Properties

Label 216.4.l.b.35.32
Level $216$
Weight $4$
Character 216.35
Analytic conductor $12.744$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [216,4,Mod(35,216)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("216.35"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(216, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 216 = 2^{3} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 216.l (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.7444125612\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 72)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 35.32
Character \(\chi\) \(=\) 216.35
Dual form 216.4.l.b.179.32

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.81730 + 0.250612i) q^{2} +(7.87439 + 1.41210i) q^{4} +(-3.52304 - 6.10209i) q^{5} +(16.9049 + 9.76005i) q^{7} +(21.8306 + 5.95172i) q^{8} +(-8.39622 - 18.0744i) q^{10} +(-11.8232 - 6.82610i) q^{11} +(55.8938 - 32.2703i) q^{13} +(45.1802 + 31.7336i) q^{14} +(60.0120 + 22.2388i) q^{16} +47.8376i q^{17} +14.9265 q^{19} +(-19.1251 - 53.0251i) q^{20} +(-31.5987 - 22.1942i) q^{22} +(25.1060 + 43.4848i) q^{23} +(37.6763 - 65.2573i) q^{25} +(165.557 - 76.9075i) q^{26} +(119.334 + 100.726i) q^{28} +(129.302 - 223.957i) q^{29} +(-108.559 + 62.6768i) q^{31} +(163.499 + 77.6932i) q^{32} +(-11.9887 + 134.773i) q^{34} -137.540i q^{35} +208.987i q^{37} +(42.0526 + 3.74077i) q^{38} +(-40.5924 - 154.181i) q^{40} +(-411.520 + 237.591i) q^{41} +(-178.732 + 309.573i) q^{43} +(-83.4610 - 70.4468i) q^{44} +(59.8333 + 128.802i) q^{46} +(156.128 - 270.422i) q^{47} +(19.0170 + 32.9384i) q^{49} +(122.500 - 174.407i) q^{50} +(485.698 - 175.181i) q^{52} -476.697 q^{53} +96.1946i q^{55} +(310.956 + 313.681i) q^{56} +(420.409 - 598.551i) q^{58} +(425.920 - 245.905i) q^{59} +(-661.465 - 381.897i) q^{61} +(-321.552 + 149.373i) q^{62} +(441.154 + 259.860i) q^{64} +(-393.832 - 227.379i) q^{65} +(277.112 + 479.972i) q^{67} +(-67.5514 + 376.692i) q^{68} +(34.4692 - 387.493i) q^{70} +87.1038 q^{71} -818.083 q^{73} +(-52.3747 + 588.780i) q^{74} +(117.537 + 21.0778i) q^{76} +(-133.246 - 230.789i) q^{77} +(-1030.34 - 594.866i) q^{79} +(-75.7214 - 444.547i) q^{80} +(-1218.92 + 566.235i) q^{82} +(-400.564 - 231.266i) q^{83} +(291.910 - 168.534i) q^{85} +(-581.125 + 827.369i) q^{86} +(-217.480 - 219.386i) q^{88} +1047.78i q^{89} +1259.84 q^{91} +(136.289 + 377.868i) q^{92} +(507.631 - 722.732i) q^{94} +(-52.5869 - 91.0831i) q^{95} +(-562.907 + 974.983i) q^{97} +(45.3219 + 97.5633i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 3 q^{2} - 17 q^{4} + 12 q^{10} - 48 q^{11} - 72 q^{14} + 127 q^{16} - 220 q^{19} + 234 q^{20} - 217 q^{22} - 902 q^{25} - 132 q^{28} + 693 q^{32} + 509 q^{34} + 1977 q^{38} - 36 q^{40} - 1620 q^{41}+ \cdots - 1912 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/216\mathbb{Z}\right)^\times\).

