i −0.0281553 0.999604i \(-0.508963\pi\)
0.999604 + 0.0281553i \(0.00896329\pi\)
\(182\) 6.09824 + 2.40961i 0.452031 + 0.178612i
\(183\) 2.20556i 0.163040i
\(184\) 8.43089 23.5704i 0.621534 1.73763i
\(185\) 7.57552i 0.556963i
\(186\) 0.878578 2.22351i 0.0644205 0.163035i
\(187\) 2.29225 2.29225i 0.167626 0.167626i
\(188\) −5.90994 + 6.31085i −0.431027 + 0.460266i
\(189\) 2.15213 + 2.15213i 0.156545 + 0.156545i
\(190\) −2.56187 5.90897i −0.185858 0.428682i
\(191\) −22.1722 −1.60433 −0.802164 0.597104i \(-0.796318\pi\)
−0.802164 + 0.597104i \(0.796318\pi\)
\(192\) 0.232886 + 2.35956i 0.0168071 + 0.170287i
\(193\) 7.97695 0.574193 0.287097 0.957902i \(-0.407310\pi\)
0.287097 + 0.957902i \(0.407310\pi\)
\(194\) 1.09206 + 2.51885i 0.0784056 + 0.180843i
\(195\) −0.559414 0.559414i −0.0400604 0.0400604i
\(196\) −5.44503 + 5.81440i −0.388931 + 0.415314i
\(197\) 5.76327 5.76327i 0.410616 0.410616i −0.471337 0.881953i \(-0.656228\pi\)
0.881953 + 0.471337i \(0.156228\pi\)
\(198\) 1.08179 2.73781i 0.0768798 0.194568i
\(199\) 5.38869i 0.381994i −0.981591 0.190997i \(-0.938828\pi\)
0.981591 0.190997i \(-0.0611721\pi\)
\(200\) −0.952595 + 2.66319i −0.0673586 + 0.188316i
\(201\) 4.42521i 0.312130i
\(202\) 19.2321 + 7.59920i 1.35316 + 0.534678i
\(203\) 4.23921 4.23921i 0.297534 0.297534i
\(204\) −2.68685 + 0.0881427i −0.188117 + 0.00617122i
\(205\) 7.09530 + 7.09530i 0.495557 + 0.495557i
\(206\) 6.44087 2.79248i 0.448757 0.194561i
\(207\) 25.7739 1.79141
\(208\) −7.03893 + 8.02858i −0.488062 + 0.556682i
\(209\) −3.25519 −0.225166
\(210\) −0.667959 + 0.289598i −0.0460935 + 0.0199842i
\(211\) 10.7547 + 10.7547i 0.740384 + 0.740384i 0.972652 0.232268i \(-0.0746147\pi\)
−0.232268 + 0.972652i \(0.574615\pi\)
\(212\) −0.127475 3.88582i −0.00875503 0.266879i
\(213\) 2.94315 2.94315i 0.201661 0.201661i
\(214\) −5.10830 2.01845i −0.349196 0.137978i
\(215\) 2.97782i 0.203086i
\(216\) −4.48002 + 2.11946i −0.304827 + 0.144211i
\(217\) 9.90766i 0.672576i
\(218\) −5.14447 + 13.0197i −0.348428 + 0.881802i
\(219\) 1.39120 1.39120i 0.0940084 0.0940084i
\(220\) 1.04346 + 0.977173i 0.0703501 + 0.0658810i
\(221\) −8.56026 8.56026i −0.575826 0.575826i
\(222\) −1.26304 2.91320i −0.0847696 0.195521i
\(223\) −3.98714 −0.266998 −0.133499 0.991049i \(-0.542621\pi\)
−0.133499 + 0.991049i \(0.542621\pi\)
\(224\) 4.49092 + 8.73940i 0.300062 + 0.583926i
\(225\) −2.91216 −0.194144
\(226\) −3.67452 8.47529i −0.244425 0.563768i
\(227\) −3.82103 3.82103i −0.253611 0.253611i 0.568839 0.822449i \(-0.307393\pi\)
−0.822449 + 0.568839i \(0.807393\pi\)
\(228\) 1.97036 + 1.84519i 0.130491 + 0.122201i
\(229\) −8.80687 + 8.80687i −0.581974 + 0.581974i −0.935445 0.353471i \(-0.885001\pi\)
0.353471 + 0.935445i \(0.385001\pi\)
\(230\) −4.59959 + 11.6407i −0.303288 + 0.767562i
\(231\) 0.367971i 0.0242107i
\(232\) 4.17485 + 8.82463i 0.274092 + 0.579365i
\(233\) 16.6042i 1.08778i 0.839157 + 0.543889i \(0.183049\pi\)
−0.839157 + 0.543889i \(0.816951\pi\)
\(234\) −10.2242 4.03990i −0.668376 0.264096i
\(235\) 3.05684 3.05684i 0.199406 0.199406i
\(236\) 0.615905 + 18.7746i 0.0400920 + 1.22212i
\(237\) 0.895491 + 0.895491i 0.0581684 + 0.0581684i
\(238\) −10.2212 + 4.43149i −0.662545 + 0.287251i
\(239\) 3.81234 0.246600 0.123300 0.992369i \(-0.460652\pi\)
0.123300 + 0.992369i \(0.460652\pi\)
\(240\) −0.0776984 1.18296i −0.00501541 0.0763601i
\(241\) 9.54985 0.615160 0.307580 0.951522i \(-0.400481\pi\)
0.307580 + 0.951522i \(0.400481\pi\)
\(242\) −13.6097 + 5.90059i −0.874866 + 0.379304i
\(243\) −5.43913 5.43913i −0.348921 0.348921i
\(244\) −14.8754 + 0.487991i −0.952301 + 0.0312404i
\(245\) 2.81637 2.81637i 0.179932 0.179932i
\(246\) −3.91151 1.54556i −0.249389 0.0985413i
\(247\) 12.1563i 0.773487i
\(248\) 15.1908 + 5.43361i 0.964619 + 0.345034i
\(249\) 3.83718i 0.243171i
\(250\) 0.519701 1.31526i 0.0328688 0.0831844i
\(251\) 11.9933 11.9933i 0.757010 0.757010i −0.218767 0.975777i \(-0.570203\pi\)
0.975777 + 0.218767i \(0.0702034\pi\)
\(252\) −6.91515 + 7.38424i −0.435613 + 0.465164i
\(253\) 4.47328 + 4.47328i 0.281233 + 0.281233i
\(254\) −1.41121 3.25496i −0.0885471 0.204234i
\(255\) 1.34415 0.0841738
\(256\) −15.8625 + 2.09277i −0.991409 + 0.130798i
\(257\) 18.8752 1.17740 0.588702 0.808350i \(-0.299639\pi\)
0.588702 + 0.808350i \(0.299639\pi\)
\(258\) −0.496482 1.14514i −0.0309096 0.0712931i
\(259\) −9.30440 9.30440i −0.578147 0.578147i
\(260\) 3.64919 3.89674i 0.226313 0.241666i
\(261\) −7.10738 + 7.10738i −0.439936 + 0.439936i
\(262\) −6.28973 + 15.9181i −0.388581 + 0.983422i
\(263\) 23.1398i 1.42686i −0.700727 0.713429i \(-0.747141\pi\)
0.700727 0.713429i \(-0.252859\pi\)
\(264\) −0.564189 0.201804i −0.0347234 0.0124202i
\(265\) 1.94396i 0.119416i
\(266\) 10.4041 + 4.11097i 0.637914 + 0.252060i
\(267\) −0.678646 + 0.678646i −0.0415325 + 0.0415325i
\(268\) 29.8458 0.979099i 1.82313 0.0598080i
\(269\) −10.6368 10.6368i −0.648539 0.648539i 0.304101 0.952640i \(-0.401644\pi\)
−0.952640 + 0.304101i \(0.901644\pi\)
\(270\) 2.27355 0.985713i 0.138364 0.0599886i
\(271\) 19.9763 1.21348 0.606738 0.794902i \(-0.292478\pi\)
0.606738 + 0.794902i \(0.292478\pi\)
\(272\) −1.18896 18.1020i −0.0720911 1.09759i
\(273\) 1.37417 0.0831683
\(274\) 8.39661 3.64041i 0.507258 0.219925i
\(275\) −0.505430 0.505430i −0.0304786 0.0304786i
\(276\) −0.172009 5.24335i −0.0103537 0.315612i
\(277\) −16.1534 + 16.1534i −0.970563 + 0.970563i −0.999579 0.0290160i \(-0.990763\pi\)
0.0290160 + 0.999579i \(0.490763\pi\)
\(278\) −30.5850 12.0851i −1.83437 0.724817i
\(279\) 16.6110i 0.994474i
\(280\) −2.10098 4.44097i −0.125558 0.265399i
\(281\) 9.43520i 0.562857i −0.959582 0.281429i \(-0.909192\pi\)
0.959582 0.281429i \(-0.0908082\pi\)
\(282\) −0.665868 + 1.68518i −0.0396518 + 0.100351i
\(283\) 8.71287 8.71287i 0.517926 0.517926i −0.399017 0.916943i \(-0.630649\pi\)
