Properties

Label 288.4.p.b.239.11
Level $288$
Weight $4$
Character 288.239
Analytic conductor $16.993$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [288,4,Mod(47,288)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("288.47"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(288, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 288 = 2^{5} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 288.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.9925500817\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 72)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 239.11
Character \(\chi\) \(=\) 288.239
Dual form 288.4.p.b.47.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.93713 - 4.28640i) q^{3} +(-3.52304 + 6.10209i) q^{5} +(16.9049 - 9.76005i) q^{7} +(-9.74649 + 25.1795i) q^{9} +(-11.8232 + 6.82610i) q^{11} +(-55.8938 - 32.2703i) q^{13} +(36.5037 - 2.82147i) q^{15} +47.8376i q^{17} -14.9265 q^{19} +(-91.4874 - 43.7946i) q^{21} +(-25.1060 + 43.4848i) q^{23} +(37.6763 + 65.2573i) q^{25} +(136.556 - 32.1781i) q^{27} +(129.302 + 223.957i) q^{29} +(-108.559 - 62.6768i) q^{31} +(63.9856 + 30.6296i) q^{33} +137.540i q^{35} +208.987i q^{37} +(25.8441 + 334.365i) q^{39} +(411.520 + 237.591i) q^{41} +(178.732 + 309.573i) q^{43} +(-119.310 - 148.182i) q^{45} +(-156.128 - 270.422i) q^{47} +(19.0170 - 32.9384i) q^{49} +(205.051 - 140.506i) q^{51} -476.697 q^{53} -96.1946i q^{55} +(43.8413 + 63.9812i) q^{57} +(425.920 + 245.905i) q^{59} +(661.465 - 381.897i) q^{61} +(80.9894 + 520.783i) q^{63} +(393.832 - 227.379i) q^{65} +(-277.112 + 479.972i) q^{67} +(260.133 - 20.1064i) q^{69} -87.1038 q^{71} -818.083 q^{73} +(169.059 - 353.165i) q^{75} +(-133.246 + 230.789i) q^{77} +(-1030.34 + 594.866i) q^{79} +(-539.012 - 490.823i) q^{81} +(-400.564 + 231.266i) q^{83} +(-291.910 - 168.534i) q^{85} +(580.194 - 1212.03i) q^{87} +1047.78i q^{89} -1259.84 q^{91} +(50.1955 + 649.419i) q^{93} +(52.5869 - 91.0831i) q^{95} +(-562.907 - 974.983i) q^{97} +(-56.6434 - 364.231i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 6 q^{3} + 42 q^{9} - 48 q^{11} + 220 q^{19} - 902 q^{25} + 252 q^{27} - 660 q^{33} + 1620 q^{41} + 292 q^{43} + 1762 q^{49} + 1794 q^{51} - 294 q^{57} - 5592 q^{59} - 6 q^{65} - 68 q^{67} - 868 q^{73}+ \cdots + 2118 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/288\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.93713 4.28640i −0.565252 0.824919i
\(4\) 0 0
\(5\) −3.52304 + 6.10209i −0.315111 + 0.545788i −0.979461 0.201634i \(-0.935375\pi\)
0.664350 + 0.747421i \(0.268708\pi\)
\(6\) 0 0
\(7\) 16.9049 9.76005i 0.912779 0.526993i 0.0314545 0.999505i \(-0.489986\pi\)
0.881324 + 0.472512i \(0.156653\pi\)
\(8\) 0 0
\(9\) −9.74649 + 25.1795i −0.360981 + 0.932573i
\(10\) 0 0
\(11\) −11.8232 + 6.82610i −0.324074 + 0.187104i −0.653207 0.757179i \(-0.726577\pi\)
0.329133 + 0.944284i \(0.393244\pi\)
\(12\) 0 0
\(13\) −55.8938 32.2703i −1.19247 0.688474i −0.233606 0.972331i \(-0.575053\pi\)
−0.958867 + 0.283857i \(0.908386\pi\)
\(14\) 0 0
\(15\) 36.5037 2.82147i 0.628347 0.0485668i
\(16\) 0 0
\(17\) 47.8376i 0.682490i 0.939974 + 0.341245i \(0.110849\pi\)
−0.939974 + 0.341245i \(0.889151\pi\)
\(18\) 0 0
\(19\) −14.9265 −0.180231 −0.0901154 0.995931i \(-0.528724\pi\)
−0.0901154 + 0.995931i \(0.528724\pi\)
\(20\) 0 0
\(21\) −91.4874 43.7946i −0.950676 0.455084i
\(22\) 0 0
\(23\) −25.1060 + 43.4848i −0.227607 + 0.394226i −0.957098 0.289763i \(-0.906423\pi\)
0.729492 + 0.683990i \(0.239757\pi\)
\(24\) 0 0
\(25\) 37.6763 + 65.2573i 0.301411 + 0.522058i
\(26\) 0 0
\(27\) 136.556 32.1781i 0.973342 0.229359i
\(28\) 0 0
\(29\) 129.302 + 223.957i 0.827956 + 1.43406i 0.899639 + 0.436635i \(0.143830\pi\)
−0.0716823 + 0.997428i \(0.522837\pi\)
\(30\) 0 0
\(31\) −108.559 62.6768i −0.628962 0.363132i 0.151388 0.988474i \(-0.451626\pi\)
−0.780350 + 0.625343i \(0.784959\pi\)
\(32\) 0 0
\(33\) 63.9856 + 30.6296i 0.337529 + 0.161574i
\(34\) 0 0
\(35\) 137.540i 0.664244i
\(36\) 0 0
\(37\) 208.987i 0.928576i 0.885684 + 0.464288i \(0.153690\pi\)
−0.885684 + 0.464288i \(0.846310\pi\)
\(38\) 0 0
\(39\) 25.8441 + 334.365i 0.106112 + 1.37285i
\(40\) 0 0
\(41\) 411.520 + 237.591i 1.56753 + 0.905013i 0.996456 + 0.0841137i \(0.0268059\pi\)
0.571073 + 0.820900i \(0.306527\pi\)
\(42\) 0 0
\(43\) 178.732 + 309.573i 0.633870 + 1.09789i 0.986753 + 0.162228i \(0.0518679\pi\)
−0.352884 + 0.935667i \(0.614799\pi\)
\(44\) 0 0
\(45\) −119.310 148.182i −0.395238 0.490883i
\(46\) 0 0
\(47\) −156.128 270.422i −0.484545 0.839256i 0.515297 0.857011i \(-0.327681\pi\)
−0.999842 + 0.0177550i \(0.994348\pi\)
\(48\) 0 0
\(49\) 19.0170 32.9384i 0.0554431 0.0960303i
\(50\) 0 0
\(51\) 205.051 140.506i 0.562999 0.385779i
\(52\) 0 0
\(53\) −476.697 −1.23546 −0.617729 0.786391i \(-0.711947\pi\)
−0.617729 + 0.786391i \(0.711947\pi\)
\(54\) 0 0
\(55\) 96.1946i 0.235834i
\(56\) 0 0
\(57\) 43.8413 + 63.9812i 0.101876 + 0.148676i
\(58\) 0 0
\(59\) 425.920 + 245.905i 0.939831 + 0.542612i 0.889907 0.456141i \(-0.150769\pi\)
0.0499237 + 0.998753i \(0.484102\pi\)
\(60\) 0 0
\(61\) 661.465 381.897i 1.38839 0.801589i 0.395259 0.918570i \(-0.370655\pi\)
0.993134 + 0.116981i \(0.0373216\pi\)
\(62\) 0 0
\(63\) 80.9894 + 520.783i 0.161964 + 1.04147i
\(64\) 0 0
\(65\) 393.832 227.379i 0.751521 0.433891i
\(66\) 0 0
\(67\) −277.112 + 479.972i −0.505293 + 0.875193i 0.494688 + 0.869071i \(0.335282\pi\)