\(n\) \(55\) \(109\) \(137\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.81730 + 0.250612i 0.996067 + 0.0886047i
\(3\) 0 0
\(4\) 7.87439 + 1.41210i 0.984298 + 0.176512i
\(5\) −3.52304 6.10209i −0.315111 0.545788i 0.664350 0.747421i \(-0.268708\pi\)
−0.979461 + 0.201634i \(0.935375\pi\)
\(6\) 0 0
\(7\) 16.9049 + 9.76005i 0.912779 + 0.526993i 0.881324 0.472512i \(-0.156653\pi\)
0.0314545 + 0.999505i \(0.489986\pi\)
\(8\) 21.8306 + 5.95172i 0.964787 + 0.263031i
\(9\) 0 0
\(10\) −8.39622 18.0744i −0.265512 0.571561i
\(11\) −11.8232 6.82610i −0.324074 0.187104i 0.329133 0.944284i \(-0.393244\pi\)
−0.653207 + 0.757179i \(0.726577\pi\)
\(12\) 0 0
\(13\) 55.8938 32.2703i 1.19247 0.688474i 0.233606 0.972331i \(-0.424947\pi\)
0.958867 + 0.283857i \(0.0916141\pi\)
\(14\) 45.1802 + 31.7336i 0.862494 + 0.605797i
\(15\) 0 0
\(16\) 60.0120 + 22.2388i 0.937687 + 0.347482i
\(17\) 47.8376i 0.682490i 0.939974 + 0.341245i \(0.110849\pi\)
−0.939974 + 0.341245i \(0.889151\pi\)
\(18\) 0 0
\(19\) 14.9265 0.180231 0.0901154 0.995931i \(-0.471276\pi\)
0.0901154 + 0.995931i \(0.471276\pi\)
\(20\) −19.1251 53.0251i −0.213825 0.592839i
\(21\) 0 0
\(22\) −31.5987 22.1942i −0.306221 0.215083i
\(23\) 25.1060 + 43.4848i 0.227607 + 0.394226i 0.957098 0.289763i \(-0.0935766\pi\)
−0.729492 + 0.683990i \(0.760243\pi\)
\(24\) 0 0
\(25\) 37.6763 65.2573i 0.301411 0.522058i
\(26\) 165.557 76.9075i 1.24878 0.580108i
\(27\) 0 0
\(28\) 119.334 + 100.726i 0.805426 + 0.679835i
\(29\) 129.302 223.957i 0.827956 1.43406i −0.0716823 0.997428i \(-0.522837\pi\)
0.899639 0.436635i \(-0.143830\pi\)
\(30\) 0 0
\(31\) −108.559 + 62.6768i −0.628962 + 0.363132i −0.780350 0.625343i \(-0.784959\pi\)
0.151388 + 0.988474i \(0.451626\pi\)
\(32\) 163.499 + 77.6932i 0.903210 + 0.429198i
\(33\) 0 0
\(34\) −11.9887 + 134.773i −0.0604718 + 0.679806i
\(35\) 137.540i 0.664244i
\(36\) 0 0
\(37\) 208.987i 0.928576i 0.885684 + 0.464288i \(0.153690\pi\)
−0.885684 + 0.464288i \(0.846310\pi\)
\(38\) 42.0526 + 3.74077i 0.179522 + 0.0159693i
\(39\) 0 0
\(40\) −40.5924 154.181i −0.160455 0.609453i
\(41\) −411.520 + 237.591i −1.56753 + 0.905013i −0.571073 + 0.820900i \(0.693473\pi\)
−0.996456 + 0.0841137i \(0.973194\pi\)
\(42\) 0 0
\(43\) −178.732 + 309.573i −0.633870 + 1.09789i 0.352884 + 0.935667i \(0.385201\pi\)
−0.986753 + 0.162228i \(0.948132\pi\)
\(44\) −83.4610 70.4468i −0.285959 0.241369i
\(45\) 0 0
\(46\) 59.8333 + 128.802i 0.191781 + 0.412843i
\(47\) 156.128 270.422i 0.484545 0.839256i −0.515297 0.857011i \(-0.672319\pi\)
0.999842 + 0.0177550i \(0.00565190\pi\)
\(48\) 0 0
\(49\) 19.0170 + 32.9384i 0.0554431 + 0.0960303i
\(50\) 122.500 174.407i 0.346482 0.493299i
\(51\) 0 0
\(52\) 485.698 175.181i 1.29527 0.467178i
\(53\) −476.697 −1.23546 −0.617729 0.786391i \(-0.711947\pi\)
−0.617729 + 0.786391i \(0.711947\pi\)
\(54\) 0 0
\(55\) 96.1946i 0.235834i
\(56\) 310.956 + 313.681i 0.742021 + 0.748526i
\(57\) 0 0
\(58\) 420.409 598.551i 0.951765 1.35506i
\(59\) 425.920 245.905i 0.939831 0.542612i 0.0499237 0.998753i \(-0.484102\pi\)
0.889907 + 0.456141i \(0.150769\pi\)
\(60\) 0 0
\(61\) −661.465 381.897i −1.38839 0.801589i −0.395259 0.918570i \(-0.629345\pi\)
−0.993134 + 0.116981i \(0.962678\pi\)
\(62\) −321.552 + 149.373i −0.658664 + 0.305974i