0.916943 + 0.399017i \(0.130649\pi\)
\(284\) 20.5012 + 19.1989i 1.21653 + 1.13924i
\(285\) −0.954403 0.954403i −0.0565339 0.0565339i
\(286\) −1.07334 2.47565i −0.0634676 0.146388i
\(287\) −17.4292 −1.02881
\(288\) −7.52939 14.6523i −0.443674 0.863395i
\(289\) 3.56843 0.209908
\(290\) −1.94163 4.47838i −0.114017 0.262980i
\(291\) 0.406838 + 0.406838i 0.0238493 + 0.0238493i
\(292\) 9.69074 + 9.07512i 0.567107 + 0.531081i
\(293\) −11.1045 + 11.1045i −0.648729 + 0.648729i −0.952686 0.303957i \(-0.901692\pi\)
0.303957 + 0.952686i \(0.401692\pi\)
\(294\) −0.613487 + 1.55261i −0.0357793 + 0.0905503i
\(295\) 9.39236i 0.546844i
\(296\) 19.3687 9.16313i 1.12578 0.532596i
\(297\) 1.25247i 0.0726759i
\(298\) −5.07429 2.00501i −0.293946 0.116147i
\(299\) 16.7052 16.7052i 0.966087 0.966087i
\(300\) 0.0194351 + 0.592438i 0.00112208 + 0.0342044i
\(301\) −3.65742 3.65742i −0.210810 0.210810i
\(302\) 14.9469 6.48031i 0.860095 0.372900i
\(303\) 4.33372 0.248966
\(304\) −12.0090 + 13.6974i −0.688761 + 0.785599i
\(305\) 7.44171 0.426111
\(306\) 17.1367 7.42974i 0.979641 0.424730i
\(307\) −2.99854 2.99854i −0.171136 0.171136i 0.616343 0.787478i \(-0.288614\pi\)
−0.787478 + 0.616343i \(0.788614\pi\)
\(308\) −2.48178 + 0.0814153i −0.141413 + 0.00463907i
\(309\) 1.04031 1.04031i 0.0591814 0.0591814i
\(310\) −7.50226 2.96438i −0.426100 0.168365i
\(311\) 9.06099i 0.513802i 0.966438 + 0.256901i \(0.0827014\pi\)
−0.966438 + 0.256901i \(0.917299\pi\)
\(312\) −0.753627 + 2.10693i −0.0426657 + 0.119281i
\(313\) 19.5699i 1.10616i 0.833129 + 0.553078i \(0.186547\pi\)
−0.833129 + 0.553078i \(0.813453\pi\)
\(314\) −2.41079 + 6.10124i −0.136049 + 0.344313i
\(315\) 3.57677 3.57677i 0.201528 0.201528i
\(316\) −5.84151 + 6.23777i −0.328610 + 0.350902i
\(317\) −11.1019 11.1019i −0.623546 0.623546i 0.322890 0.946436i \(-0.395346\pi\)
−0.946436 + 0.322890i \(0.895346\pi\)
\(318\) −0.324109 0.747558i −0.0181751 0.0419210i
\(319\) −2.46709 −0.138131
\(320\) 7.96132 0.785774i 0.445051 0.0439261i
\(321\) −1.15109 −0.0642478
\(322\) −8.64797 19.9466i −0.481933 1.11158i
\(323\) −14.6045 14.6045i −0.812614 0.812614i
\(324\) 11.2335 11.9956i 0.624086 0.666421i
\(325\) −1.88750 + 1.88750i −0.104700 + 0.104700i
\(326\) 6.81585 17.2496i 0.377495 0.955366i
\(327\) 2.93382i 0.162241i
\(328\) 9.55859 26.7231i 0.527785 1.47554i
\(329\) 7.50894i 0.413981i
\(330\) 0.278634 + 0.110097i 0.0153383 + 0.00606065i
\(331\) −8.14718 + 8.14718i −0.447810 + 0.447810i −0.894626 0.446816i \(-0.852558\pi\)
0.446816 + 0.894626i \(0.352558\pi\)
\(332\) −25.8799 + 0.848994i −1.42034 + 0.0465946i
\(333\) 15.5996 + 15.5996i 0.854851 + 0.854851i
\(334\) −9.18724 + 3.98319i −0.502703 + 0.217950i
\(335\) −14.9309 −0.815765
\(336\) 1.54837 + 1.35751i 0.0844706 + 0.0740582i
\(337\) −25.1380 −1.36935 −0.684677 0.728847i \(-0.740057\pi\)
−0.684677 + 0.728847i \(0.740057\pi\)
\(338\) 7.62251 3.30479i 0.414610 0.179757i
\(339\) −1.36891 1.36891i −0.0743488 0.0743488i
\(340\) 0.297399 + 9.06561i 0.0161287 + 0.491652i
\(341\) −2.88298 + 2.88298i −0.156122 + 0.156122i
\(342\) −17.4432 6.89237i −0.943222 0.372697i
\(343\) 19.0770i 1.03006i
\(344\) 7.61353 3.60189i 0.410494 0.194201i
\(345\) 2.62308i 0.141222i
\(346\) 3.83265 9.69967i 0.206044 0.521458i
\(347\) 7.36719 7.36719i 0.395491 0.395491i −0.481148 0.876639i \(-0.659780\pi\)
0.876639 + 0.481148i \(0.159780\pi\)
\(348\) 1.49333 + 1.39846i 0.0800509 + 0.0749655i
\(349\) −3.25982 3.25982i −0.174494 0.174494i 0.614457 0.788951i \(-0.289375\pi\)
−0.788951 + 0.614457i \(0.789375\pi\)
\(350\) 0.977122 + 2.25374i 0.0522294 + 0.120467i
\(351\) −4.67729 −0.249655
\(352\) 1.23624 3.84982i 0.0658919 0.205196i
\(353\) 0.502832 0.0267630 0.0133815 0.999910i \(-0.495740\pi\)
0.0133815 + 0.999910i \(0.495740\pi\)
\(354\) 1.56595 + 3.61188i 0.0832295 + 0.191969i
\(355\) −9.93037 9.93037i −0.527049 0.527049i
\(356\) −4.72728 4.42697i −0.250545 0.234629i
\(357\) −1.65091 + 1.65091i −0.0873754 + 0.0873754i
\(358\) −4.64644 + 11.7592i −0.245572 + 0.621494i
\(359\) 5.95161i 0.314114i −0.987590 0.157057i \(-0.949799\pi\)
0.987590 0.157057i \(-0.0502007\pi\)
\(360\) 3.52246 + 7.44565i 0.185650 + 0.392420i
\(361\) 1.73958i 0.0915571i
\(362\) 24.3100 + 9.60567i 1.27771 + 0.504863i
\(363\) −2.19821 + 2.19821i −0.115376 + 0.115376i
\(364\) 0.304041 + 9.26806i 0.0159361 + 0.485778i
\(365\) −4.69399 4.69399i −0.245695 0.245695i
\(366\) −2.86175 + 1.24073i −0.149586 + 0.0648540i
\(367\) 1.95365 0.101980 0.0509898 0.998699i \(-0.483762\pi\)
0.0509898 + 0.998699i \(0.483762\pi\)
\(368\) 35.3257 2.32023i 1.84148 0.120950i
\(369\) 29.2214 1.52121
\(370\) −9.82934 + 4.26157i −0.511003 + 0.221549i
\(371\) −2.38760 2.38760i −0.123958 0.123958i
\(372\) 3.37927 0.110858i 0.175207 0.00574770i
\(373\) −18.6509 + 18.6509i −0.965708 + 0.965708i −0.999431 0.0337233i \(-0.989264\pi\)
0.0337233 + 0.999431i \(0.489264\pi\)
\(374\) 4.26372 + 1.68473i 0.220472 + 0.0871153i
\(375\) 0.296378i 0.0153049i
\(376\) −11.5130 4.11809i −0.593739 0.212374i
\(377\) 9.21320i 0.474504i
\(378\) −1.58175 + 4.00309i −0.0813563 + 0.205897i
\(379\) −3.85143 + 3.85143i −0.197835 + 0.197835i −0.799071 0.601236i \(-0.794675\pi\)
0.601236 + 0.799071i \(0.294675\pi\)
\(380\) 6.22580 6.64814i 0.319377 0.341042i
\(381\) −0.525732 0.525732i −0.0269341 0.0269341i
\(382\) −12.4729 28.7688i −0.638169 1.47194i
\(383\) 2.29258 0.117145 0.0585726 0.998283i \(-0.481345\pi\)
0.0585726 + 0.998283i \(0.481345\pi\)
\(384\) −2.93056 + 1.62954i −0.149549 + 0.0831569i
\(385\) 1.24156 0.0632757
\(386\) 4.48740 + 10.3502i 0.228403 + 0.526812i
\(387\) 6.13195 + 6.13195i 0.311705 + 0.311705i
\(388\) −2.65391 + 2.83394i −0.134732 + 0.143871i
\(389\) 4.90500 4.90500i 0.248693 0.248693i −0.571741 0.820434i \(-0.693732\pi\)