−0.999981 + 0.00612269i \(0.998051\pi\)
\(68\) 0 0
\(69\) 260.133 20.1064i 0.453860 0.0350801i
\(70\) 0 0
\(71\) −87.1038 −0.145596 −0.0727980 0.997347i \(-0.523193\pi\)
−0.0727980 + 0.997347i \(0.523193\pi\)
\(72\) 0 0
\(73\) −818.083 −1.31164 −0.655818 0.754919i \(-0.727676\pi\)
−0.655818 + 0.754919i \(0.727676\pi\)
\(74\) 0 0
\(75\) 169.059 353.165i 0.260283 0.543734i
\(76\) 0 0
\(77\) −133.246 + 230.789i −0.197205 + 0.341569i
\(78\) 0 0
\(79\) −1030.34 + 594.866i −1.46737 + 0.847186i −0.999333 0.0365241i \(-0.988371\pi\)
−0.468036 + 0.883710i \(0.655038\pi\)
\(80\) 0 0
\(81\) −539.012 490.823i −0.739385 0.673283i
\(82\) 0 0
\(83\) −400.564 + 231.266i −0.529730 + 0.305840i −0.740907 0.671608i \(-0.765604\pi\)
0.211176 + 0.977448i \(0.432271\pi\)
\(84\) 0 0
\(85\) −291.910 168.534i −0.372495 0.215060i
\(86\) 0 0
\(87\) 580.194 1212.03i 0.714981 1.49360i
\(88\) 0 0
\(89\) 1047.78i 1.24791i 0.781459 + 0.623956i \(0.214476\pi\)
−0.781459 + 0.623956i \(0.785524\pi\)
\(90\) 0 0
\(91\) −1259.84 −1.45128
\(92\) 0 0
\(93\) 50.1955 + 649.419i 0.0559680 + 0.724103i
\(94\) 0 0
\(95\) 52.5869 91.0831i 0.0567926 0.0983677i
\(96\) 0 0
\(97\) −562.907 974.983i −0.589222 1.02056i −0.994335 0.106296i \(-0.966101\pi\)
0.405113 0.914267i \(-0.367232\pi\)
\(98\) 0 0
\(99\) −56.6434 364.231i −0.0575038 0.369764i
\(100\) 0 0
\(101\) 312.444 + 541.170i 0.307816 + 0.533152i 0.977884 0.209147i \(-0.0670687\pi\)
−0.670069 + 0.742299i \(0.733735\pi\)
\(102\) 0 0
\(103\) 135.960 + 78.4965i 0.130063 + 0.0750922i 0.563620 0.826034i \(-0.309408\pi\)
−0.433557 + 0.901126i \(0.642742\pi\)
\(104\) 0 0
\(105\) 589.553 403.974i 0.547947 0.375465i
\(106\) 0 0
\(107\) 420.449i 0.379872i −0.981796 0.189936i \(-0.939172\pi\)
0.981796 0.189936i \(-0.0608280\pi\)
\(108\) 0 0
\(109\) 1217.23i 1.06963i −0.844969 0.534815i \(-0.820381\pi\)
0.844969 0.534815i \(-0.179619\pi\)
\(110\) 0 0
\(111\) 895.803 613.824i 0.765999 0.524879i
\(112\) 0 0
\(113\) 303.893 + 175.453i 0.252990 + 0.146064i 0.621132 0.783706i \(-0.286673\pi\)
−0.368143 + 0.929769i \(0.620006\pi\)
\(114\) 0 0
\(115\) −176.899 306.398i −0.143443 0.248450i
\(116\) 0 0
\(117\) 1357.32 1092.85i 1.07251 0.863542i
\(118\) 0 0
\(119\) 466.897 + 808.690i 0.359667 + 0.622962i
\(120\) 0 0
\(121\) −572.309 + 991.268i −0.429984 + 0.744754i
\(122\) 0 0
\(123\) −190.278 2461.78i −0.139486 1.80464i
\(124\) 0 0
\(125\) −1411.70 −1.01013
\(126\) 0 0
\(127\) 2003.55i 1.39989i −0.714195 0.699947i \(-0.753207\pi\)
0.714195 0.699947i \(-0.246793\pi\)
\(128\) 0 0
\(129\) 801.995 1675.38i 0.547378 1.14348i
\(130\) 0 0
\(131\) 967.023 + 558.311i 0.644956 + 0.372365i 0.786521 0.617564i \(-0.211880\pi\)
−0.141565 + 0.989929i \(0.545214\pi\)
\(132\) 0 0
\(133\) −252.332 + 145.684i −0.164511 + 0.0949803i
\(134\) 0 0
\(135\) −284.739 + 946.643i −0.181529 + 0.603511i
\(136\) 0 0
\(137\) 562.186 324.578i 0.350590 0.202413i −0.314355 0.949305i \(-0.601788\pi\)
0.664945 + 0.746892i \(0.268455\pi\)
\(138\) 0 0
\(139\) 535.022 926.685i 0.326475 0.565471i −0.655335 0.755338i \(-0.727473\pi\)
0.981810 + 0.189868i \(0.0608059\pi\)
\(140\) 0 0
\(141\) −700.567 + 1463.49i −0.418428 + 0.874101i
\(142\) 0 0
\(143\) 881.121 0.515266
\(144\) 0 0
\(145\) −1822.14 −1.04359
\(146\) 0 0
\(147\) −197.043 + 15.2300i −0.110557 + 0.00854523i
\(148\) 0 0
\(149\) 296.044 512.764i 0.162771 0.281928i −0.773090 0.634296i \(-0.781290\pi\)
0.935862 + 0.352368i \(0.114623\pi\)
\(150\) 0 0
\(151\) 1813.60 1047.08i 0.977411 0.564308i 0.0759232 0.997114i \(-0.475810\pi\)
0.901487 + 0.432805i \(0.142476\pi\)
\(152\) 0 0
\(153\) −1204.53 466.249i −0.636472 0.246366i
\(154\) 0 0
\(155\) 764.918 441.626i 0.396385 0.228853i
\(156\) 0 0
\(157\) −122.949 70.9848i −0.0624995 0.0360841i 0.468425 0.883503i \(-0.344822\pi\)
−0.530924 + 0.847419i \(0.678155\pi\)
\(158\) 0 0
\(159\) 1400.12 + 2043.31i 0.698345 + 1.01915i
\(160\) 0 0
\(161\) 980.141i 0.479789i
\(162\) 0 0
\(163\) −3642.04 −1.75010 −0.875051 0.484031i \(-0.839172\pi\)
−0.875051 + 0.484031i \(0.839172\pi\)
\(164\) 0 0
\(165\) −412.329 + 282.536i −0.194544 + 0.133306i
\(166\) 0 0
\(167\) −1424.28 + 2466.93i −0.659966 + 1.14310i 0.320657 + 0.947195i \(0.396096\pi\)
−0.980624 + 0.195900i \(0.937237\pi\)
\(168\) 0 0
\(169\) 984.242 + 1704.76i 0.447994 + 0.775948i
\(170\) 0 0
\(171\) 145.481 375.843i 0.0650599 0.168078i
\(172\) 0 0
\(173\) −11.9219 20.6493i −0.00523934 0.00907480i 0.863394 0.504531i \(-0.168334\pi\)
−0.868633 + 0.495456i \(0.835001\pi\)
\(174\) 0 0
\(175\) 1273.83 + 735.445i 0.550242 + 0.317683i
\(176\) 0 0
\(177\) −196.936 2547.92i −0.0836306 1.08200i
\(178\) 0 0
\(179\) 1944.64i 0.812009i 0.913871 + 0.406004i \(0.133078\pi\)
−0.913871 + 0.406004i \(0.866922\pi\)
\(180\) 0 0
\(181\) 27.6647i 0.0113608i −0.999984 0.00568039i \(-0.998192\pi\)
0.999984 0.00568039i \(-0.00180813\pi\)
\(182\) 0 0
\(183\) −3579.78 1713.62i −1.44604 0.692211i
\(184\) 0 0
\(185\) −1275.26 736.271i −0.506805 0.292604i
\(186\) 0 0
\(187\) −326.544 565.592i −0.127697 0.221177i
\(188\) 0 0
\(189\) 1994.41 1876.76i 0.767575 0.722298i
\(190\) 0 0
\(191\) −1586.02 2747.07i −0.600840 1.04069i −0.992694 0.120658i \(-0.961500\pi\)
0.391854 0.920027i \(-0.371834\pi\)
\(192\) 0 0
\(193\) 221.041 382.854i 0.0824398 0.142790i −0.821858 0.569693i \(-0.807062\pi\)
0.904297 + 0.426903i \(0.140395\pi\)
\(194\) 0 0
\(195\) −2131.38 1020.28i −0.782724 0.374686i
\(196\) 0 0
\(197\) 3084.07 1.11539 0.557693 0.830047i \(-0.311687\pi\)