\(63\) 0 0
\(64\) 441.154 + 259.860i 0.861629 + 0.507539i
\(65\) −393.832 227.379i −0.751521 0.433891i
\(66\) 0 0
\(67\) 277.112 + 479.972i 0.505293 + 0.875193i 0.999981 + 0.00612269i \(0.00194893\pi\)
−0.494688 + 0.869071i \(0.664718\pi\)
\(68\) −67.5514 + 376.692i −0.120468 + 0.671774i
\(69\) 0 0
\(70\) 34.4692 387.493i 0.0588551 0.661632i
\(71\) 87.1038 0.145596 0.0727980 0.997347i \(-0.476807\pi\)
0.0727980 + 0.997347i \(0.476807\pi\)
\(72\) 0 0
\(73\) −818.083 −1.31164 −0.655818 0.754919i \(-0.727676\pi\)
−0.655818 + 0.754919i \(0.727676\pi\)
\(74\) −52.3747 + 588.780i −0.0822761 + 0.924923i
\(75\) 0 0
\(76\) 117.537 + 21.0778i 0.177401 + 0.0318129i
\(77\) −133.246 230.789i −0.197205 0.341569i
\(78\) 0 0
\(79\) −1030.34 594.866i −1.46737 0.847186i −0.468036 0.883710i \(-0.655038\pi\)
−0.999333 + 0.0365241i \(0.988371\pi\)
\(80\) −75.7214 444.547i −0.105824 0.621273i
\(81\) 0 0
\(82\) −1218.92 + 566.235i −1.64155 + 0.762563i
\(83\) −400.564 231.266i −0.529730 0.305840i 0.211176 0.977448i \(-0.432271\pi\)
−0.740907 + 0.671608i \(0.765604\pi\)
\(84\) 0 0
\(85\) 291.910 168.534i 0.372495 0.215060i
\(86\) −581.125 + 827.369i −0.728655 + 1.03741i
\(87\) 0 0
\(88\) −217.480 219.386i −0.263448 0.265757i
\(89\) 1047.78i 1.24791i 0.781459 + 0.623956i \(0.214476\pi\)
−0.781459 + 0.623956i \(0.785524\pi\)
\(90\) 0 0
\(91\) 1259.84 1.45128
\(92\) 136.289 + 377.868i 0.154447 + 0.428212i
\(93\) 0 0
\(94\) 507.631 722.732i 0.557001 0.793022i
\(95\) −52.5869 91.0831i −0.0567926 0.0983677i
\(96\) 0 0
\(97\) −562.907 + 974.983i −0.589222 + 1.02056i 0.405113 + 0.914267i \(0.367232\pi\)
−0.994335 + 0.106296i \(0.966101\pi\)
\(98\) 45.3219 + 97.5633i 0.0467163 + 0.100565i
\(99\) 0 0
\(100\) 388.828 460.659i 0.388828 0.460659i
\(101\) 312.444 541.170i 0.307816 0.533152i −0.670069 0.742299i \(-0.733735\pi\)
0.977884 + 0.209147i \(0.0670687\pi\)
\(102\) 0 0
\(103\) 135.960 78.4965i 0.130063 0.0750922i −0.433557 0.901126i \(-0.642742\pi\)
0.563620 + 0.826034i \(0.309408\pi\)
\(104\) 1412.26 371.817i 1.33157 0.350573i
\(105\) 0 0
\(106\) −1343.00 119.466i −1.23060 0.109467i
\(107\) 420.449i 0.379872i 0.981796 + 0.189936i \(0.0608280\pi\)
−0.981796 + 0.189936i \(0.939172\pi\)
\(108\) 0 0
\(109\) 1217.23i 1.06963i −0.844969 0.534815i \(-0.820381\pi\)
0.844969 0.534815i \(-0.179619\pi\)
\(110\) −24.1075 + 271.009i −0.0208960 + 0.234907i
\(111\) 0 0
\(112\) 797.444 + 961.664i 0.672780 + 0.811328i
\(113\) −303.893 + 175.453i −0.252990 + 0.146064i −0.621132 0.783706i \(-0.713327\pi\)
0.368143 + 0.929769i \(0.379994\pi\)
\(114\) 0 0
\(115\) 176.899 306.398i 0.143443 0.248450i
\(116\) 1334.42 1580.94i 1.06809 1.26540i
\(117\) 0 0
\(118\) 1261.57 586.048i 0.984212 0.457204i
\(119\) −466.897 + 808.690i −0.359667 + 0.622962i
\(120\) 0 0
\(121\) −572.309 991.268i −0.429984 0.744754i
\(122\) −1767.84 1241.69i −1.31191 0.921454i
\(123\) 0 0
\(124\) −943.344 + 340.245i −0.683184 + 0.246410i
\(125\) −1411.70 −1.01013
\(126\) 0 0
\(127\) 2003.55i 1.39989i 0.714195 + 0.699947i \(0.246793\pi\)
−0.714195 + 0.699947i \(0.753207\pi\)
\(128\) 1177.74 + 842.662i 0.813270 + 0.581887i
\(129\) 0 0
\(130\) −1052.56 739.295i −0.710121 0.498773i
\(131\) 967.023 558.311i 0.644956 0.372365i −0.141565 0.989929i \(-0.545214\pi\)