0.820434 + 0.571741i \(0.193732\pi\)
\(390\) 0.411151 1.04054i 0.0208195 0.0526899i
\(391\) 40.1389i 2.02991i
\(392\) −10.6073 3.79414i −0.535752 0.191633i
\(393\) 3.58695i 0.180938i
\(394\) 10.7200 + 4.23582i 0.540067 + 0.213398i
\(395\) 3.02144 3.02144i 0.152025 0.152025i
\(396\) 4.16090 0.136499i 0.209093 0.00685935i
\(397\) −10.8616 10.8616i −0.545126 0.545126i 0.379901 0.925027i \(-0.375958\pi\)
−0.925027 + 0.379901i \(0.875958\pi\)
\(398\) 6.99190 3.03138i 0.350472 0.151950i
\(399\) 2.34443 0.117368
\(400\) −3.99140 + 0.262159i −0.199570 + 0.0131080i
\(401\) −7.10783 −0.354948 −0.177474 0.984125i \(-0.556793\pi\)
−0.177474 + 0.984125i \(0.556793\pi\)
\(402\) 5.74177 2.48938i 0.286374 0.124159i
\(403\) 10.7663 + 10.7663i 0.536308 + 0.536308i
\(404\) 0.958857 + 29.2288i 0.0477049 + 1.45419i
\(405\) −5.81041 + 5.81041i −0.288721 + 0.288721i
\(406\) 7.88519 + 3.11569i 0.391335 + 0.154629i
\(407\) 5.41487i 0.268405i
\(408\) −1.62584 3.43664i −0.0804912 0.170139i
\(409\) 29.1697i 1.44235i −0.692752 0.721176i \(-0.743602\pi\)
0.692752 0.721176i \(-0.256398\pi\)
\(410\) −5.21482 + 13.1977i −0.257542 + 0.651787i
\(411\) 1.35620 1.35620i 0.0668964 0.0668964i
\(412\) 7.24657 + 6.78622i 0.357013 + 0.334333i
\(413\) 11.5359 + 11.5359i 0.567643 + 0.567643i
\(414\) 14.4990 + 33.4420i 0.712588 + 1.64359i
\(415\) 12.9469 0.635538
\(416\) −14.3769 4.61667i −0.704887 0.226351i
\(417\) −6.89198 −0.337502
\(418\) −1.83119 4.22365i −0.0895665 0.206586i
\(419\) 3.06616 + 3.06616i 0.149792 + 0.149792i 0.778025 0.628233i \(-0.216222\pi\)
−0.628233 + 0.778025i \(0.716222\pi\)
\(420\) −0.751515 0.703774i −0.0366702 0.0343406i
\(421\) −0.532242 + 0.532242i −0.0259399 + 0.0259399i −0.719958 0.694018i \(-0.755839\pi\)
0.694018 + 0.719958i \(0.255839\pi\)
\(422\) −7.90436 + 20.0044i −0.384778 + 0.973798i
\(423\) 12.5893i 0.612115i
\(424\) 4.97020 2.35135i 0.241374 0.114192i
\(425\) 4.53524i 0.219992i
\(426\) 5.47443 + 2.16312i 0.265237 + 0.104803i
\(427\) −9.14005 + 9.14005i −0.442318 + 0.442318i
\(428\) −0.254685 7.76356i −0.0123107 0.375266i
\(429\) −0.399861 0.399861i −0.0193055 0.0193055i
\(430\) −3.86376 + 1.67516i −0.186327 + 0.0807834i
\(431\) 16.7237 0.805555 0.402777 0.915298i \(-0.368045\pi\)
0.402777 + 0.915298i \(0.368045\pi\)
\(432\) −5.27024 4.62060i −0.253564 0.222309i
\(433\) 28.3675 1.36326 0.681628 0.731699i \(-0.261272\pi\)
0.681628 + 0.731699i \(0.261272\pi\)
\(434\) 12.8553 5.57351i 0.617076 0.267537i
\(435\) −0.723337 0.723337i −0.0346814 0.0346814i
\(436\) −19.7872 + 0.649122i −0.947634 + 0.0310873i
\(437\) 28.5004 28.5004i 1.36336 1.36336i
\(438\) 2.58771 + 1.02249i 0.123645 + 0.0488562i
\(439\) 13.5018i 0.644405i −0.946671 0.322203i \(-0.895577\pi\)
0.946671 0.322203i \(-0.104423\pi\)
\(440\) −0.680901 + 1.90361i −0.0324607 + 0.0907510i
\(441\) 11.5990i 0.552333i
\(442\) 6.29152 15.9226i 0.299257 0.757361i
\(443\) −9.55246 + 9.55246i −0.453851 + 0.453851i −0.896630 0.442780i \(-0.853992\pi\)
0.442780 + 0.896630i \(0.353992\pi\)
\(444\) 3.06941 3.27762i 0.145668 0.155549i
\(445\) 2.28980 + 2.28980i 0.108547 + 0.108547i
\(446\) −2.24295 5.17337i −0.106207 0.244966i
\(447\) −1.14343 −0.0540824
\(448\) −8.81314 + 10.7433i −0.416382 + 0.507575i
\(449\) −9.35573 −0.441524 −0.220762 0.975328i \(-0.570854\pi\)
−0.220762 + 0.975328i \(0.570854\pi\)
\(450\) −1.63822 3.77857i −0.0772266 0.178123i
\(451\) 5.07162 + 5.07162i 0.238813 + 0.238813i
\(452\) 8.92972 9.53547i 0.420019 0.448511i
\(453\) 2.41418 2.41418i 0.113428 0.113428i
\(454\) 2.80833 7.10734i 0.131802 0.333564i
\(455\) 4.63652i 0.217364i
\(456\) −1.28574 + 3.59458i −0.0602105 + 0.168332i
\(457\) 6.84779i 0.320326i −0.987091 0.160163i \(-0.948798\pi\)
0.987091 0.160163i \(-0.0512020\pi\)
\(458\) −16.3813 6.47277i −0.765448 0.302453i
\(459\) 5.61925 5.61925i 0.262284 0.262284i
\(460\) −17.6914 + 0.580370i −0.824865 + 0.0270599i
\(461\) −11.7403 11.7403i −0.546801 0.546801i 0.378713 0.925514i \(-0.376367\pi\)
−0.925514 + 0.378713i \(0.876367\pi\)
\(462\) −0.477448 + 0.207001i −0.0222129 + 0.00963054i
\(463\) −26.6096 −1.23665 −0.618326 0.785922i \(-0.712189\pi\)
−0.618326 + 0.785922i \(0.712189\pi\)
\(464\) −9.10153 + 10.3812i −0.422528 + 0.481934i
\(465\) −1.69055 −0.0783972
\(466\) −21.5442 + 9.34063i −0.998015 + 0.432696i
\(467\) 1.47583 + 1.47583i 0.0682933 + 0.0682933i 0.740428 0.672135i \(-0.234623\pi\)
−0.672135 + 0.740428i \(0.734623\pi\)
\(468\) −0.509748 15.5386i −0.0235631 0.718274i
\(469\) 18.3385 18.3385i 0.846792 0.846792i
\(470\) 5.68591 + 2.24668i 0.262271 + 0.103632i
\(471\) 1.37484i 0.0633494i
\(472\) −24.0139 + 11.3607i −1.10533 + 0.522920i
\(473\) 2.12851i 0.0978688i
\(474\) −0.658157 + 1.66567i −0.0302302 + 0.0765066i
\(475\) −3.22022 + 3.22022i −0.147754 + 0.147754i
\(476\) −11.4998 10.7693i −0.527094 0.493609i
\(477\) 4.00301 + 4.00301i 0.183285 + 0.183285i
\(478\) 2.14462 + 4.94656i 0.0980924 + 0.226251i
\(479\) −2.78600 −0.127296 −0.0636479 0.997972i \(-0.520273\pi\)
−0.0636479 + 0.997972i \(0.520273\pi\)
\(480\) 1.49120 0.766287i 0.0680639 0.0349760i
\(481\) 20.2215 0.922022
\(482\) 5.37223 + 12.3911i 0.244698 + 0.564397i
\(483\) −3.22172 3.22172i −0.146593 0.146593i
\(484\) −15.3122 14.3395i −0.696009 0.651794i
\(485\) 1.37270 1.37270i 0.0623311 0.0623311i
\(486\) 3.99759 10.1171i 0.181334 0.458922i
\(487\) 16.9499i 0.768073i −0.923318 0.384036i \(-0.874534\pi\)
0.923318 0.384036i \(-0.125466\pi\)
\(488\) −9.00128 19.0265i −0.407469 0.861291i
\(489\) 3.88699i 0.175776i
\(490\) 5.23862 + 2.06994i 0.236657 + 0.0935106i
\(491\) −22.8390 + 22.8390i −1.03071 + 1.03071i −0.0311972 + 0.999513i \(0.509932\pi\)
−0.999513 + 0.0311972i \(0.990068\pi\)
\(492\) −0.195017 5.94469i −0.00879203 0.268007i
\(493\) −11.0687 11.0687i −0.498507 0.498507i
\(494\) −15.7730 + 6.83848i −0.709660 + 0.307678i