0.557693 + 0.830047i \(0.311687\pi\)
\(198\) 0 0
\(199\) 1784.15i 0.635555i −0.948165 0.317777i \(-0.897064\pi\)
0.948165 0.317777i \(-0.102936\pi\)
\(200\) 0 0
\(201\) 2871.27 221.929i 1.00758 0.0778788i
\(202\) 0 0
\(203\) 4371.67 + 2523.98i 1.51148 + 0.872654i
\(204\) 0 0
\(205\) −2899.61 + 1674.09i −0.987890 + 0.570359i
\(206\) 0 0
\(207\) −850.229 1055.98i −0.285483 0.354568i
\(208\) 0 0
\(209\) 176.479 101.890i 0.0584081 0.0337219i
\(210\) 0 0
\(211\) −734.854 + 1272.80i −0.239760 + 0.415277i −0.960645 0.277777i \(-0.910402\pi\)
0.720885 + 0.693055i \(0.243736\pi\)
\(212\) 0 0
\(213\) 255.835 + 373.362i 0.0822984 + 0.120105i
\(214\) 0 0
\(215\) −2518.73 −0.798956
\(216\) 0 0
\(217\) −2446.91 −0.765471
\(218\) 0 0
\(219\) 2402.82 + 3506.63i 0.741404 + 1.08199i
\(220\) 0 0
\(221\) 1543.73 2673.83i 0.469877 0.813850i
\(222\) 0 0
\(223\) −1047.05 + 604.513i −0.314419 + 0.181530i −0.648902 0.760872i \(-0.724772\pi\)
0.334483 + 0.942402i \(0.391438\pi\)
\(224\) 0 0
\(225\) −2010.36 + 312.640i −0.595661 + 0.0926342i
\(226\) 0 0
\(227\) −1946.40 + 1123.76i −0.569107 + 0.328574i −0.756793 0.653655i \(-0.773235\pi\)
0.187686 + 0.982229i \(0.439901\pi\)
\(228\) 0 0
\(229\) −663.668 383.169i −0.191513 0.110570i 0.401178 0.916000i \(-0.368601\pi\)
−0.592691 + 0.805430i \(0.701934\pi\)
\(230\) 0 0
\(231\) 1380.62 106.712i 0.393238 0.0303945i
\(232\) 0 0
\(233\) 801.184i 0.225267i 0.993637 + 0.112634i \(0.0359287\pi\)
−0.993637 + 0.112634i \(0.964071\pi\)
\(234\) 0 0
\(235\) 2200.18 0.610741
\(236\) 0 0
\(237\) 5576.08 + 2669.24i 1.52829 + 0.731586i
\(238\) 0 0
\(239\) −3032.68 + 5252.75i −0.820785 + 1.42164i 0.0843128 + 0.996439i \(0.473130\pi\)
−0.905098 + 0.425203i \(0.860203\pi\)
\(240\) 0 0
\(241\) 2629.87 + 4555.07i 0.702924 + 1.21750i 0.967435 + 0.253118i \(0.0814560\pi\)
−0.264511 + 0.964383i \(0.585211\pi\)
\(242\) 0 0
\(243\) −520.715 + 3752.03i −0.137464 + 0.990507i
\(244\) 0 0
\(245\) 133.995 + 232.087i 0.0349414 + 0.0605203i
\(246\) 0 0
\(247\) 834.301 + 481.684i 0.214920 + 0.124084i
\(248\) 0 0
\(249\) 2167.81 + 1037.72i 0.551724 + 0.264108i
\(250\) 0 0
\(251\) 2860.56i 0.719350i −0.933078 0.359675i \(-0.882888\pi\)
0.933078 0.359675i \(-0.117112\pi\)
\(252\) 0 0
\(253\) 685.503i 0.170345i
\(254\) 0 0
\(255\) 134.973 + 1746.25i 0.0331463 + 0.428841i
\(256\) 0 0
\(257\) 586.357 + 338.534i 0.142319 + 0.0821679i 0.569469 0.822013i \(-0.307149\pi\)
−0.427150 + 0.904181i \(0.640482\pi\)
\(258\) 0 0
\(259\) 2039.73 + 3532.91i 0.489353 + 0.847584i
\(260\) 0 0
\(261\) −6899.36 + 1072.95i −1.63624 + 0.254460i
\(262\) 0 0
\(263\) 579.488 + 1003.70i 0.135866 + 0.235327i 0.925928 0.377700i \(-0.123285\pi\)
−0.790062 + 0.613027i \(0.789952\pi\)
\(264\) 0 0
\(265\) 1679.42 2908.85i 0.389306 0.674298i
\(266\) 0 0
\(267\) 4491.20 3077.46i 1.02943 0.705385i
\(268\) 0 0
\(269\) −7718.35 −1.74943 −0.874714 0.484640i \(-0.838951\pi\)
−0.874714 + 0.484640i \(0.838951\pi\)
\(270\) 0 0
\(271\) 3568.10i 0.799804i 0.916558 + 0.399902i \(0.130956\pi\)
−0.916558 + 0.399902i \(0.869044\pi\)
\(272\) 0 0
\(273\) 3700.31 + 5400.17i 0.820341 + 1.19719i
\(274\) 0 0
\(275\) −890.906 514.365i −0.195359 0.112790i
\(276\) 0 0
\(277\) −4007.48 + 2313.72i −0.869265 + 0.501870i −0.867104 0.498128i \(-0.834021\pi\)
−0.00216082 + 0.999998i \(0.500688\pi\)
\(278\) 0 0
\(279\) 2636.24 2122.59i 0.565690 0.455470i
\(280\) 0 0
\(281\) 2505.78 1446.71i 0.531966 0.307131i −0.209851 0.977733i \(-0.567298\pi\)
0.741817 + 0.670603i \(0.233964\pi\)
\(282\) 0 0
\(283\) 4140.78 7172.04i 0.869766 1.50648i 0.00753096 0.999972i \(-0.497603\pi\)
0.862235 0.506508i \(-0.169064\pi\)
\(284\) 0 0
\(285\) −544.874 + 42.1149i −0.113247 + 0.00875323i
\(286\) 0 0
\(287\) 9275.61 1.90774
\(288\) 0 0
\(289\) 2624.56 0.534207
\(290\) 0 0
\(291\) −2525.84 + 5276.50i −0.508822 + 1.06293i
\(292\) 0 0
\(293\) −1863.44 + 3227.58i −0.371548 + 0.643540i −0.989804 0.142437i \(-0.954506\pi\)
0.618256 + 0.785977i \(0.287840\pi\)
\(294\) 0 0
\(295\) −3001.07 + 1732.67i −0.592301 + 0.341965i
\(296\) 0 0
\(297\) −1394.87 + 1312.59i −0.272521 + 0.256446i
\(298\) 0 0
\(299\) 2806.53 1620.35i 0.542830 0.313403i
\(300\) 0 0
\(301\) 6042.90 + 3488.87i 1.15717 + 0.668090i
\(302\) 0 0
\(303\) 1401.98 2928.75i 0.265814 0.555288i
\(304\) 0 0
\(305\) 5381.76i 1.01036i
\(306\) 0 0
\(307\) −1481.74 −0.275464 −0.137732 0.990470i \(-0.543981\pi\)
−0.137732 + 0.990470i \(0.543981\pi\)
\(308\) 0 0
\(309\) −62.8649 813.334i −0.0115737 0.149738i
\(310\) 0 0
\(311\) 3974.58 6884.18i 0.724688 1.25520i −0.234415 0.972137i \(-0.575317\pi\)
0.959102 0.283059i \(-0.0913492\pi\)
\(312\) 0 0
\(313\) 1570.79 + 2720.69i 0.283663 + 0.491318i 0.972284 0.233803i \(-0.0751170\pi\)
−0.688621 + 0.725121i \(0.741784\pi\)
\(314\) 0 0
\(315\) −3463.19 1340.53i −0.619456 0.239780i
\(316\) 0 0
\(317\) 954.296 + 1652.89i 0.169081 + 0.292856i 0.938097 0.346373i \(-0.112587\pi\)
−0.769016 + 0.639229i \(0.779253\pi\)
\(318\) 0 0
\(319\) −3057.51 1765.25i −0.536638 0.309828i
\(320\) 0 0
\(321\) −1802.21 + 1234.91i −0.313363 + 0.214723i
\(322\) 0 0
\(323\) 714.050i 0.123006i
\(324\) 0 0
\(325\) 4863.30i 0.830054i
\(326\) 0 0
\(327\) −5217.55 + 3575.18i −0.882358 + 0.604611i
\(328\) 0 0
\(329\) −5278.65 3047.63i −0.884564 0.510703i
\(330\) 0 0
\(331\) 3378.13 + 5851.10i 0.560964 + 0.971618i 0.997413 + 0.0718887i \(0.0229026\pi\)
−0.436449 + 0.899729i \(0.643764\pi\)