0.786521 + 0.617564i \(0.211880\pi\)
\(132\) 0 0
\(133\) 252.332 + 145.684i 0.164511 + 0.0949803i
\(134\) 660.422 + 1421.67i 0.425759 + 0.916522i
\(135\) 0 0
\(136\) −284.716 + 1044.33i −0.179516 + 0.658458i
\(137\) −562.186 324.578i −0.350590 0.202413i 0.314355 0.949305i \(-0.398212\pi\)
−0.664945 + 0.746892i \(0.731545\pi\)
\(138\) 0 0
\(139\) −535.022 926.685i −0.326475 0.565471i 0.655335 0.755338i \(-0.272527\pi\)
−0.981810 + 0.189868i \(0.939194\pi\)
\(140\) 194.220 1083.05i 0.117247 0.653815i
\(141\) 0 0
\(142\) 245.398 + 21.8292i 0.145023 + 0.0129005i
\(143\) −881.121 −0.515266
\(144\) 0 0
\(145\) −1822.14 −1.04359
\(146\) −2304.79 205.021i −1.30648 0.116217i
\(147\) 0 0
\(148\) −295.111 + 1645.65i −0.163905 + 0.913995i
\(149\) 296.044 + 512.764i 0.162771 + 0.281928i 0.935862 0.352368i \(-0.114623\pi\)
−0.773090 + 0.634296i \(0.781290\pi\)
\(150\) 0 0
\(151\) 1813.60 + 1047.08i 0.977411 + 0.564308i 0.901487 0.432805i \(-0.142476\pi\)
0.0759232 + 0.997114i \(0.475810\pi\)
\(152\) 325.856 + 88.8387i 0.173884 + 0.0474064i
\(153\) 0 0
\(154\) −317.556 683.596i −0.166165 0.357699i
\(155\) 764.918 + 441.626i 0.396385 + 0.228853i
\(156\) 0 0
\(157\) 122.949 70.9848i 0.0624995 0.0360841i −0.468425 0.883503i \(-0.655178\pi\)
0.530924 + 0.847419i \(0.321845\pi\)
\(158\) −2753.69 1934.13i −1.38653 0.973869i
\(159\) 0 0
\(160\) −101.922 1271.40i −0.0503600 0.628206i
\(161\) 980.141i 0.479789i
\(162\) 0 0
\(163\) 3642.04 1.75010 0.875051 0.484031i \(-0.160828\pi\)
0.875051 + 0.484031i \(0.160828\pi\)
\(164\) −3575.97 + 1289.78i −1.70266 + 0.614115i
\(165\) 0 0
\(166\) −1070.55 751.931i −0.500548 0.351573i
\(167\) 1424.28 + 2466.93i 0.659966 + 1.14310i 0.980624 + 0.195900i \(0.0627629\pi\)
−0.320657 + 0.947195i \(0.603904\pi\)
\(168\) 0 0
\(169\) 984.242 1704.76i 0.447994 0.775948i
\(170\) 864.634 401.655i 0.390085 0.181209i
\(171\) 0 0
\(172\) −1844.55 + 2185.31i −0.817709 + 0.968770i
\(173\) −11.9219 + 20.6493i −0.00523934 + 0.00907480i −0.868633 0.495456i \(-0.835001\pi\)
0.863394 + 0.504531i \(0.168334\pi\)
\(174\) 0 0
\(175\) 1273.83 735.445i 0.550242 0.317683i
\(176\) −557.726 672.581i −0.238865 0.288055i
\(177\) 0 0
\(178\) −262.585 + 2951.91i −0.110571 + 1.24300i
\(179\) 1944.64i 0.812009i −0.913871 0.406004i \(-0.866922\pi\)
0.913871 0.406004i \(-0.133078\pi\)
\(180\) 0 0
\(181\) 27.6647i 0.0113608i −0.999984 0.00568039i \(-0.998192\pi\)
0.999984 0.00568039i \(-0.00180813\pi\)
\(182\) 3549.34 + 315.730i 1.44558 + 0.128591i
\(183\) 0 0
\(184\) 289.270 + 1098.72i 0.115898 + 0.440212i
\(185\) 1275.26 736.271i 0.506805 0.292604i
\(186\) 0 0
\(187\) 326.544 565.592i 0.127697 0.221177i
\(188\) 1611.27 1908.94i 0.625076 0.740551i
\(189\) 0 0
\(190\) −125.327 269.788i −0.0478534 0.103013i
\(191\) 1586.02 2747.07i 0.600840 1.04069i −0.391854 0.920027i \(-0.628166\pi\)
0.992694 0.120658i \(-0.0385005\pi\)
\(192\) 0 0
\(193\) 221.041 + 382.854i 0.0824398 + 0.142790i 0.904297 0.426903i \(-0.140395\pi\)
−0.821858 + 0.569693i \(0.807062\pi\)
\(194\) −1830.22 + 2605.75i −0.677331 + 0.964341i
\(195\) 0 0
\(196\) 103.235 + 286.224i 0.0376221 + 0.104309i
\(197\) 3084.07 1.11539 0.557693 0.830047i \(-0.311687\pi\)
0.557693 + 0.830047i \(0.311687\pi\)