\(495\) −2.08157 −0.0935597
\(496\) 1.49536 + 22.7670i 0.0671436 + 1.02227i
\(497\) 24.3933 1.09419
\(498\) −4.97879 + 2.15859i −0.223105 + 0.0967287i
\(499\) 2.33906 + 2.33906i 0.104711 + 0.104711i 0.757521 0.652811i \(-0.226410\pi\)
−0.652811 + 0.757521i \(0.726410\pi\)
\(500\) 1.99892 0.0655751i 0.0893946 0.00293261i
\(501\) −1.48390 + 1.48390i −0.0662958 + 0.0662958i
\(502\) 22.3083 + 8.81469i 0.995666 + 0.393419i
\(503\) 1.58801i 0.0708057i 0.999373 + 0.0354029i \(0.0112714\pi\)
−0.999373 + 0.0354029i \(0.988729\pi\)
\(504\) −13.4712 4.81853i −0.600057 0.214634i
\(505\) 14.6223i 0.650682i
\(506\) −3.28772 + 8.32058i −0.146157 + 0.369895i
\(507\) 1.23117 1.23117i 0.0546781 0.0546781i
\(508\) 3.42948 3.66212i 0.152159 0.162480i
\(509\) −3.61613 3.61613i −0.160282 0.160282i 0.622410 0.782692i \(-0.286154\pi\)
−0.782692 + 0.622410i \(0.786154\pi\)
\(510\) 0.756145 + 1.74405i 0.0334827 + 0.0772279i
\(511\) 11.5305 0.510079
\(512\) −11.6388 19.4046i −0.514367 0.857570i
\(513\) −7.97981 −0.352317
\(514\) 10.6182 + 24.4909i 0.468348 + 1.08025i
\(515\) −3.51009 3.51009i −0.154673 0.154673i
\(516\) 1.20654 1.28838i 0.0531148 0.0567179i
\(517\) 2.18499 2.18499i 0.0960956 0.0960956i
\(518\) 6.83844 17.3067i 0.300464 0.760414i
\(519\) 2.18571i 0.0959419i
\(520\) 7.10891 + 2.54279i 0.311746 + 0.111509i
\(521\) 8.93031i 0.391244i −0.980679 0.195622i \(-0.937327\pi\)
0.980679 0.195622i \(-0.0626725\pi\)
\(522\) −13.2201 5.22370i −0.578630 0.228635i
\(523\) 15.0355 15.0355i 0.657455 0.657455i −0.297323 0.954777i \(-0.596094\pi\)
0.954777 + 0.297323i \(0.0960937\pi\)
\(524\) −24.1922 + 0.793629i −1.05684 + 0.0346699i
\(525\) 0.364018 + 0.364018i 0.0158870 + 0.0158870i
\(526\) 30.0242 13.0172i 1.30912 0.567576i
\(527\) −25.8691 −1.12687
\(528\) −0.0555377 0.845567i −0.00241697 0.0367986i
\(529\) −55.3305 −2.40567
\(530\) −2.52231 + 1.09356i −0.109562 + 0.0475014i
\(531\) −19.3408 19.3408i −0.839320 0.839320i
\(532\) 0.518717 + 15.8120i 0.0224892 + 0.685538i
\(533\) 18.9397 18.9397i 0.820368 0.820368i
\(534\) −1.26232 0.498783i −0.0546260 0.0215845i
\(535\) 3.88387i 0.167914i
\(536\) 18.0600 + 38.1746i 0.780075 + 1.64889i
\(537\) 2.64980i 0.114347i
\(538\) 7.81773 19.7851i 0.337046 0.852998i
\(539\) 2.01310 2.01310i 0.0867106 0.0867106i
\(540\) 2.55795 + 2.39546i 0.110077 + 0.103084i
\(541\) 5.57591 + 5.57591i 0.239727 + 0.239727i 0.816737 0.577010i \(-0.195781\pi\)
−0.577010 + 0.816737i \(0.695781\pi\)
\(542\) 11.2376 + 25.9196i 0.482696 + 1.11334i
\(543\) 5.47798 0.235083
\(544\) 22.8187 11.7259i 0.978344 0.502743i
\(545\) 9.89891 0.424023
\(546\) 0.773031 + 1.78300i 0.0330827 + 0.0763053i
\(547\) 32.8366 + 32.8366i 1.40399 + 1.40399i 0.786856 + 0.617136i \(0.211707\pi\)
0.617136 + 0.786856i \(0.288293\pi\)
\(548\) 9.44695 + 8.84682i 0.403554 + 0.377918i
\(549\) 15.3240 15.3240i 0.654013 0.654013i
\(550\) 0.371475 0.940130i 0.0158397 0.0400873i
\(551\) 15.7184i 0.669628i
\(552\) 6.70655 3.17281i 0.285450 0.135044i
\(553\) 7.42199i 0.315615i
\(554\) −30.0463 11.8722i −1.27654 0.504402i
\(555\) −1.58761 + 1.58761i −0.0673903 + 0.0673903i
\(556\) −1.52488 46.4829i −0.0646694 1.97132i
\(557\) 24.2077 + 24.2077i 1.02571 + 1.02571i 0.999661 + 0.0260537i \(0.00829408\pi\)
0.0260537 + 0.999661i \(0.491706\pi\)
\(558\) −21.5530 + 9.34444i −0.912411 + 0.395582i
\(559\) 7.94877 0.336197
\(560\) 4.58033 5.22430i 0.193554 0.220767i
\(561\) 0.960778 0.0405641
\(562\) 12.2423 5.30773i 0.516411 0.223893i
\(563\) 22.3407 + 22.3407i 0.941547 + 0.941547i 0.998384 0.0568365i \(-0.0181014\pi\)
−0.0568365 + 0.998384i \(0.518101\pi\)
\(564\) −2.56113 + 0.0840182i −0.107843 + 0.00353781i
\(565\) −4.61878 + 4.61878i −0.194314 + 0.194314i
\(566\) 16.2065 + 6.40368i 0.681208 + 0.269167i
\(567\) 14.2729i 0.599406i
\(568\) −13.3779 + 37.4009i −0.561325 + 1.56931i
\(569\) 29.3339i 1.22974i 0.788629 + 0.614870i \(0.210791\pi\)
−0.788629 + 0.614870i \(0.789209\pi\)
\(570\) 0.701456 1.77525i 0.0293807 0.0743569i
\(571\) 23.9934 23.9934i 1.00409 1.00409i 0.00410070 0.999992i \(-0.498695\pi\)
0.999992 0.00410070i \(-0.00130530\pi\)
\(572\) 2.60839 2.78534i 0.109062 0.116461i
\(573\) −4.64666 4.64666i −0.194117 0.194117i
\(574\) −9.80471 22.6146i −0.409241 0.943915i
\(575\) 8.85045 0.369089
\(576\) 14.7759 18.0121i 0.615664 0.750503i
\(577\) −31.9232 −1.32898 −0.664490 0.747297i \(-0.731351\pi\)
−0.664490 + 0.747297i \(0.731351\pi\)
\(578\) 2.00740 + 4.63009i 0.0834970 + 0.192586i
\(579\) 1.67174 + 1.67174i 0.0694751 + 0.0694751i
\(580\) 4.71851 5.03859i 0.195925 0.209216i
\(581\) −15.9016 + 15.9016i −0.659710 + 0.659710i
\(582\) −0.299013 + 0.756744i −0.0123945 + 0.0313680i
\(583\) 1.38951i 0.0575477i
\(584\) −6.32361 + 17.6790i −0.261673 + 0.731564i
\(585\) 7.77350i 0.321395i
\(586\) −20.6549 8.16142i −0.853248 0.337145i
\(587\) −26.2847 + 26.2847i −1.08488 + 1.08488i −0.0888379 + 0.996046i \(0.528315\pi\)
−0.996046 + 0.0888379i \(0.971685\pi\)
\(588\) −2.35965 + 0.0774089i −0.0973105 + 0.00319229i
\(589\) 18.3681 + 18.3681i 0.756846 + 0.756846i
\(590\) 12.1867 5.28363i 0.501719 0.217524i
\(591\) 2.41563 0.0993658
\(592\) 22.7850 + 19.9764i 0.936459 + 0.821026i
\(593\) −38.2085 −1.56904 −0.784518 0.620106i \(-0.787090\pi\)
−0.784518 + 0.620106i \(0.787090\pi\)
\(594\) 1.62510 0.704574i 0.0666788 0.0289090i
\(595\) 5.57027 + 5.57027i 0.228359 + 0.228359i
\(596\) −0.252990 7.71187i −0.0103629 0.315891i
\(597\) 1.12931 1.12931i 0.0462197 0.0462197i
\(598\) 31.0727 + 12.2778i 1.27066 + 0.502076i
\(599\) 25.1150i 1.02617i −0.858337 0.513086i \(-0.828502\pi\)
0.858337 0.513086i \(-0.171498\pi\)
\(600\) −0.757764 + 0.358491i −0.0309356 + 0.0146353i
\(601\) 22.2022i 0.905647i −0.891600 0.452823i \(-0.850417\pi\)
0.891600 0.452823i \(-0.149583\pi\)
\(602\) 2.68809 6.80302i 0.109558 0.277270i