\(332\) 0 0
\(333\) −5262.19 2036.89i −0.865965 0.335198i
\(334\) 0 0
\(335\) −1952.56 3381.93i −0.318446 0.551565i
\(336\) 0 0
\(337\) 4901.54 8489.71i 0.792296 1.37230i −0.132246 0.991217i \(-0.542219\pi\)
0.924542 0.381080i \(-0.124448\pi\)
\(338\) 0 0
\(339\) −140.513 1817.93i −0.0225122 0.291259i
\(340\) 0 0
\(341\) 1711.35 0.271774
\(342\) 0 0
\(343\) 5952.96i 0.937113i
\(344\) 0 0
\(345\) −793.768 + 1658.19i −0.123870 + 0.258765i
\(346\) 0 0
\(347\) −10649.2 6148.32i −1.64749 0.951178i −0.978066 0.208297i \(-0.933208\pi\)
−0.669424 0.742881i \(-0.733459\pi\)
\(348\) 0 0
\(349\) 6231.13 3597.55i 0.955716 0.551783i 0.0608642 0.998146i \(-0.480614\pi\)
0.894852 + 0.446363i \(0.147281\pi\)
\(350\) 0 0
\(351\) −8671.03 2608.15i −1.31859 0.396617i
\(352\) 0 0
\(353\) −2455.03 + 1417.41i −0.370164 + 0.213714i −0.673530 0.739160i \(-0.735223\pi\)
0.303366 + 0.952874i \(0.401889\pi\)
\(354\) 0 0
\(355\) 306.870 531.515i 0.0458789 0.0794645i
\(356\) 0 0
\(357\) 2095.03 4376.54i 0.310590 0.648827i
\(358\) 0 0
\(359\) 3447.67 0.506856 0.253428 0.967354i \(-0.418442\pi\)
0.253428 + 0.967354i \(0.418442\pi\)
\(360\) 0 0
\(361\) −6636.20 −0.967517
\(362\) 0 0
\(363\) 5929.92 458.341i 0.857411 0.0662718i
\(364\) 0 0
\(365\) 2882.14 4992.02i 0.413310 0.715875i
\(366\) 0 0
\(367\) 4576.87 2642.46i 0.650983 0.375845i −0.137850 0.990453i \(-0.544019\pi\)
0.788833 + 0.614608i \(0.210686\pi\)
\(368\) 0 0
\(369\) −9993.31 + 8046.18i −1.40984 + 1.13514i
\(370\) 0 0
\(371\) −8058.51 + 4652.58i −1.12770 + 0.651078i
\(372\) 0 0
\(373\) 7902.95 + 4562.77i 1.09705 + 0.633381i 0.935444 0.353474i \(-0.115000\pi\)
0.161604 + 0.986856i \(0.448333\pi\)
\(374\) 0 0
\(375\) 4146.36 + 6051.12i 0.570979 + 0.833277i
\(376\) 0 0
\(377\) 16690.4i 2.28011i
\(378\) 0 0
\(379\) 1196.44 0.162156 0.0810778 0.996708i \(-0.474164\pi\)
0.0810778 + 0.996708i \(0.474164\pi\)
\(380\) 0 0
\(381\) −8588.03 + 5884.70i −1.15480 + 0.791293i
\(382\) 0 0
\(383\) 2622.07 4541.55i 0.349821 0.605907i −0.636397 0.771362i \(-0.719576\pi\)
0.986217 + 0.165455i \(0.0529092\pi\)
\(384\) 0 0
\(385\) −938.864 1626.16i −0.124283 0.215264i
\(386\) 0 0
\(387\) −9536.90 + 1483.13i −1.25268 + 0.194811i
\(388\) 0 0
\(389\) −797.621 1381.52i −0.103961 0.180067i 0.809352 0.587324i \(-0.199819\pi\)
−0.913313 + 0.407257i \(0.866485\pi\)
\(390\) 0 0
\(391\) −2080.21 1201.01i −0.269056 0.155339i
\(392\) 0 0
\(393\) −447.130 5784.88i −0.0573912 0.742516i
\(394\) 0 0
\(395\) 8382.96i 1.06783i
\(396\) 0 0
\(397\) 766.199i 0.0968625i −0.998827 0.0484313i \(-0.984578\pi\)
0.998827 0.0484313i \(-0.0154222\pi\)
\(398\) 0 0
\(399\) 1365.59 + 653.702i 0.171341 + 0.0820202i
\(400\) 0 0
\(401\) −170.330 98.3398i −0.0212116 0.0122465i 0.489357 0.872084i \(-0.337232\pi\)
−0.510568 + 0.859837i \(0.670565\pi\)
\(402\) 0 0
\(403\) 4045.19 + 7006.48i 0.500013 + 0.866049i
\(404\) 0 0
\(405\) 4894.01 1559.91i 0.600457 0.191389i
\(406\) 0 0
\(407\) −1426.57 2470.89i −0.173740 0.300927i
\(408\) 0 0
\(409\) 4719.01 8173.56i 0.570513 0.988158i −0.426000 0.904723i \(-0.640078\pi\)
0.996513 0.0834349i \(-0.0265891\pi\)
\(410\) 0 0
\(411\) −3042.49 1456.43i −0.365146 0.174794i
\(412\) 0 0
\(413\) 9600.17 1.14381
\(414\) 0 0
\(415\) 3259.04i 0.385494i
\(416\) 0 0
\(417\) −5543.58 + 428.479i −0.651007 + 0.0503183i
\(418\) 0 0
\(419\) −10282.4 5936.56i −1.19888 0.692171i −0.238571 0.971125i \(-0.576679\pi\)
−0.960305 + 0.278954i \(0.910012\pi\)
\(420\) 0 0
\(421\) 936.025 540.414i 0.108359 0.0625610i −0.444841 0.895609i \(-0.646740\pi\)
0.553200 + 0.833048i \(0.313407\pi\)
\(422\) 0 0
\(423\) 8330.77 1295.56i 0.957579 0.148918i
\(424\) 0 0
\(425\) −3121.75 + 1802.35i −0.356300 + 0.205710i
\(426\) 0 0
\(427\) 7454.67 12911.9i 0.844864 1.46335i
\(428\) 0 0
\(429\) −2587.97 3776.84i −0.291255 0.425052i
\(430\) 0 0
\(431\) −16863.0 −1.88460 −0.942299 0.334772i \(-0.891341\pi\)
−0.942299 + 0.334772i \(0.891341\pi\)
\(432\) 0 0
\(433\) 4717.51 0.523577 0.261789 0.965125i \(-0.415688\pi\)
0.261789 + 0.965125i \(0.415688\pi\)
\(434\) 0 0
\(435\) 5351.88 + 7810.44i 0.589892 + 0.860878i
\(436\) 0 0
\(437\) 374.745 649.078i 0.0410217 0.0710517i
\(438\) 0 0
\(439\) −5611.44 + 3239.77i −0.610068 + 0.352223i −0.772992 0.634416i \(-0.781241\pi\)
0.162924 + 0.986639i \(0.447907\pi\)
\(440\) 0 0
\(441\) 644.023 + 799.872i 0.0695414 + 0.0863699i
\(442\) 0 0
\(443\) 1696.92 979.717i 0.181993 0.105074i −0.406236 0.913768i \(-0.633159\pi\)
0.588229 + 0.808694i \(0.299825\pi\)
\(444\) 0 0
\(445\) −6393.63 3691.37i −0.681095 0.393230i
\(446\) 0 0
\(447\) −3067.43 + 237.091i −0.324574 + 0.0250873i
\(448\) 0 0
\(449\) 2566.64i 0.269771i −0.990861 0.134885i \(-0.956933\pi\)
0.990861 0.134885i \(-0.0430666\pi\)
\(450\) 0 0
\(451\) −6487.29 −0.677327
\(452\) 0 0
\(453\) −9815.02 4698.41i −1.01799 0.487308i
\(454\) 0 0
\(455\) 4438.46 7687.64i 0.457315 0.792093i
\(456\) 0 0
\(457\) 740.460 + 1282.51i 0.0757927 + 0.131277i 0.901431 0.432923i \(-0.142518\pi\)
−0.825638 + 0.564200i \(0.809185\pi\)
\(458\) 0 0
\(459\) 1539.32 + 6532.52i 0.156535 + 0.664296i
\(460\) 0 0
\(461\) 6037.19 + 10456.7i 0.609935 + 1.05644i 0.991251 + 0.131993i \(0.0421378\pi\)
−0.381316 + 0.924445i \(0.624529\pi\)
\(462\) 0 0
\(463\) 13152.8 + 7593.77i 1.32022 + 0.762230i 0.983764 0.179469i \(-0.0574379\pi\)
0.336457 + 0.941699i \(0.390771\pi\)
\(464\) 0 0
\(465\) −4139.65 1981.63i −0.412843 0.197626i
\(466\) 0 0