\(198\) 0 0
\(199\) 1784.15i 0.635555i 0.948165 + 0.317777i \(0.102936\pi\)
−0.948165 + 0.317777i \(0.897064\pi\)
\(200\) 1210.89 1200.37i 0.428115 0.424395i
\(201\) 0 0
\(202\) 1015.87 1446.34i 0.353845 0.503781i
\(203\) 4371.67 2523.98i 1.51148 0.872654i
\(204\) 0 0
\(205\) 2899.61 + 1674.09i 0.987890 + 0.570359i
\(206\) 402.712 187.075i 0.136205 0.0632726i
\(207\) 0 0
\(208\) 4071.95 693.591i 1.35740 0.231211i
\(209\) −176.479 101.890i −0.0584081 0.0337219i
\(210\) 0 0
\(211\) 734.854 + 1272.80i 0.239760 + 0.415277i 0.960645 0.277777i \(-0.0895978\pi\)
−0.720885 + 0.693055i \(0.756264\pi\)
\(212\) −3753.69 673.143i −1.21606 0.218074i
\(213\) 0 0
\(214\) −105.369 + 1184.53i −0.0336584 + 0.378378i
\(215\) 2518.73 0.798956
\(216\) 0 0
\(217\) −2446.91 −0.765471
\(218\) 305.053 3429.31i 0.0947743 1.06542i
\(219\) 0 0
\(220\) −135.836 + 757.474i −0.0416276 + 0.232131i
\(221\) 1543.73 + 2673.83i 0.469877 + 0.813850i
\(222\) 0 0
\(223\) −1047.05 604.513i −0.314419 0.181530i 0.334483 0.942402i \(-0.391438\pi\)
−0.648902 + 0.760872i \(0.724772\pi\)
\(224\) 2005.64 + 2909.15i 0.598246 + 0.867748i
\(225\) 0 0
\(226\) −900.128 + 418.144i −0.264937 + 0.123073i
\(227\) −1946.40 1123.76i −0.569107 0.328574i 0.187686 0.982229i \(-0.439901\pi\)
−0.756793 + 0.653655i \(0.773235\pi\)
\(228\) 0 0
\(229\) 663.668 383.169i 0.191513 0.110570i −0.401178 0.916000i \(-0.631399\pi\)
0.592691 + 0.805430i \(0.298066\pi\)
\(230\) 575.164 818.882i 0.164892 0.234763i
\(231\) 0 0
\(232\) 4155.67 4119.56i 1.17601 1.16579i
\(233\) 801.184i 0.225267i 0.993637 + 0.112634i \(0.0359287\pi\)
−0.993637 + 0.112634i \(0.964071\pi\)
\(234\) 0 0
\(235\) −2200.18 −0.610741
\(236\) 3701.10 1334.91i 1.02085 0.368200i
\(237\) 0 0
\(238\) −1518.06 + 2161.31i −0.413450 + 0.588644i
\(239\) 3032.68 + 5252.75i 0.820785 + 1.42164i 0.905098 + 0.425203i \(0.139797\pi\)
−0.0843128 + 0.996439i \(0.526870\pi\)
\(240\) 0 0
\(241\) 2629.87 4555.07i 0.702924 1.21750i −0.264511 0.964383i \(-0.585211\pi\)
0.967435 0.253118i \(-0.0814560\pi\)
\(242\) −1363.94 2936.13i −0.362304 0.779924i
\(243\) 0 0
\(244\) −4669.36 3941.26i −1.22510 1.03407i
\(245\) 133.995 232.087i 0.0349414 0.0605203i
\(246\) 0 0
\(247\) 834.301 481.684i 0.214920 0.124084i
\(248\) −2742.95 + 722.159i −0.702330 + 0.184908i
\(249\) 0 0
\(250\) −3977.19 353.789i −1.00616 0.0895024i
\(251\) 2860.56i 0.719350i 0.933078 + 0.359675i \(0.117112\pi\)
−0.933078 + 0.359675i \(0.882888\pi\)
\(252\) 0 0
\(253\) 685.503i 0.170345i
\(254\) −502.114 + 5644.61i −0.124037 + 1.39439i
\(255\) 0 0
\(256\) 3106.87 + 2669.19i 0.758513 + 0.651658i
\(257\) −586.357 + 338.534i −0.142319 + 0.0821679i −0.569469 0.822013i \(-0.692851\pi\)
0.427150 + 0.904181i \(0.359518\pi\)
\(258\) 0 0
\(259\) −2039.73 + 3532.91i −0.489353 + 0.847584i
\(260\) −2780.11 2346.60i −0.663134 0.559731i
\(261\) 0 0
\(262\) 2864.32 1330.58i 0.675412 0.313755i
\(263\) −579.488 + 1003.70i −0.135866 + 0.235327i −0.925928 0.377700i \(-0.876715\pi\)
0.790062 + 0.613027i \(0.210048\pi\)
\(264\) 0 0
\(265\) 1679.42 + 2908.85i 0.389306 + 0.674298i
\(266\) 674.385 + 473.673i 0.155448 + 0.109183i
\(267\) 0 0
\(268\) 1504.32 + 4170.80i 0.342877 + 0.950642i
\(269\) −7718.35 −1.74943 −0.874714 0.484640i \(-0.838951\pi\)