\(603\) −30.7459 + 30.7459i −1.25207 + 1.25207i
\(604\) 16.8166 + 15.7483i 0.684257 + 0.640789i
\(605\) 7.41690 + 7.41690i 0.301540 + 0.301540i
\(606\) 2.43792 + 5.62307i 0.0990336 + 0.228421i
\(607\) 12.9648 0.526226 0.263113 0.964765i \(-0.415251\pi\)
0.263113 + 0.964765i \(0.415251\pi\)
\(608\) −24.5281 7.87639i −0.994747 0.319430i
\(609\) 1.77683 0.0720009
\(610\) 4.18630 + 9.65572i 0.169498 + 0.390949i
\(611\) −8.15970 8.15970i −0.330106 0.330106i
\(612\) 19.2804 + 18.0556i 0.779363 + 0.729853i
\(613\) 7.42804 7.42804i 0.300016 0.300016i −0.541004 0.841020i \(-0.681956\pi\)
0.841020 + 0.541004i \(0.181956\pi\)
\(614\) 2.20383 5.57746i 0.0889394 0.225088i
\(615\) 2.97394i 0.119921i
\(616\) −1.50175 3.17435i −0.0605074 0.127898i
\(617\) 23.2743i 0.936989i 0.883467 + 0.468494i \(0.155203\pi\)
−0.883467 + 0.468494i \(0.844797\pi\)
\(618\) 1.93505 + 0.764597i 0.0778389 + 0.0307566i
\(619\) −31.6213 + 31.6213i −1.27097 + 1.27097i −0.325386 + 0.945581i \(0.605494\pi\)
−0.945581 + 0.325386i \(0.894506\pi\)
\(620\) −0.374041 11.4019i −0.0150219 0.457911i
\(621\) 10.9659 + 10.9659i 0.440045 + 0.440045i
\(622\) −11.7568 + 5.09722i −0.471403 + 0.204380i
\(623\) −5.62474 −0.225351
\(624\) −3.15772 + 0.207402i −0.126410 + 0.00830274i
\(625\) −1.00000 −0.0400000
\(626\) −25.3922 + 11.0090i −1.01488 + 0.440007i
\(627\) −0.682194 0.682194i −0.0272442 0.0272442i
\(628\) −9.27262 + 0.304190i −0.370018 + 0.0121385i
\(629\) −24.2939 + 24.2939i −0.968663 + 0.968663i
\(630\) 6.65301 + 2.62881i 0.265062 + 0.104734i
\(631\) 29.9258i 1.19133i −0.803234 0.595663i \(-0.796889\pi\)
0.803234 0.595663i \(-0.203111\pi\)
\(632\) −11.3797 4.07041i −0.452661 0.161912i
\(633\) 4.50775i 0.179167i
\(634\) 8.15956 20.6502i 0.324058 0.820126i
\(635\) −1.77386 + 1.77386i −0.0703933 + 0.0703933i
\(636\) 0.787641 0.841071i 0.0312320 0.0333506i
\(637\) −7.51782 7.51782i −0.297867 0.297867i
\(638\) −1.38785 3.20109i −0.0549456 0.126732i
\(639\) −40.8974 −1.61788
\(640\) 5.49816 + 9.88789i 0.217334 + 0.390853i
\(641\) 10.2240 0.403825 0.201912 0.979404i \(-0.435284\pi\)
0.201912 + 0.979404i \(0.435284\pi\)
\(642\) −0.647543 1.49356i −0.0255565 0.0589461i
\(643\) −13.7202 13.7202i −0.541074 0.541074i 0.382770 0.923844i \(-0.374970\pi\)
−0.923844 + 0.382770i \(0.874970\pi\)
\(644\) 21.0161 22.4417i 0.828150 0.884328i
\(645\) −0.624066 + 0.624066i −0.0245726 + 0.0245726i
\(646\) 10.7338 27.1652i 0.422316 1.06880i
\(647\) 18.6767i 0.734255i −0.930171 0.367128i \(-0.880341\pi\)
0.930171 0.367128i \(-0.119659\pi\)
\(648\) 21.8838 + 7.82762i 0.859677 + 0.307498i
\(649\) 6.71353i 0.263529i
\(650\) −3.51086 1.38725i −0.137707 0.0544125i
\(651\) 2.07636 2.07636i 0.0813790 0.0813790i
\(652\) 26.2158 0.860014i 1.02669 0.0336808i
\(653\) 12.7935 + 12.7935i 0.500647 + 0.500647i 0.911639 0.410992i \(-0.134817\pi\)
−0.410992 + 0.911639i \(0.634817\pi\)
\(654\) −3.80668 + 1.65041i −0.148853 + 0.0645362i
\(655\) 12.1026 0.472888
\(656\) 40.0508 2.63058i 1.56372 0.102707i
\(657\) −19.3318 −0.754205
\(658\) −9.74296 + 4.22412i −0.379820 + 0.164673i
\(659\) 12.3193 + 12.3193i 0.479893 + 0.479893i 0.905097 0.425204i \(-0.139798\pi\)
−0.425204 + 0.905097i \(0.639798\pi\)
\(660\) 0.0138919 + 0.423467i 0.000540742 + 0.0164834i
\(661\) −24.0352 + 24.0352i −0.934862 + 0.934862i −0.998005 0.0631421i \(-0.979888\pi\)
0.0631421 + 0.998005i \(0.479888\pi\)
\(662\) −15.1542 5.98792i −0.588987 0.232727i
\(663\) 3.58797i 0.139345i
\(664\) −15.6602 33.1019i −0.607733 1.28460i
\(665\) 7.91026i 0.306747i
\(666\) −11.4652 + 29.0161i −0.444267 + 1.12435i
\(667\) 21.6003 21.6003i 0.836367 0.836367i
\(668\) −10.3365 9.67984i −0.399931 0.374524i
\(669\) −0.835589 0.835589i −0.0323057 0.0323057i
\(670\) −8.39934 19.3731i −0.324495 0.748449i
\(671\) 5.31923 0.205347
\(672\) −0.890358 + 2.77269i −0.0343463 + 0.106959i
\(673\) −21.5360 −0.830150 −0.415075 0.909787i \(-0.636245\pi\)
−0.415075 + 0.909787i \(0.636245\pi\)
\(674\) −14.1413 32.6169i −0.544701 1.25636i
\(675\) −1.23902 1.23902i −0.0476898 0.0476898i
\(676\) 8.57602 + 8.03121i 0.329847 + 0.308893i
\(677\) 13.1852 13.1852i 0.506750 0.506750i −0.406778 0.913527i \(-0.633348\pi\)
0.913527 + 0.406778i \(0.133348\pi\)
\(678\) 1.00610 2.54625i 0.0386392 0.0977881i
\(679\) 3.37195i 0.129404i
\(680\) −11.5955 + 5.48570i −0.444665 + 0.210367i
\(681\) 1.60156i 0.0613717i
\(682\) −5.36251 2.11890i −0.205341 0.0811367i
\(683\) 30.6011 30.6011i 1.17092 1.17092i 0.188926 0.981991i \(-0.439499\pi\)
0.981991 0.188926i \(-0.0605008\pi\)
\(684\) −0.869670 26.5101i −0.0332527 1.01364i
\(685\) −4.57590 4.57590i −0.174836 0.174836i
\(686\) −24.7527 + 10.7317i −0.945062 + 0.409738i
\(687\) −3.69133 −0.140833
\(688\) 8.95645 + 7.85243i 0.341462 + 0.299371i
\(689\) 5.18905 0.197687
\(690\) −3.40349 + 1.47560i −0.129569 + 0.0561753i
\(691\) −25.2675 25.2675i −0.961220 0.961220i 0.0380558 0.999276i \(-0.487884\pi\)
−0.999276 + 0.0380558i \(0.987884\pi\)
\(692\) 14.7415 0.483598i 0.560388 0.0183836i
\(693\) 2.55663 2.55663i 0.0971182 0.0971182i
\(694\) 13.7034 + 5.41465i 0.520174 + 0.205537i
\(695\) 23.2540i 0.882074i
\(696\) −0.974460 + 2.72432i −0.0369368 + 0.103265i
\(697\) 45.5079i 1.72373i
\(698\) 2.39586 6.06345i 0.0906847 0.229505i
\(699\) −3.47976 + 3.47976i −0.131617 + 0.131617i
\(700\) −2.37458 + 2.53566i −0.0897506 + 0.0958389i
\(701\) 18.5583 + 18.5583i 0.700937 + 0.700937i 0.964612 0.263675i \(-0.0849345\pi\)
−0.263675 + 0.964612i \(0.584935\pi\)
\(702\) −2.63119 6.06885i −0.0993078 0.229054i
\(703\) 34.4995 1.30117
\(704\) 5.69064 0.561660i 0.214474 0.0211684i
\(705\) 1.28125 0.0482547
\(706\) 0.282866 + 0.652431i 0.0106458 + 0.0245546i
\(707\) 17.9593 + 17.9593i 0.675431 + 0.675431i
\(708\) −3.80554 + 4.06369i −0.143021 + 0.152723i