\(467\) 46.2660i 0.00458445i −0.999997 0.00229222i \(-0.999270\pi\)
0.999997 0.00229222i \(-0.000729638\pi\)
\(468\) 0 0
\(469\) 10818.5i 1.06514i
\(470\) 0 0
\(471\) 56.8490 + 735.501i 0.00556150 + 0.0719535i
\(472\) 0 0
\(473\) −4226.36 2440.09i −0.410842 0.237199i
\(474\) 0 0
\(475\) −562.377 974.066i −0.0543235 0.0940910i
\(476\) 0 0
\(477\) 4646.12 12003.0i 0.445977 1.15216i
\(478\) 0 0
\(479\) 7341.31 + 12715.5i 0.700278 + 1.21292i 0.968369 + 0.249523i \(0.0802738\pi\)
−0.268091 + 0.963393i \(0.586393\pi\)
\(480\) 0 0
\(481\) 6744.08 11681.1i 0.639300 1.10730i
\(482\) 0 0
\(483\) 4201.28 2878.81i 0.395786 0.271201i
\(484\) 0 0
\(485\) 7932.58 0.742680
\(486\) 0 0
\(487\) 5556.22i 0.516994i −0.966012 0.258497i \(-0.916773\pi\)
0.966012 0.258497i \(-0.0832273\pi\)
\(488\) 0 0
\(489\) 10697.2 + 15611.2i 0.989248 + 1.44369i
\(490\) 0 0
\(491\) 7499.65 + 4329.93i 0.689317 + 0.397977i 0.803356 0.595499i \(-0.203046\pi\)
−0.114039 + 0.993476i \(0.536379\pi\)
\(492\) 0 0
\(493\) −10713.6 + 6185.49i −0.978733 + 0.565072i
\(494\) 0 0
\(495\) 2422.13 + 937.560i 0.219933 + 0.0851317i
\(496\) 0 0
\(497\) −1472.48 + 850.137i −0.132897 + 0.0767281i
\(498\) 0 0
\(499\) 1626.32 2816.87i 0.145900 0.252707i −0.783808 0.621003i \(-0.786726\pi\)
0.929708 + 0.368296i \(0.120059\pi\)
\(500\) 0 0
\(501\) 14757.6 1140.66i 1.31601 0.101718i
\(502\) 0 0
\(503\) 2500.59 0.221662 0.110831 0.993839i \(-0.464649\pi\)
0.110831 + 0.993839i \(0.464649\pi\)
\(504\) 0 0
\(505\) −4403.02 −0.387984
\(506\) 0 0
\(507\) 4416.42 9225.96i 0.386865 0.808164i
\(508\) 0 0
\(509\) −4599.12 + 7965.92i −0.400496 + 0.693680i −0.993786 0.111309i \(-0.964496\pi\)
0.593290 + 0.804989i \(0.297829\pi\)
\(510\) 0 0
\(511\) −13829.6 + 7984.53i −1.19723 + 0.691223i
\(512\) 0 0
\(513\) −2038.31 + 480.308i −0.175426 + 0.0413375i
\(514\) 0 0
\(515\) −957.986 + 553.093i −0.0819687 + 0.0473247i
\(516\) 0 0
\(517\) 3691.85 + 2131.49i 0.314057 + 0.181321i
\(518\) 0 0
\(519\) −53.4952 + 111.752i −0.00452443 + 0.00945157i
\(520\) 0 0
\(521\) 7635.67i 0.642082i −0.947065 0.321041i \(-0.895967\pi\)
0.947065 0.321041i \(-0.104033\pi\)
\(522\) 0 0
\(523\) 6152.61 0.514407 0.257203 0.966357i \(-0.417199\pi\)
0.257203 + 0.966357i \(0.417199\pi\)
\(524\) 0 0
\(525\) −588.991 7620.24i −0.0489632 0.633476i
\(526\) 0 0
\(527\) 2998.31 5193.22i 0.247834 0.429260i
\(528\) 0 0
\(529\) 4822.88 + 8353.48i 0.396390 + 0.686568i
\(530\) 0 0
\(531\) −10343.0 + 8327.73i −0.845286 + 0.680589i
\(532\) 0 0
\(533\) −15334.3 26559.8i −1.24616 2.15841i
\(534\) 0 0
\(535\) 2565.62 + 1481.26i 0.207329 + 0.119702i
\(536\) 0 0
\(537\) 8335.53 5711.68i 0.669841 0.458989i
\(538\) 0 0
\(539\) 519.248i 0.0414946i
\(540\) 0 0
\(541\) 681.956i 0.0541952i 0.999633 + 0.0270976i \(0.00862649\pi\)
−0.999633 + 0.0270976i \(0.991374\pi\)
\(542\) 0 0
\(543\) −118.582 + 81.2549i −0.00937171 + 0.00642170i
\(544\) 0 0
\(545\) 7427.67 + 4288.36i 0.583791 + 0.337052i
\(546\) 0 0
\(547\) −2410.39 4174.92i −0.188411 0.326337i 0.756310 0.654214i \(-0.227000\pi\)
−0.944721 + 0.327876i \(0.893667\pi\)
\(548\) 0 0
\(549\) 3169.01 + 20377.5i 0.246357 + 1.58414i
\(550\) 0 0
\(551\) −1930.03 3342.91i −0.149223 0.258462i
\(552\) 0 0
\(553\) −11611.8 + 20112.3i −0.892922 + 1.54659i
\(554\) 0 0
\(555\) 589.652 + 7628.80i 0.0450979 + 0.583468i
\(556\) 0 0
\(557\) −5948.96 −0.452541 −0.226271 0.974064i \(-0.572653\pi\)
−0.226271 + 0.974064i \(0.572653\pi\)
\(558\) 0 0
\(559\) 23071.0i 1.74561i
\(560\) 0 0
\(561\) −1465.25 + 3060.92i −0.110272 + 0.230360i
\(562\) 0 0
\(563\) −1046.18 604.012i −0.0783148 0.0452151i 0.460331 0.887747i \(-0.347731\pi\)
−0.538646 + 0.842532i \(0.681064\pi\)
\(564\) 0 0
\(565\) −2141.26 + 1236.25i −0.159439 + 0.0920524i
\(566\) 0 0
\(567\) −13902.4 3036.53i −1.02971 0.224907i
\(568\) 0 0
\(569\) −2663.36 + 1537.69i −0.196229 + 0.113293i −0.594895 0.803803i \(-0.702806\pi\)
0.398667 + 0.917096i \(0.369473\pi\)
\(570\) 0 0
\(571\) −4651.48 + 8056.60i −0.340908 + 0.590470i −0.984602 0.174813i \(-0.944068\pi\)
0.643694 + 0.765283i \(0.277401\pi\)
\(572\) 0 0
\(573\) −7116.69 + 14866.8i −0.518855 + 1.08389i
\(574\) 0 0
\(575\) −3783.60 −0.274412
\(576\) 0 0
\(577\) 2594.28 0.187178 0.0935888 0.995611i \(-0.470166\pi\)
0.0935888 + 0.995611i \(0.470166\pi\)
\(578\) 0 0
\(579\) −2290.29 + 177.023i −0.164389 + 0.0127061i
\(580\) 0 0
\(581\) −4514.33 + 7819.04i −0.322351 + 0.558328i
\(582\) 0 0
\(583\) 5636.06 3253.98i 0.400380 0.231160i
\(584\) 0 0
\(585\) 1886.81 + 12132.6i 0.133350 + 0.857475i
\(586\) 0 0
\(587\) 11408.0 6586.41i 0.802144 0.463118i −0.0420762 0.999114i \(-0.513397\pi\)
0.844220 + 0.535996i \(0.180064\pi\)
\(588\) 0 0
\(589\) 1620.42 + 935.547i 0.113358 + 0.0654475i
\(590\) 0 0
\(591\) −9058.34 13219.6i −0.630474 0.920103i
\(592\) 0 0
\(593\) 20600.6i 1.42659i 0.700865 + 0.713294i \(0.252798\pi\)
−0.700865 + 0.713294i \(0.747202\pi\)
\(594\) 0 0
\(595\) −6579.60 −0.453340
\(596\) 0 0
\(597\) −7647.61 + 5240.30i −0.524281 + 0.359248i
\(598\) 0 0
\(599\) −5529.60 + 9577.55i −0.377184 + 0.653302i −0.990651 0.136418i \(-0.956441\pi\)
0.613467 + 0.789720i \(0.289774\pi\)
\(600\) 0 0
\(601\) 10115.9 + 17521.2i 0.686581 + 1.18919i 0.972937 + 0.231070i \(0.0742227\pi\)
−0.286356 + 0.958123i \(0.592444\pi\)
\(602\) 0 0
\(603\) −9384.58 11655.6i −0.633780 0.787151i
\(604\) 0 0
\(605\) −4032.54 6984.56i −0.270985 0.469360i
\(606\) 0 0