−0.874714 + 0.484640i \(0.838951\pi\)
\(270\) 0 0
\(271\) 3568.10i 0.799804i −0.916558 0.399902i \(-0.869044\pi\)
0.916558 0.399902i \(-0.130956\pi\)
\(272\) −1063.85 + 2870.83i −0.237153 + 0.639962i
\(273\) 0 0
\(274\) −1502.51 1055.33i −0.331276 0.232681i
\(275\) −890.906 + 514.365i −0.195359 + 0.112790i
\(276\) 0 0
\(277\) 4007.48 + 2313.72i 0.869265 + 0.501870i 0.867104 0.498128i \(-0.165979\pi\)
0.00216082 + 0.999998i \(0.499312\pi\)
\(278\) −1275.08 2744.84i −0.275087 0.592174i
\(279\) 0 0
\(280\) 818.602 3002.59i 0.174717 0.640854i
\(281\) −2505.78 1446.71i −0.531966 0.307131i 0.209851 0.977733i \(-0.432702\pi\)
−0.741817 + 0.670603i \(0.766036\pi\)
\(282\) 0 0
\(283\) −4140.78 7172.04i −0.869766 1.50648i −0.862235 0.506508i \(-0.830936\pi\)
−0.00753096 0.999972i \(-0.502397\pi\)
\(284\) 685.889 + 122.999i 0.143310 + 0.0256995i
\(285\) 0 0
\(286\) −2482.38 220.819i −0.513239 0.0456550i
\(287\) −9275.61 −1.90774
\(288\) 0 0
\(289\) 2624.56 0.534207
\(290\) −5133.53 456.651i −1.03949 0.0924671i
\(291\) 0 0
\(292\) −6441.91 1155.21i −1.29104 0.231520i
\(293\) −1863.44 3227.58i −0.371548 0.643540i 0.618256 0.785977i \(-0.287840\pi\)
−0.989804 + 0.142437i \(0.954506\pi\)
\(294\) 0 0
\(295\) −3001.07 1732.67i −0.592301 0.341965i
\(296\) −1243.83 + 4562.33i −0.244245 + 0.895878i
\(297\) 0 0
\(298\) 705.542 + 1518.80i 0.137151 + 0.295241i
\(299\) 2806.53 + 1620.35i 0.542830 + 0.313403i
\(300\) 0 0
\(301\) −6042.90 + 3488.87i −1.15717 + 0.668090i
\(302\) 4847.06 + 3404.46i 0.923566 + 0.648692i
\(303\) 0 0
\(304\) 895.771 + 331.949i 0.169000 + 0.0626269i
\(305\) 5381.76i 1.01036i
\(306\) 0 0
\(307\) 1481.74 0.275464 0.137732 0.990470i \(-0.456019\pi\)
0.137732 + 0.990470i \(0.456019\pi\)
\(308\) −723.335 2005.48i −0.133818 0.371015i
\(309\) 0 0
\(310\) 2044.33 + 1435.89i 0.374549 + 0.263075i
\(311\) −3974.58 6884.18i −0.724688 1.25520i −0.959102 0.283059i \(-0.908651\pi\)
0.234415 0.972137i \(-0.424683\pi\)
\(312\) 0 0
\(313\) 1570.79 2720.69i 0.283663 0.491318i −0.688621 0.725121i \(-0.741784\pi\)
0.972284 + 0.233803i \(0.0751170\pi\)
\(314\) 364.175 169.173i 0.0654509 0.0304044i
\(315\) 0 0
\(316\) −7273.27 6139.14i −1.29479 1.09289i
\(317\) 954.296 1652.89i 0.169081 0.292856i −0.769016 0.639229i \(-0.779253\pi\)
0.938097 + 0.346373i \(0.112587\pi\)
\(318\) 0 0
\(319\) −3057.51 + 1765.25i −0.536638 + 0.309828i
\(320\) 31.4839 3607.46i 0.00550001 0.630197i
\(321\) 0 0
\(322\) −245.635 + 2761.35i −0.0425115 + 0.477902i
\(323\) 714.050i 0.123006i
\(324\) 0 0
\(325\) 4863.30i 0.830054i
\(326\) 10260.7 + 912.738i 1.74322 + 0.155067i
\(327\) 0 0
\(328\) −10397.8 + 2737.52i −1.75038 + 0.460836i
\(329\) 5278.65 3047.63i 0.884564 0.510703i
\(330\) 0 0
\(331\) −3378.13 + 5851.10i −0.560964 + 0.971618i 0.436449 + 0.899729i \(0.356236\pi\)
−0.997413 + 0.0718887i \(0.977097\pi\)
\(332\) −2827.63 2386.71i −0.467428 0.394542i
\(333\) 0 0
\(334\) 3394.40 + 7307.04i 0.556087 + 1.19708i
\(335\) 1952.56 3381.93i 0.318446 0.551565i
\(336\) 0 0
\(337\) 4901.54 + 8489.71i 0.792296 + 1.37230i 0.924542 + 0.381080i \(0.124448\pi\)
−0.132246 + 0.991217i \(0.542219\pi\)
\(338\) 3200.14 4556.15i 0.514984 0.733202i
\(339\) 0 0
\(340\) 2536.60 914.897i 0.404607 0.145933i
\(341\) 1711.35 0.271774