\(709\) 4.38093 4.38093i 0.164529 0.164529i −0.620040 0.784570i \(-0.712884\pi\)
0.784570 + 0.620040i \(0.212884\pi\)
\(710\) 7.29850 18.4711i 0.273908 0.693207i
\(711\) 12.4436i 0.466670i
\(712\) 3.08475 8.62409i 0.115606 0.323201i
\(713\) 50.4831i 1.89061i
\(714\) −3.07079 1.21337i −0.114921 0.0454091i
\(715\) −1.34916 + 1.34916i −0.0504556 + 0.0504556i
\(716\) −17.8716 + 0.586281i −0.667892 + 0.0219103i
\(717\) 0.798957 + 0.798957i 0.0298376 + 0.0298376i
\(718\) 7.72230 3.34806i 0.288194 0.124948i
\(719\) 1.61691 0.0603007 0.0301503 0.999545i \(-0.490401\pi\)
0.0301503 + 0.999545i \(0.490401\pi\)
\(720\) −7.67928 + 8.75896i −0.286190 + 0.326427i
\(721\) 8.62231 0.321112
\(722\) −2.25713 + 0.978596i −0.0840018 + 0.0364196i
\(723\) 2.00137 + 2.00137i 0.0744319 + 0.0744319i
\(724\) 1.21203 + 36.9463i 0.0450447 + 1.37310i
\(725\) −2.44059 + 2.44059i −0.0906411 + 0.0906411i
\(726\) −4.08880 1.61561i −0.151750 0.0599611i
\(727\) 39.3600i 1.45978i −0.683563 0.729891i \(-0.739571\pi\)
0.683563 0.729891i \(-0.260429\pi\)
\(728\) −11.8544 + 5.60821i −0.439353 + 0.207854i
\(729\) 22.3717i 0.828581i
\(730\) 3.44993 8.73110i 0.127688 0.323152i
\(731\) −9.54958 + 9.54958i −0.353204 + 0.353204i
\(732\) −3.21973 3.01519i −0.119005 0.111445i
\(733\) −34.0787 34.0787i −1.25873 1.25873i −0.951701 0.307026i \(-0.900666\pi\)
−0.307026 0.951701i \(-0.599334\pi\)
\(734\) 1.09902 + 2.53488i 0.0405654 + 0.0935643i
\(735\) 1.18046 0.0435420
\(736\) 22.8828 + 44.5303i 0.843473 + 1.64141i
\(737\) −10.6724 −0.393124
\(738\) 16.4384 + 37.9152i 0.605105 + 1.39568i
\(739\) 15.4278 + 15.4278i 0.567520 + 0.567520i 0.931433 0.363913i \(-0.118559\pi\)
−0.363913 + 0.931433i \(0.618559\pi\)
\(740\) −11.0589 10.3564i −0.406533 0.380708i
\(741\) −2.54761 + 2.54761i −0.0935888 + 0.0935888i
\(742\) 1.75481 4.44109i 0.0644212 0.163037i
\(743\) 23.5004i 0.862147i −0.902317 0.431074i \(-0.858135\pi\)
0.902317 0.431074i \(-0.141865\pi\)
\(744\) 2.04483 + 4.32229i 0.0749673 + 0.158463i
\(745\) 3.85801i 0.141347i
\(746\) −34.6918 13.7078i −1.27016 0.501879i
\(747\) 26.6603 26.6603i 0.975451 0.975451i
\(748\) 0.212577 + 6.47997i 0.00777258 + 0.236931i
\(749\) −4.77024 4.77024i −0.174301 0.174301i
\(750\) 0.384555 0.166726i 0.0140420 0.00608799i
\(751\) 10.8586 0.396236 0.198118 0.980178i \(-0.436517\pi\)
0.198118 + 0.980178i \(0.436517\pi\)
\(752\) −1.13332 17.2549i −0.0413280 0.629222i
\(753\) 5.02690 0.183190
\(754\) −11.9543 + 5.18285i −0.435348 + 0.188748i
\(755\) −8.14560 8.14560i −0.296449 0.296449i
\(756\) −6.08387 + 0.199583i −0.221268 + 0.00725875i
\(757\) 18.8434 18.8434i 0.684874 0.684874i −0.276220 0.961094i \(-0.589082\pi\)
0.961094 + 0.276220i \(0.0890819\pi\)
\(758\) −7.16389 2.83068i −0.260204 0.102815i
\(759\) 1.87494i 0.0680561i
\(760\) 12.1283 + 4.33819i 0.439941 + 0.157363i
\(761\) 22.2837i 0.807783i 0.914807 + 0.403891i \(0.132343\pi\)
−0.914807 + 0.403891i \(0.867657\pi\)
\(762\) 0.386397 0.977894i 0.0139977 0.0354254i
\(763\) −12.1580 + 12.1580i −0.440151 + 0.440151i
\(764\) 30.3113 32.3675i 1.09663 1.17102i
\(765\) −9.33901 9.33901i −0.337653 0.337653i
\(766\) 1.28968 + 2.97465i 0.0465980 + 0.107478i
\(767\) −25.0713 −0.905271
\(768\) −3.76292 2.88575i −0.135783 0.104130i
\(769\) 10.5399 0.380077 0.190039 0.981777i \(-0.439139\pi\)
0.190039 + 0.981777i \(0.439139\pi\)
\(770\) 0.698433 + 1.61094i 0.0251698 + 0.0580542i
\(771\) 3.95571 + 3.95571i 0.142461 + 0.142461i
\(772\) −10.9052 + 11.6449i −0.392486 + 0.419110i
\(773\) 4.07768 4.07768i 0.146664 0.146664i −0.629962 0.776626i \(-0.716930\pi\)
0.776626 + 0.629962i \(0.216930\pi\)
\(774\) −4.50679 + 11.4058i −0.161993 + 0.409973i
\(775\) 5.70401i 0.204894i
\(776\) −5.17002 1.84926i −0.185593 0.0663846i
\(777\) 3.89987i 0.139907i
\(778\) 9.12358 + 3.60502i 0.327096 + 0.129246i
\(779\) 32.3125 32.3125i 1.15772 1.15772i
\(780\) 1.58141 0.0518785i 0.0566236 0.00185755i
\(781\) −7.09809 7.09809i −0.253990 0.253990i
\(782\) −52.0808 + 22.5800i −1.86241 + 0.807459i
\(783\) −6.04786 −0.216133
\(784\) −1.04417 15.8976i −0.0372918 0.567770i
\(785\) 4.63881 0.165566
\(786\) −4.65412 + 2.01782i −0.166007 + 0.0719733i
\(787\) −8.16669 8.16669i −0.291111 0.291111i 0.546408 0.837519i \(-0.315995\pi\)
−0.837519 + 0.546408i \(0.815995\pi\)
\(788\) 0.534470 + 16.2922i 0.0190397 + 0.580387i
\(789\) 4.84943 4.84943i 0.172644 0.172644i
\(790\) 5.62007 + 2.22067i 0.199953 + 0.0790077i
\(791\) 11.3458i 0.403409i
\(792\) 2.51781 + 5.32204i 0.0894664 + 0.189111i
\(793\) 19.8643i 0.705403i
\(794\) 7.98290 20.2032i 0.283303 0.716983i
\(795\) −0.407397 + 0.407397i −0.0144489 + 0.0144489i
\(796\) 7.86653 + 7.36679i 0.278822 + 0.261109i
\(797\) 17.9971 + 17.9971i 0.637491 + 0.637491i 0.949936 0.312445i \(-0.101148\pi\)
−0.312445 + 0.949936i \(0.601148\pi\)
\(798\) 1.31885 + 3.04193i 0.0466868 + 0.107683i
\(799\) 19.6060 0.693609
\(800\) −2.58550 5.03142i −0.0914112 0.177888i
\(801\) 9.43033 0.333204
\(802\) −3.99848 9.22250i −0.141191 0.325658i
\(803\) −3.35520 3.35520i −0.118402 0.118402i
\(804\) 6.46002 + 6.04964i 0.227827 + 0.213354i
\(805\) −10.8703 + 10.8703i −0.383128 + 0.383128i
\(806\) −7.91289 + 20.0260i −0.278720 + 0.705385i
\(807\) 4.45835i 0.156941i
\(808\) −37.3854 + 17.6867i −1.31521 + 0.622215i
\(809\) 42.0296i 1.47768i 0.673879 + 0.738841i \(0.264627\pi\)
−0.673879 + 0.738841i \(0.735373\pi\)
\(810\) −10.8077 4.27046i −0.379744 0.150049i
\(811\) 18.7601 18.7601i 0.658757 0.658757i −0.296329 0.955086i \(-0.595762\pi\)
0.955086 + 0.296329i \(0.0957624\pi\)
\(812\) 0.393133 + 11.9839i 0.0137963 + 0.420551i
\(813\) 4.18646 + 4.18646i 0.146826 + 0.146826i
\(814\) −7.02587 + 3.04611i −0.246257 + 0.106766i
\(815\) −13.1149 −0.459397
\(816\) 3.54448 4.04282i 0.124082 0.141527i
\(817\) 13.5612 0.474447
\(818\) 37.8482 16.4093i 1.32333 0.573738i