\(607\) 24259.0 + 14005.9i 1.62214 + 0.936545i 0.986346 + 0.164689i \(0.0526621\pi\)
0.635798 + 0.771856i \(0.280671\pi\)
\(608\) 0 0
\(609\) −2021.36 26152.0i −0.134499 1.74012i
\(610\) 0 0
\(611\) 20153.2i 1.33439i
\(612\) 0 0
\(613\) 18577.2i 1.22402i −0.790849 0.612012i \(-0.790361\pi\)
0.790849 0.612012i \(-0.209639\pi\)
\(614\) 0 0
\(615\) 15692.4 + 7511.86i 1.02891 + 0.492533i
\(616\) 0 0
\(617\) 1871.75 + 1080.65i 0.122129 + 0.0705114i 0.559820 0.828614i \(-0.310870\pi\)
−0.437691 + 0.899126i \(0.644204\pi\)
\(618\) 0 0
\(619\) 3435.93 + 5951.20i 0.223104 + 0.386428i 0.955749 0.294183i \(-0.0950476\pi\)
−0.732645 + 0.680611i \(0.761714\pi\)
\(620\) 0 0
\(621\) −2029.11 + 6745.98i −0.131120 + 0.435921i
\(622\) 0 0
\(623\) 10226.4 + 17712.6i 0.657641 + 1.13907i
\(624\) 0 0
\(625\) 263.949 457.172i 0.0168927 0.0292590i
\(626\) 0 0
\(627\) −955.084 457.194i −0.0608331 0.0291206i
\(628\) 0 0
\(629\) −9997.45 −0.633743
\(630\) 0 0
\(631\) 14045.7i 0.886134i 0.896488 + 0.443067i \(0.146110\pi\)
−0.896488 + 0.443067i \(0.853890\pi\)
\(632\) 0 0
\(633\) 7614.12 588.517i 0.478095 0.0369533i
\(634\) 0 0
\(635\) 12225.9 + 7058.60i 0.764045 + 0.441122i
\(636\) 0 0
\(637\) −2125.86 + 1227.37i −0.132229 + 0.0763423i
\(638\) 0 0
\(639\) 848.956 2193.23i 0.0525574 0.135779i
\(640\) 0 0
\(641\) −9674.91 + 5585.81i −0.596156 + 0.344191i −0.767528 0.641016i \(-0.778513\pi\)
0.171372 + 0.985206i \(0.445180\pi\)
\(642\) 0 0
\(643\) 3853.78 6674.94i 0.236358 0.409384i −0.723309 0.690525i \(-0.757380\pi\)
0.959666 + 0.281141i \(0.0907129\pi\)
\(644\) 0 0
\(645\) 7397.83 + 10796.3i 0.451611 + 0.659074i
\(646\) 0 0
\(647\) −10087.3 −0.612943 −0.306472 0.951880i \(-0.599148\pi\)
−0.306472 + 0.951880i \(0.599148\pi\)
\(648\) 0 0
\(649\) −6714.29 −0.406100
\(650\) 0 0
\(651\) 7186.91 + 10488.4i 0.432684 + 0.631451i
\(652\) 0 0
\(653\) 11606.7 20103.4i 0.695567 1.20476i −0.274422 0.961609i \(-0.588487\pi\)
0.969989 0.243148i \(-0.0781802\pi\)
\(654\) 0 0
\(655\) −6813.73 + 3933.91i −0.406465 + 0.234673i
\(656\) 0 0
\(657\) 7973.44 20598.9i 0.473476 1.22320i
\(658\) 0 0
\(659\) 23327.3 13468.0i 1.37891 0.796115i 0.386883 0.922129i \(-0.373552\pi\)
0.992029 + 0.126014i \(0.0402183\pi\)
\(660\) 0 0
\(661\) −20390.0 11772.2i −1.19982 0.692715i −0.239304 0.970945i \(-0.576919\pi\)
−0.960515 + 0.278229i \(0.910252\pi\)
\(662\) 0 0
\(663\) −15995.2 + 1236.32i −0.936959 + 0.0724203i
\(664\) 0 0
\(665\) 2053.00i 0.119717i
\(666\) 0 0
\(667\) −12985.0 −0.753794
\(668\) 0 0
\(669\) 5666.50 + 2712.53i 0.327473 + 0.156760i
\(670\) 0 0
\(671\) −5213.74 + 9030.46i −0.299961 + 0.519548i
\(672\) 0 0
\(673\) −11656.7 20189.9i −0.667654 1.15641i −0.978559 0.205969i \(-0.933965\pi\)
0.310905 0.950441i \(-0.399368\pi\)
\(674\) 0 0
\(675\) 7244.79 + 7698.93i 0.413114 + 0.439010i
\(676\) 0 0
\(677\) 12028.2 + 20833.5i 0.682840 + 1.18271i 0.974110 + 0.226072i \(0.0725886\pi\)
−0.291271 + 0.956641i \(0.594078\pi\)
\(678\) 0 0
\(679\) −19031.8 10988.0i −1.07566 0.621032i
\(680\) 0 0
\(681\) 10533.7 + 5042.44i 0.592736 + 0.283740i
\(682\) 0 0
\(683\) 18439.7i 1.03305i 0.856272 + 0.516525i \(0.172775\pi\)
−0.856272 + 0.516525i \(0.827225\pi\)
\(684\) 0 0
\(685\) 4574.02i 0.255130i
\(686\) 0 0
\(687\) 306.866 + 3970.17i 0.0170417 + 0.220482i
\(688\) 0 0
\(689\) 26644.4 + 15383.1i 1.47325 + 0.850582i
\(690\) 0 0
\(691\) 7125.35 + 12341.5i 0.392274 + 0.679438i 0.992749 0.120205i \(-0.0383553\pi\)
−0.600475 + 0.799643i \(0.705022\pi\)
\(692\) 0 0
\(693\) −4512.46 5604.45i −0.247351 0.307208i
\(694\) 0 0
\(695\) 3769.81 + 6529.51i 0.205751 + 0.356372i
\(696\) 0 0
\(697\) −11365.8 + 19686.2i −0.617662 + 1.06982i
\(698\) 0 0
\(699\) 3434.20 2353.19i 0.185827 0.127333i
\(700\) 0 0
\(701\) 15415.0 0.830549 0.415274 0.909696i \(-0.363686\pi\)
0.415274 + 0.909696i \(0.363686\pi\)
\(702\) 0 0
\(703\) 3119.46i 0.167358i
\(704\) 0 0
\(705\) −6462.23 9430.87i −0.345222 0.503811i
\(706\) 0 0
\(707\) 10563.7 + 6098.94i 0.561935 + 0.324433i
\(708\) 0 0
\(709\) 15877.4 9166.80i 0.841025 0.485566i −0.0165875 0.999862i \(-0.505280\pi\)
0.857613 + 0.514296i \(0.171947\pi\)
\(710\) 0 0
\(711\) −4936.23 31741.2i −0.260370 1.67425i
\(712\) 0 0
\(713\) 5450.97 3147.12i 0.286312 0.165302i
\(714\) 0 0
\(715\) −3104.23 + 5376.68i −0.162366 + 0.281226i
\(716\) 0 0
\(717\) 31422.8 2428.76i 1.63669 0.126504i
\(718\) 0 0
\(719\) 10428.9 0.540936 0.270468 0.962729i \(-0.412822\pi\)
0.270468 + 0.962729i \(0.412822\pi\)
\(720\) 0 0
\(721\) 3064.52 0.158292
\(722\) 0 0
\(723\) 11800.6 24651.5i 0.607009 1.26805i
\(724\) 0 0
\(725\) −9743.23 + 16875.8i −0.499110 + 0.864483i
\(726\) 0 0
\(727\) 12935.1 7468.08i 0.659884 0.380984i −0.132348 0.991203i \(-0.542252\pi\)
0.792233 + 0.610219i \(0.208918\pi\)
\(728\) 0 0
\(729\) 17612.1 8788.23i 0.894789 0.446489i
\(730\) 0 0
\(731\) −14809.2 + 8550.12i −0.749302 + 0.432610i
\(732\) 0 0
\(733\) 434.025 + 250.584i 0.0218705 + 0.0126269i 0.510895 0.859643i \(-0.329314\pi\)
−0.489025 + 0.872270i \(0.662647\pi\)
\(734\) 0 0
\(735\) 601.255 1256.03i 0.0301736 0.0630331i
\(736\) 0 0
\(737\) 7566.38i 0.378170i
\(738\) 0 0
\(739\) −11047.6 −0.549922 −0.274961 0.961455i \(-0.588665\pi\)
−0.274961 + 0.961455i \(0.588665\pi\)
\(740\) 0 0
\(741\) −385.763 4990.92i −0.0191246 0.247430i
\(742\) 0 0
\(743\) −16450.7 + 28493.5i −0.812272 + 1.40690i 0.0989987 + 0.995088i \(0.468436\pi\)
−0.911270 + 0.411808i \(0.864897\pi\)
\(744\) 0 0
\(745\) 2085.95 + 3612.98i 0.102582 + 0.177677i