\(342\) 0 0
\(343\) 5952.96i 0.937113i
\(344\) −5744.33 + 5694.42i −0.900330 + 0.892507i
\(345\) 0 0
\(346\) −38.7626 + 55.1877i −0.00602280 + 0.00857488i
\(347\) −10649.2 + 6148.32i −1.64749 + 0.951178i −0.669424 + 0.742881i \(0.733459\pi\)
−0.978066 + 0.208297i \(0.933208\pi\)
\(348\) 0 0
\(349\) −6231.13 3597.55i −0.955716 0.551783i −0.0608642 0.998146i \(-0.519386\pi\)
−0.894852 + 0.446363i \(0.852719\pi\)
\(350\) 3773.07 1752.74i 0.576226 0.267679i
\(351\) 0 0
\(352\) −1402.73 2034.64i −0.212402 0.308087i
\(353\) 2455.03 + 1417.41i 0.370164 + 0.213714i 0.673530 0.739160i \(-0.264777\pi\)
−0.303366 + 0.952874i \(0.598111\pi\)
\(354\) 0 0
\(355\) −306.870 531.515i −0.0458789 0.0794645i
\(356\) −1479.57 + 8250.61i −0.220272 + 1.22832i
\(357\) 0 0
\(358\) 487.351 5478.65i 0.0719478 0.808815i
\(359\) −3447.67 −0.506856 −0.253428 0.967354i \(-0.581558\pi\)
−0.253428 + 0.967354i \(0.581558\pi\)
\(360\) 0 0
\(361\) −6636.20 −0.967517
\(362\) 6.93310 77.9398i 0.00100662 0.0113161i
\(363\) 0 0
\(364\) 9920.45 + 1779.02i 1.42850 + 0.256170i
\(365\) 2882.14 + 4992.02i 0.413310 + 0.715875i
\(366\) 0 0
\(367\) 4576.87 + 2642.46i 0.650983 + 0.375845i 0.788833 0.614608i \(-0.210686\pi\)
−0.137850 + 0.990453i \(0.544019\pi\)
\(368\) 539.607 + 3167.93i 0.0764374 + 0.448750i
\(369\) 0 0
\(370\) 3777.31 1754.70i 0.530738 0.246548i
\(371\) −8058.51 4652.58i −1.12770 0.651078i
\(372\) 0 0
\(373\) −7902.95 + 4562.77i −1.09705 + 0.633381i −0.935444 0.353474i \(-0.885000\pi\)
−0.161604 + 0.986856i \(0.551667\pi\)
\(374\) 1061.72 1511.61i 0.146792 0.208993i
\(375\) 0 0
\(376\) 5017.85 4974.25i 0.688234 0.682253i
\(377\) 16690.4i 2.28011i
\(378\) 0 0
\(379\) −1196.44 −0.162156 −0.0810778 0.996708i \(-0.525836\pi\)
−0.0810778 + 0.996708i \(0.525836\pi\)
\(380\) −285.471 791.482i −0.0385378 0.106848i
\(381\) 0 0
\(382\) 5156.75 7341.85i 0.690686 0.983355i
\(383\) −2622.07 4541.55i −0.349821 0.605907i 0.636397 0.771362i \(-0.280424\pi\)
−0.986217 + 0.165455i \(0.947091\pi\)
\(384\) 0 0
\(385\) −938.864 + 1626.16i −0.124283 + 0.215264i
\(386\) 526.792 + 1134.01i 0.0694637 + 0.149533i
\(387\) 0 0
\(388\) −5809.32 + 6882.52i −0.760112 + 0.900533i
\(389\) −797.621 + 1381.52i −0.103961 + 0.180067i −0.913313 0.407257i \(-0.866485\pi\)
0.809352 + 0.587324i \(0.199819\pi\)
\(390\) 0 0
\(391\) −2080.21 + 1201.01i −0.269056 + 0.155339i
\(392\) 219.113 + 832.250i 0.0282318 + 0.107232i
\(393\) 0 0
\(394\) 8688.77 + 772.905i 1.11100 + 0.0988284i
\(395\) 8382.96i 1.06783i
\(396\) 0 0
\(397\) 766.199i 0.0968625i −0.998827 0.0484313i \(-0.984578\pi\)
0.998827 0.0484313i \(-0.0154222\pi\)
\(398\) −447.130 + 5026.50i −0.0563131 + 0.633055i
\(399\) 0 0
\(400\) 3712.28 3078.34i 0.464034 0.384793i
\(401\) 170.330 98.3398i 0.0212116 0.0122465i −0.489357 0.872084i \(-0.662768\pi\)
0.510568 + 0.859837i \(0.329435\pi\)
\(402\) 0 0
\(403\) −4045.19 + 7006.48i −0.500013 + 0.866049i
\(404\) 3224.49 3820.18i 0.397090 0.470448i
\(405\) 0 0
\(406\) 12948.8 6015.23i 1.58286 0.735298i
\(407\) 1426.57 2470.89i 0.173740 0.300927i
\(408\) 0 0
\(409\) 4719.01 + 8173.56i 0.570513 + 0.988158i 0.996513 + 0.0834349i \(0.0265891\pi\)
−0.426000 + 0.904723i \(0.640078\pi\)
\(410\) 7749.53 + 5443.09i 0.933468 + 0.655647i
\(411\) 0 0