\(819\) −9.54757 9.54757i −0.333619 0.333619i
\(820\) −20.0578 + 0.657999i −0.700447 + 0.0229783i
\(821\) −21.4050 + 21.4050i −0.747038 + 0.747038i −0.973922 0.226884i \(-0.927146\pi\)
0.226884 + 0.973922i \(0.427146\pi\)
\(822\) 2.52261 + 0.996763i 0.0879862 + 0.0347661i
\(823\) 43.7323i 1.52441i 0.647334 + 0.762206i \(0.275884\pi\)
−0.647334 + 0.762206i \(0.724116\pi\)
\(824\) −4.72869 + 13.2201i −0.164732 + 0.460544i
\(825\) 0.211847i 0.00737557i
\(826\) −8.47850 + 21.4574i −0.295005 + 0.746599i
\(827\) −19.9621 + 19.9621i −0.694149 + 0.694149i −0.963142 0.268993i \(-0.913309\pi\)
0.268993 + 0.963142i \(0.413309\pi\)
\(828\) −35.2351 + 37.6253i −1.22451 + 1.30757i
\(829\) 31.3869 + 31.3869i 1.09011 + 1.09011i 0.995516 + 0.0945964i \(0.0301561\pi\)
0.0945964 + 0.995516i \(0.469844\pi\)
\(830\) 7.28322 + 16.7988i 0.252804 + 0.583094i
\(831\) −6.77057 −0.234868
\(832\) −2.09749 21.2513i −0.0727172 0.736758i
\(833\) 18.0637 0.625869
\(834\) −3.87705 8.94244i −0.134251 0.309651i
\(835\) 5.00677 + 5.00677i 0.173267 + 0.173267i
\(836\) 4.45012 4.75199i 0.153911 0.164351i
\(837\) −7.06737 + 7.06737i −0.244284 + 0.244284i
\(838\) −2.25353 + 5.70324i −0.0778469 + 0.197015i
\(839\) 54.5335i 1.88271i 0.337423 + 0.941353i \(0.390445\pi\)
−0.337423 + 0.941353i \(0.609555\pi\)
\(840\) 0.490395 1.37101i 0.0169202 0.0473042i
\(841\) 17.0871i 0.589210i
\(842\) −0.990001 0.391181i −0.0341177 0.0134810i
\(843\) 1.97735 1.97735i 0.0681035 0.0681035i
\(844\) −30.4025 + 0.997361i −1.04650 + 0.0343306i
\(845\) −4.15404 4.15404i −0.142903 0.142903i
\(846\) 16.3348 7.08208i 0.561603 0.243487i
\(847\) −18.2192 −0.626018
\(848\) 5.84688 + 5.12615i 0.200783 + 0.176033i
\(849\) 3.65193 0.125334
\(850\) 5.88454 2.55128i 0.201838 0.0875082i
\(851\) −47.4092 47.4092i −1.62517 1.62517i
\(852\) 0.272939 + 8.32000i 0.00935075 + 0.285039i
\(853\) 21.5932 21.5932i 0.739336 0.739336i −0.233114 0.972449i \(-0.574891\pi\)
0.972449 + 0.233114i \(0.0748914\pi\)
\(854\) −17.0010 6.71765i −0.581764 0.229873i
\(855\) 13.2622i 0.453557i
\(856\) 9.93005 4.69781i 0.339402 0.160568i
\(857\) 41.3609i 1.41286i −0.707782 0.706431i \(-0.750304\pi\)
0.707782 0.706431i \(-0.249696\pi\)
\(858\) 0.293885 0.743766i 0.0100331 0.0253917i
\(859\) −0.700596 + 0.700596i −0.0239040 + 0.0239040i −0.718958 0.695054i \(-0.755381\pi\)
0.695054 + 0.718958i \(0.255381\pi\)
\(860\) −4.34709 4.07093i −0.148234 0.138818i
\(861\) −3.65265 3.65265i −0.124482 0.124482i
\(862\) 9.40787 + 21.6993i 0.320433 + 0.739081i
\(863\) 55.0780 1.87488 0.937439 0.348150i \(-0.113190\pi\)
0.937439 + 0.348150i \(0.113190\pi\)
\(864\) 3.03054 9.43751i 0.103101 0.321070i
\(865\) −7.37471 −0.250748
\(866\) 15.9580 + 36.8072i 0.542276 + 1.25076i
\(867\) 0.747840 + 0.747840i 0.0253980 + 0.0253980i
\(868\) 14.4634 + 13.5446i 0.490920 + 0.459734i
\(869\) 2.15969 2.15969i 0.0732623 0.0732623i
\(870\) 0.531630 1.34545i 0.0180239 0.0456150i
\(871\) 39.8556i 1.35045i
\(872\) −11.9734 25.3090i −0.405472 0.857070i
\(873\) 5.65335i 0.191337i
\(874\) 53.0124 + 20.9469i 1.79317 + 0.708538i
\(875\) 1.22822 1.22822i 0.0415214 0.0415214i
\(876\) 0.129016 + 3.93278i 0.00435904 + 0.132876i
\(877\) −36.5100 36.5100i −1.23285 1.23285i −0.962863 0.269992i \(-0.912979\pi\)
−0.269992 0.962863i \(-0.587021\pi\)
\(878\) 17.5188 7.59537i 0.591229 0.256331i
\(879\) −4.65435 −0.156987
\(880\) −2.85300 + 0.187388i −0.0961745 + 0.00631685i
\(881\) 54.3503 1.83111 0.915554 0.402196i \(-0.131753\pi\)
0.915554 + 0.402196i \(0.131753\pi\)
\(882\) 15.0499 6.52497i 0.506755 0.219707i
\(883\) 35.5476 + 35.5476i 1.19627 + 1.19627i 0.975274 + 0.220999i \(0.0709319\pi\)
0.220999 + 0.975274i \(0.429068\pi\)
\(884\) 24.1991 0.793855i 0.813902 0.0267002i
\(885\) 1.96837 1.96837i 0.0661660 0.0661660i
\(886\) −17.7681 7.02075i −0.596932 0.235867i
\(887\) 0.817003i 0.0274323i −0.999906 0.0137161i \(-0.995634\pi\)
0.999906 0.0137161i \(-0.00436612\pi\)
\(888\) 5.97944 + 2.13878i 0.200657 + 0.0717729i
\(889\) 4.35737i 0.146141i
\(890\) −1.68293 + 4.25916i −0.0564118 + 0.142767i
\(891\) −4.15320 + 4.15320i −0.139137 + 0.139137i
\(892\) 5.45075 5.82051i 0.182505 0.194885i
\(893\) −13.9211 13.9211i −0.465851 0.465851i
\(894\) −0.643232 1.48362i −0.0215129 0.0496196i
\(895\) 8.94060 0.298851
\(896\) −18.8974 5.39155i −0.631319 0.180119i
\(897\) 7.00186 0.233785
\(898\) −5.26302 12.1392i −0.175629 0.405090i
\(899\) 13.9211 + 13.9211i 0.464296 + 0.464296i
\(900\) 3.98117 4.25123i 0.132706 0.141708i
\(901\) −6.23407 + 6.23407i −0.207687 + 0.207687i
\(902\) −3.72748 + 9.43352i −0.124112 + 0.314102i
\(903\) 1.53298i 0.0510144i
\(904\) 17.3958 + 6.22230i 0.578575 + 0.206950i
\(905\) 18.4831i 0.614398i
\(906\) 4.49052 + 1.77434i 0.149187 + 0.0589487i
\(907\) −3.36159 + 3.36159i −0.111620 + 0.111620i −0.760711 0.649091i \(-0.775149\pi\)
0.649091 + 0.760711i \(0.275149\pi\)
\(908\) 10.8017 0.354352i 0.358467 0.0117596i
\(909\) −30.1103 30.1103i −0.998695 0.998695i
\(910\) 6.01595 2.60826i 0.199427 0.0864629i
\(911\) 34.6568 1.14823 0.574116 0.818774i \(-0.305346\pi\)
0.574116 + 0.818774i \(0.305346\pi\)
\(912\) −5.38731 + 0.353844i −0.178392 + 0.0117170i
\(913\) 9.25426 0.306271
\(914\) 8.88510 3.85219i 0.293893 0.127419i
\(915\) 1.55957 + 1.55957i 0.0515577 + 0.0515577i
\(916\) −0.816725 24.8962i −0.0269853 0.822593i
\(917\) −14.8646 + 14.8646i −0.490874 + 0.490874i
\(918\) 10.4521 + 4.12997i 0.344972 + 0.136309i
\(919\) 24.3452i 0.803074i −0.915843 0.401537i \(-0.868476\pi\)
0.915843 0.401537i \(-0.131524\pi\)
\(920\) −10.7053 22.6283i −0.352942 0.746034i
\(921\) 1.25681i 0.0414135i
\(922\) 8.62875 21.8377i 0.284173 0.719185i
\(923\) −26.5074 + 26.5074i −0.872501 + 0.872501i
\(924\) −0.537172 0.503048i −0.0176717 0.0165491i
\(925\) 5.35670 + 5.35670i 0.176127 + 0.176127i
\(926\) −14.9691 34.5263i −0.491915 1.13460i