\(746\) 0 0
\(747\) −1919.06 12340.0i −0.0939954 0.604414i
\(748\) 0 0
\(749\) −4103.60 7107.64i −0.200190 0.346739i
\(750\) 0 0
\(751\) −32163.5 18569.6i −1.56280 0.902282i −0.996972 0.0777583i \(-0.975224\pi\)
−0.565827 0.824524i \(-0.691443\pi\)
\(752\) 0 0
\(753\) −12261.5 + 8401.84i −0.593405 + 0.406614i
\(754\) 0 0
\(755\) 14755.7i 0.711278i
\(756\) 0 0
\(757\) 7256.87i 0.348422i 0.984708 + 0.174211i \(0.0557375\pi\)
−0.984708 + 0.174211i \(0.944263\pi\)
\(758\) 0 0
\(759\) −2938.34 + 2013.41i −0.140521 + 0.0962877i
\(760\) 0 0
\(761\) −7953.62 4592.02i −0.378868 0.218739i 0.298458 0.954423i \(-0.403528\pi\)
−0.677326 + 0.735683i \(0.736861\pi\)
\(762\) 0 0
\(763\) −11880.2 20577.2i −0.563688 0.976336i
\(764\) 0 0
\(765\) 7088.69 5707.51i 0.335023 0.269746i
\(766\) 0 0
\(767\) −15870.8 27489.1i −0.747148 1.29410i
\(768\) 0 0
\(769\) 17525.0 30354.2i 0.821806 1.42341i −0.0825304 0.996589i \(-0.526300\pi\)
0.904336 0.426821i \(-0.140366\pi\)
\(770\) 0 0
\(771\) −271.119 3507.68i −0.0126642 0.163847i
\(772\) 0 0
\(773\) 1390.01 0.0646768 0.0323384 0.999477i \(-0.489705\pi\)
0.0323384 + 0.999477i \(0.489705\pi\)
\(774\) 0 0
\(775\) 9445.72i 0.437807i
\(776\) 0 0
\(777\) 9152.52 19119.7i 0.422580 0.882774i
\(778\) 0 0
\(779\) −6142.58 3546.42i −0.282517 0.163111i
\(780\) 0 0
\(781\) 1029.84 594.579i 0.0471839 0.0272416i
\(782\) 0 0
\(783\) 24863.5 + 26422.0i 1.13480 + 1.20593i
\(784\) 0 0
\(785\) 866.311 500.165i 0.0393885 0.0227410i
\(786\) 0 0
\(787\) −2740.75 + 4747.12i −0.124139 + 0.215015i −0.921396 0.388625i \(-0.872950\pi\)
0.797257 + 0.603640i \(0.206283\pi\)
\(788\) 0 0
\(789\) 2600.24 5431.93i 0.117327 0.245097i
\(790\) 0 0
\(791\) 6849.70 0.307898
\(792\) 0 0
\(793\) −49295.7 −2.20749
\(794\) 0 0
\(795\) −17401.2 + 1344.99i −0.776297 + 0.0600022i
\(796\) 0 0
\(797\) −15906.0 + 27550.0i −0.706926 + 1.22443i 0.259065 + 0.965860i \(0.416585\pi\)
−0.965992 + 0.258573i \(0.916748\pi\)
\(798\) 0 0
\(799\) 12936.3 7468.79i 0.572784 0.330697i
\(800\) 0 0
\(801\) −26382.5 10212.2i −1.16377 0.450473i
\(802\) 0 0
\(803\) 9672.33 5584.32i 0.425067 0.245413i
\(804\) 0 0
\(805\) −5980.91 3453.08i −0.261863 0.151186i
\(806\) 0 0
\(807\) 22669.8 + 33084.0i 0.988867 + 1.44314i
\(808\) 0 0
\(809\) 2788.69i 0.121193i −0.998162 0.0605966i \(-0.980700\pi\)
0.998162 0.0605966i \(-0.0193003\pi\)
\(810\) 0 0
\(811\) −23968.2 −1.03778 −0.518889 0.854841i \(-0.673654\pi\)
−0.518889 + 0.854841i \(0.673654\pi\)
\(812\) 0 0
\(813\) 15294.3 10480.0i 0.659773 0.452091i
\(814\) 0 0
\(815\) 12831.1 22224.1i 0.551476 0.955184i
\(816\) 0 0
\(817\) −2667.85 4620.86i −0.114243 0.197874i
\(818\) 0 0
\(819\) 12279.0 31722.1i 0.523886 1.35343i
\(820\) 0 0
\(821\) −2750.46 4763.94i −0.116921 0.202512i 0.801625 0.597827i \(-0.203969\pi\)
−0.918546 + 0.395314i \(0.870636\pi\)
\(822\) 0 0
\(823\) 4259.38 + 2459.15i 0.180404 + 0.104156i 0.587483 0.809237i \(-0.300119\pi\)
−0.407078 + 0.913393i \(0.633452\pi\)
\(824\) 0 0
\(825\) 411.936 + 5329.54i 0.0173839 + 0.224910i
\(826\) 0 0
\(827\) 17035.6i 0.716307i −0.933663 0.358153i \(-0.883407\pi\)
0.933663 0.358153i \(-0.116593\pi\)
\(828\) 0 0
\(829\) 9284.88i 0.388995i 0.980903 + 0.194498i \(0.0623077\pi\)
−0.980903 + 0.194498i \(0.937692\pi\)
\(830\) 0 0
\(831\) 21688.1 + 10382.0i 0.905355 + 0.433390i
\(832\) 0 0
\(833\) 1575.69 + 909.728i 0.0655397 + 0.0378394i
\(834\) 0 0
\(835\) −10035.6 17382.2i −0.415925 0.720403i
\(836\) 0 0
\(837\) −16841.3 5065.66i −0.695483 0.209193i
\(838\) 0 0
\(839\) −4605.12 7976.30i −0.189495 0.328215i 0.755587 0.655048i \(-0.227352\pi\)
−0.945082 + 0.326833i \(0.894018\pi\)
\(840\) 0 0
\(841\) −21243.4 + 36794.6i −0.871024 + 1.50866i
\(842\) 0 0
\(843\) −13561.0 6491.60i −0.554053 0.265222i
\(844\) 0 0
\(845\) −13870.1 −0.564670
\(846\) 0 0
\(847\) 22343.0i 0.906394i
\(848\) 0 0
\(849\) −42904.3 + 3316.20i −1.73436 + 0.134054i
\(850\) 0 0
\(851\) −9087.77 5246.83i −0.366069 0.211350i
\(852\) 0 0
\(853\) 6216.93 3589.35i 0.249547 0.144076i −0.370010 0.929028i \(-0.620646\pi\)
0.619557 + 0.784952i \(0.287312\pi\)
\(854\) 0 0
\(855\) 1780.89 + 2211.85i 0.0712340 + 0.0884722i
\(856\) 0 0
\(857\) 13290.3 7673.16i 0.529741 0.305846i −0.211170 0.977449i \(-0.567727\pi\)
0.740911 + 0.671603i \(0.234394\pi\)
\(858\) 0 0
\(859\) −18277.1 + 31656.9i −0.725969 + 1.25742i 0.232604 + 0.972571i \(0.425275\pi\)
−0.958574 + 0.284844i \(0.908058\pi\)
\(860\) 0 0
\(861\) −27243.7 39759.0i −1.07835 1.57373i
\(862\) 0 0
\(863\) −27501.0 −1.08476 −0.542378 0.840135i \(-0.682476\pi\)
−0.542378 + 0.840135i \(0.682476\pi\)
\(864\) 0 0
\(865\) 168.006 0.00660388
\(866\) 0 0
\(867\) −7708.69 11249.9i −0.301962 0.440678i
\(868\) 0 0
\(869\) 8121.23 14066.4i 0.317024 0.549102i
\(870\) 0 0
\(871\) 30977.7 17885.0i 1.20510 0.695763i
\(872\) 0 0
\(873\) 30035.9 4671.03i 1.16445 0.181089i
\(874\) 0 0
\(875\) −23864.7 + 13778.3i −0.922027 + 0.532332i
\(876\) 0 0
\(877\) −4880.15 2817.56i −0.187903 0.108486i 0.403098 0.915157i \(-0.367934\pi\)
−0.591000 + 0.806671i \(0.701267\pi\)
\(878\) 0 0
\(879\) 19307.9 1492.36i 0.740887 0.0572653i
\(880\) 0 0
\(881\) 51429.9i 1.96676i 0.181554 + 0.983381i \(0.441887\pi\)
−0.181554 + 0.983381i \(0.558113\pi\)
\(882\) 0 0
\(883\) 7015.23 0.267363 0.133681 0.991024i \(-0.457320\pi\)
0.133681 + 0.991024i \(0.457320\pi\)
\(884\) 0 0
\(885\) 16241.4 + 7774.71i 0.616893 + 0.295304i
\(886\) 0 0