\(927\) −14.4560 −0.474797
\(928\) −18.5898 5.96948i −0.610238 0.195958i
\(929\) 3.16600 0.103873 0.0519366 0.998650i \(-0.483461\pi\)
0.0519366 + 0.998650i \(0.483461\pi\)
\(930\) −0.951009 2.19351i −0.0311848 0.0719279i
\(931\) −12.8260 12.8260i −0.420354 0.420354i
\(932\) −24.2392 22.6994i −0.793981 0.743542i
\(933\) −1.89892 + 1.89892i −0.0621680 + 0.0621680i
\(934\) −1.08469 + 2.74513i −0.0354921 + 0.0898235i
\(935\) 3.24173i 0.106016i
\(936\) 19.8749 9.40260i 0.649630 0.307334i
\(937\) 23.4847i 0.767211i 0.923497 + 0.383606i \(0.125318\pi\)
−0.923497 + 0.383606i \(0.874682\pi\)
\(938\) 34.1107 + 13.4782i 1.11375 + 0.440079i
\(939\) −4.10129 + 4.10129i −0.133840 + 0.133840i
\(940\) 0.283483 + 8.64140i 0.00924619 + 0.281851i
\(941\) 27.7583 + 27.7583i 0.904896 + 0.904896i 0.995855 0.0909585i \(-0.0289931\pi\)
−0.0909585 + 0.995855i \(0.528993\pi\)
\(942\) −1.78388 + 0.773412i −0.0581218 + 0.0251991i
\(943\) −88.8078 −2.89198
\(944\) −28.2496 24.7674i −0.919446 0.806109i
\(945\) 3.04357 0.0990074
\(946\) −2.76177 + 1.19738i −0.0897927 + 0.0389302i
\(947\) −27.2916 27.2916i −0.886857 0.886857i 0.107363 0.994220i \(-0.465759\pi\)
−0.994220 + 0.107363i \(0.965759\pi\)
\(948\) −2.53147 + 0.0830453i −0.0822183 + 0.00269719i
\(949\) −12.5298 + 12.5298i −0.406734 + 0.406734i
\(950\) −5.98979 2.36676i −0.194335 0.0767877i
\(951\) 4.65329i 0.150893i
\(952\) 7.50412 20.9794i 0.243210 0.679946i
\(953\) 12.1516i 0.393630i −0.980441 0.196815i \(-0.936940\pi\)
0.980441 0.196815i \(-0.0630598\pi\)
\(954\) −2.94208 + 7.44584i −0.0952535 + 0.241068i
\(955\) −15.6781 + 15.6781i −0.507333 + 0.507333i
\(956\) −5.21179 + 5.56534i −0.168561 + 0.179996i
\(957\) −0.517031 0.517031i −0.0167132 0.0167132i
\(958\) −1.56725 3.61488i −0.0506357 0.116791i
\(959\) 11.2404 0.362972
\(960\) 1.83314 + 1.50379i 0.0591643 + 0.0485345i
\(961\) 1.53571 0.0495392
\(962\) 11.3755 + 26.2377i 0.366762 + 0.845938i
\(963\) 7.99769 + 7.99769i 0.257722 + 0.257722i
\(964\) −13.0554 + 13.9411i −0.420488 + 0.449012i
\(965\) 5.64056 5.64056i 0.181576 0.181576i
\(966\) 2.36786 5.99259i 0.0761847 0.192809i
\(967\) 48.2694i 1.55224i 0.630585 + 0.776120i \(0.282815\pi\)
−0.630585 + 0.776120i \(0.717185\pi\)
\(968\) 9.99184 27.9344i 0.321150 0.897845i
\(969\) 6.12135i 0.196646i
\(970\) 2.55330 + 1.00889i 0.0819816 + 0.0323935i
\(971\) 5.92047 5.92047i 0.189997 0.189997i −0.605698 0.795695i \(-0.707106\pi\)
0.795695 + 0.605698i \(0.207106\pi\)
\(972\) 15.3759 0.504410i 0.493183 0.0161790i
\(973\) −28.5610 28.5610i −0.915623 0.915623i
\(974\) 21.9927 9.53509i 0.704692 0.305524i
\(975\) −0.791130 −0.0253365
\(976\) 19.6236 22.3826i 0.628135 0.716449i
\(977\) −27.7522 −0.887872 −0.443936 0.896059i \(-0.646418\pi\)
−0.443936 + 0.896059i \(0.646418\pi\)
\(978\) 5.04342 2.18661i 0.161271 0.0699200i
\(979\) 1.63671 + 1.63671i 0.0523096 + 0.0523096i
\(980\) 0.261183 + 7.96162i 0.00834318 + 0.254325i
\(981\) 20.3839 20.3839i 0.650808 0.650808i
\(982\) −42.4819 16.7859i −1.35565 0.535661i
\(983\) 28.3604i 0.904556i 0.891877 + 0.452278i \(0.149389\pi\)
−0.891877 + 0.452278i \(0.850611\pi\)
\(984\) 7.60361 3.59719i 0.242394 0.114674i
\(985\) 8.15050i 0.259697i
\(986\) 8.13511 20.5884i 0.259075 0.655667i
\(987\) −1.57366 + 1.57366i −0.0500901 + 0.0500901i
\(988\) −17.7460 16.6187i −0.564577 0.528711i
\(989\) −18.6358 18.6358i −0.592585 0.592585i
\(990\) −1.17098 2.70087i −0.0372162 0.0858392i
\(991\) −43.7506 −1.38979 −0.694893 0.719114i \(-0.744548\pi\)
−0.694893 + 0.719114i \(0.744548\pi\)
\(992\) −28.6993 + 14.7477i −0.911203 + 0.468240i
\(993\) −3.41483 −0.108366
\(994\) 13.7224 + 31.6507i 0.435247 + 1.00390i
\(995\) −3.81038 3.81038i −0.120797 0.120797i
\(996\) −5.60160 5.24575i −0.177493 0.166218i
\(997\) 10.5572 10.5572i 0.334349 0.334349i −0.519887 0.854235i \(-0.674026\pi\)
0.854235 + 0.519887i \(0.174026\pi\)
\(998\) −1.71913 + 4.35079i −0.0544183 + 0.137722i
\(999\) 13.2741i 0.419974i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 80.2.l.a.61.6 yes 16
3.2 odd 2 720.2.t.c.541.3 16
4.3 odd 2 320.2.l.a.81.4 16
5.2 odd 4 400.2.q.h.349.2 16
5.3 odd 4 400.2.q.g.349.7 16
5.4 even 2 400.2.l.h.301.3 16
8.3 odd 2 640.2.l.a.161.5 16
8.5 even 2 640.2.l.b.161.4 16
12.11 even 2 2880.2.t.c.721.1 16
16.3 odd 4 640.2.l.a.481.5 16
16.5 even 4 inner 80.2.l.a.21.6 16
16.11 odd 4 320.2.l.a.241.4 16
16.13 even 4 640.2.l.b.481.4 16
20.3 even 4 1600.2.q.h.849.5 16
20.7 even 4 1600.2.q.g.849.4 16
20.19 odd 2 1600.2.l.i.401.5 16
32.5 even 8 5120.2.a.v.1.3 8
32.11 odd 8 5120.2.a.u.1.3 8
32.21 even 8 5120.2.a.s.1.6 8
32.27 odd 8 5120.2.a.t.1.6 8
48.5 odd 4 720.2.t.c.181.3 16
48.11 even 4 2880.2.t.c.2161.4 16
80.27 even 4 1600.2.q.h.49.5 16
80.37 odd 4 400.2.q.g.149.7 16
80.43 even 4 1600.2.q.g.49.4 16
80.53 odd 4 400.2.q.h.149.2 16
80.59 odd 4 1600.2.l.i.1201.5 16
80.69 even 4 400.2.l.h.101.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.2.l.a.21.6 16 16.5 even 4 inner
80.2.l.a.61.6 yes 16 1.1 even 1 trivial
320.2.l.a.81.4 16 4.3 odd 2
320.2.l.a.241.4 16 16.11 odd 4
400.2.l.h.101.3 16 80.69 even 4
400.2.l.h.301.3 16 5.4 even 2
400.2.q.g.149.7 16 80.37 odd 4
400.2.q.g.349.7 16 5.3 odd 4
400.2.q.h.149.2 16 80.53 odd 4
400.2.q.h.349.2 16 5.2 odd 4
640.2.l.a.161.5 16 8.3 odd 2
640.2.l.a.481.5 16 16.3 odd 4
640.2.l.b.161.4 16 8.5 even 2
640.2.l.b.481.4 16 16.13 even 4
720.2.t.c.181.3 16 48.5 odd 4
720.2.t.c.541.3 16 3.2 odd 2
1600.2.l.i.401.5 16 20.19 odd 2
1600.2.l.i.1201.5 16 80.59 odd 4
1600.2.q.g.49.4 16 80.43 even 4
1600.2.q.g.849.4 16 20.7 even 4
1600.2.q.h.49.5 16 80.27 even 4
1600.2.q.h.849.5 16 20.3 even 4
2880.2.t.c.721.1 16 12.11 even 2
2880.2.t.c.2161.4 16 48.11 even 4
5120.2.a.s.1.6 8 32.21 even 8
5120.2.a.t.1.6 8 32.27 odd 8
5120.2.a.u.1.3 8 32.11 odd 8
5120.2.a.v.1.3 8 32.5 even 8