\(887\) 18173.6 31477.6i 0.687948 1.19156i −0.284553 0.958660i \(-0.591845\pi\)
0.972501 0.232900i \(-0.0748214\pi\)
\(888\) 0 0
\(889\) −19554.8 33869.9i −0.737734 1.27779i
\(890\) 0 0
\(891\) 9723.23 + 2123.73i 0.365590 + 0.0798513i
\(892\) 0 0
\(893\) 2330.45 + 4036.46i 0.0873299 + 0.151260i
\(894\) 0 0
\(895\) −11866.4 6851.07i −0.443184 0.255873i
\(896\) 0 0
\(897\) −15188.6 7270.74i −0.565367 0.270639i
\(898\) 0 0
\(899\) 32416.9i 1.20263i
\(900\) 0 0
\(901\) 22804.0i 0.843188i
\(902\) 0 0
\(903\) −2794.10 36149.6i −0.102970 1.33221i
\(904\) 0 0
\(905\) 168.812 + 97.4639i 0.00620057 + 0.00357990i
\(906\) 0 0
\(907\) −3011.58 5216.21i −0.110251 0.190961i 0.805620 0.592432i \(-0.201832\pi\)
−0.915872 + 0.401472i \(0.868499\pi\)
\(908\) 0 0
\(909\) −16671.6 + 2592.68i −0.608319 + 0.0946027i
\(910\) 0 0
\(911\) 2996.17 + 5189.52i 0.108965 + 0.188734i 0.915351 0.402656i \(-0.131913\pi\)
−0.806386 + 0.591390i \(0.798580\pi\)
\(912\) 0 0
\(913\) 3157.29 5468.58i 0.114448 0.198230i
\(914\) 0 0
\(915\) 23068.4 15807.0i 0.833462 0.571106i
\(916\) 0 0
\(917\) 21796.6 0.784936
\(918\) 0 0
\(919\) 88.2115i 0.00316630i −0.999999 0.00158315i \(-0.999496\pi\)
0.999999 0.00158315i \(-0.000503932\pi\)
\(920\) 0 0
\(921\) 4352.08 + 6351.35i 0.155707 + 0.227236i
\(922\) 0 0
\(923\) 4868.56 + 2810.86i 0.173619 + 0.100239i
\(924\) 0 0
\(925\) −13637.9 + 7873.87i −0.484771 + 0.279883i
\(926\) 0 0
\(927\) −3301.63 + 2658.33i −0.116979 + 0.0941868i
\(928\) 0 0
\(929\) 18113.2 10457.7i 0.639695 0.369328i −0.144802 0.989461i \(-0.546255\pi\)
0.784497 + 0.620133i \(0.212921\pi\)
\(930\) 0 0
\(931\) −283.858 + 491.657i −0.00999256 + 0.0173076i
\(932\) 0 0
\(933\) −41182.2 + 3183.09i −1.44507 + 0.111693i
\(934\) 0 0
\(935\) 4601.72 0.160954
\(936\) 0 0
\(937\) 20055.2 0.699227 0.349614 0.936894i \(-0.386313\pi\)
0.349614 + 0.936894i \(0.386313\pi\)
\(938\) 0 0
\(939\) 7048.36 14724.1i 0.244957 0.511717i
\(940\) 0 0
\(941\) −1432.61 + 2481.36i −0.0496300 + 0.0859616i −0.889773 0.456403i \(-0.849138\pi\)
0.840143 + 0.542365i \(0.182471\pi\)
\(942\) 0 0
\(943\) −20663.2 + 11929.9i −0.713560 + 0.411974i
\(944\) 0 0
\(945\) 4425.79 + 18782.0i 0.152350 + 0.646537i
\(946\) 0 0
\(947\) 7218.72 4167.73i 0.247705 0.143013i −0.371008 0.928630i \(-0.620988\pi\)
0.618713 + 0.785617i \(0.287654\pi\)
\(948\) 0 0
\(949\) 45725.8 + 26399.8i 1.56409 + 0.903028i
\(950\) 0 0
\(951\) 4282.05 8945.25i 0.146010 0.305015i
\(952\) 0 0
\(953\) 39658.3i 1.34802i −0.738724 0.674008i \(-0.764571\pi\)
0.738724 0.674008i \(-0.235429\pi\)
\(954\) 0 0
\(955\) 22350.5 0.757324
\(956\) 0 0
\(957\) 1413.73 + 18290.5i 0.0477526 + 0.617814i
\(958\) 0 0
\(959\) 6335.80 10973.9i 0.213341 0.369517i
\(960\) 0 0
\(961\) −7038.75 12191.5i −0.236271 0.409233i
\(962\) 0 0
\(963\) 10586.7 + 4097.90i 0.354258 + 0.137127i
\(964\) 0 0
\(965\) 1557.47 + 2697.62i 0.0519553 + 0.0899892i
\(966\) 0 0
\(967\) 9529.32 + 5501.75i 0.316900 + 0.182962i 0.650010 0.759926i \(-0.274765\pi\)
−0.333110 + 0.942888i \(0.608098\pi\)
\(968\) 0 0
\(969\) −3060.71 + 2097.26i −0.101470 + 0.0695292i
\(970\) 0 0
\(971\) 18334.6i 0.605958i 0.952997 + 0.302979i \(0.0979813\pi\)
−0.952997 + 0.302979i \(0.902019\pi\)
\(972\) 0 0
\(973\) 20887.4i 0.688199i
\(974\) 0 0
\(975\) −20846.1 + 14284.2i −0.684727 + 0.469189i
\(976\) 0 0
\(977\) 32261.5 + 18626.2i 1.05643 + 0.609932i 0.924444 0.381319i \(-0.124530\pi\)
0.131990 + 0.991251i \(0.457863\pi\)
\(978\) 0 0
\(979\) −7152.24 12388.0i −0.233490 0.404416i
\(980\) 0 0
\(981\) 30649.3 + 11863.7i 0.997509 + 0.386117i
\(982\) 0 0
\(983\) 5395.60 + 9345.46i 0.175069 + 0.303229i 0.940185 0.340664i \(-0.110652\pi\)
−0.765116 + 0.643892i \(0.777318\pi\)
\(984\) 0 0
\(985\) −10865.3 + 18819.3i −0.351470 + 0.608764i
\(986\) 0 0
\(987\) 2440.74 + 31577.7i 0.0787127 + 1.01837i
\(988\) 0 0
\(989\) −17949.0 −0.577092
\(990\) 0 0
\(991\) 12374.8i 0.396669i 0.980134 + 0.198334i \(0.0635532\pi\)
−0.980134 + 0.198334i \(0.936447\pi\)
\(992\) 0 0
\(993\) 15158.1 31665.5i 0.484420 1.01196i
\(994\) 0 0
\(995\) 10887.1 + 6285.66i 0.346878 + 0.200270i
\(996\) 0 0
\(997\) 4549.81 2626.84i 0.144528 0.0834431i −0.425992 0.904727i \(-0.640075\pi\)
0.570520 + 0.821284i \(0.306742\pi\)
\(998\) 0 0
\(999\) 6724.82 + 28538.5i 0.212977 + 0.903822i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 288.4.p.b.239.11 64
3.2 odd 2 864.4.p.b.719.21 64
4.3 odd 2 72.4.l.b.59.10 yes 64
8.3 odd 2 inner 288.4.p.b.239.12 64
8.5 even 2 72.4.l.b.59.1 yes 64
9.2 odd 6 inner 288.4.p.b.47.12 64
9.7 even 3 864.4.p.b.143.12 64
12.11 even 2 216.4.l.b.179.23 64
24.5 odd 2 216.4.l.b.179.32 64
24.11 even 2 864.4.p.b.719.12 64
36.7 odd 6 216.4.l.b.35.32 64
36.11 even 6 72.4.l.b.11.1 64
72.11 even 6 inner 288.4.p.b.47.11 64
72.29 odd 6 72.4.l.b.11.10 yes 64
72.43 odd 6 864.4.p.b.143.21 64
72.61 even 6 216.4.l.b.35.23 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.4.l.b.11.1 64 36.11 even 6
72.4.l.b.11.10 yes 64 72.29 odd 6
72.4.l.b.59.1 yes 64 8.5 even 2
72.4.l.b.59.10 yes 64 4.3 odd 2
216.4.l.b.35.23 64 72.61 even 6
216.4.l.b.35.32 64 36.7 odd 6
216.4.l.b.179.23 64 12.11 even 2
216.4.l.b.179.32 64 24.5 odd 2
288.4.p.b.47.11 64 72.11 even 6 inner
288.4.p.b.47.12 64 9.2 odd 6 inner
288.4.p.b.239.11 64 1.1 even 1 trivial
288.4.p.b.239.12 64 8.3 odd 2 inner
864.4.p.b.143.12 64 9.7 even 3
864.4.p.b.143.21 64 72.43 odd 6
864.4.p.b.719.12 64 24.11 even 2
864.4.p.b.719.21 64 3.2 odd 2