\(412\) 1181.45 426.123i 0.141276 0.0509553i
\(413\) 9600.17 1.14381
\(414\) 0 0
\(415\) 3259.04i 0.385494i
\(416\) 11645.7 933.578i 1.37255 0.110030i
\(417\) 0 0
\(418\) −471.659 331.283i −0.0551905 0.0387645i
\(419\) −10282.4 + 5936.56i −1.19888 + 0.692171i −0.960305 0.278954i \(-0.910012\pi\)
−0.238571 + 0.971125i \(0.576679\pi\)
\(420\) 0 0
\(421\) −936.025 540.414i −0.108359 0.0625610i 0.444841 0.895609i \(-0.353260\pi\)
−0.553200 + 0.833048i \(0.686593\pi\)
\(422\) 1751.33 + 3770.04i 0.202022 + 0.434888i
\(423\) 0 0
\(424\) −10406.6 2837.17i −1.19195 0.324965i
\(425\) 3121.75 + 1802.35i 0.356300 + 0.205710i
\(426\) 0 0
\(427\) −7454.67 12911.9i −0.844864 1.46335i
\(428\) −593.715 + 3310.78i −0.0670521 + 0.373907i
\(429\) 0 0
\(430\) 7096.01 + 631.222i 0.795814 + 0.0707913i
\(431\) 16863.0 1.88460 0.942299 0.334772i \(-0.108659\pi\)
0.942299 + 0.334772i \(0.108659\pi\)
\(432\) 0 0
\(433\) 4717.51 0.523577 0.261789 0.965125i \(-0.415688\pi\)
0.261789 + 0.965125i \(0.415688\pi\)
\(434\) −6893.69 613.225i −0.762460 0.0678243i
\(435\) 0 0
\(436\) 1718.85 9584.96i 0.188803 1.05284i
\(437\) 374.745 + 649.078i 0.0410217 + 0.0710517i
\(438\) 0 0
\(439\) −5611.44 3239.77i −0.610068 0.352223i 0.162924 0.986639i \(-0.447907\pi\)
−0.772992 + 0.634416i \(0.781241\pi\)
\(440\) −572.524 + 2099.99i −0.0620318 + 0.227530i
\(441\) 0 0
\(442\) 3679.07 + 7919.85i 0.395918 + 0.852283i
\(443\) 1696.92 + 979.717i 0.181993 + 0.105074i 0.588229 0.808694i \(-0.299825\pi\)
−0.406236 + 0.913768i \(0.633159\pi\)
\(444\) 0 0
\(445\) 6393.63 3691.37i 0.681095 0.393230i
\(446\) −2798.35 1965.50i −0.297098 0.208675i
\(447\) 0 0
\(448\) 4921.42 + 8698.59i 0.519007 + 0.917343i
\(449\) 2566.64i 0.269771i −0.990861 0.134885i \(-0.956933\pi\)
0.990861 0.134885i \(-0.0430666\pi\)
\(450\) 0 0
\(451\) 6487.29 0.677327
\(452\) −2640.73 + 952.455i −0.274799 + 0.0991144i
\(453\) 0 0
\(454\) −5201.98 3653.75i −0.537756 0.377707i
\(455\) −4438.46 7687.64i −0.457315 0.792093i
\(456\) 0 0
\(457\) 740.460 1282.51i 0.0757927 0.131277i −0.825638 0.564200i \(-0.809185\pi\)
0.901431 + 0.432923i \(0.142518\pi\)
\(458\) 1965.78 913.180i 0.200557 0.0931662i
\(459\) 0 0
\(460\) 1825.63 2162.90i 0.185045 0.219229i
\(461\) 6037.19 10456.7i 0.609935 1.05644i −0.381316 0.924445i \(-0.624529\pi\)
0.991251 0.131993i \(-0.0421378\pi\)
\(462\) 0 0
\(463\) 13152.8 7593.77i 1.32022 0.762230i 0.336457 0.941699i \(-0.390771\pi\)
0.983764 + 0.179469i \(0.0574379\pi\)
\(464\) 12740.2 10564.6i 1.27467 1.05700i
\(465\) 0 0
\(466\) −200.786 + 2257.18i −0.0199597 + 0.224381i
\(467\) 46.2660i 0.00458445i 0.999997 + 0.00229222i \(0.000729638\pi\)
−0.999997 + 0.00229222i \(0.999270\pi\)
\(468\) 0 0
\(469\) 10818.5i 1.06514i
\(470\) −6198.58 551.392i −0.608339 0.0541145i
\(471\) 0 0
\(472\) 10761.7 2833.31i 1.04946 0.276300i
\(473\) 4226.36 2440.09i 0.410842 0.237199i
\(474\) 0 0
\(475\) 562.377 974.066i 0.0543235 0.0940910i
\(476\) −4818.48 + 5708.63i −0.463981 + 0.549695i
\(477\) 0 0
\(478\) 7227.57 + 15558.6i 0.691593 + 1.48878i
\(479\) −7341.31 + 12715.5i −0.700278 + 1.21292i 0.268091 + 0.963393i \(0.413607\pi\)
−0.968369 + 0.249523i \(0.919726\pi\)
\(480\) 0 0
\(481\) 6744.08 + 11681.1i 0.639300 + 1.10730i
\(482\) 8550.69 12173.9i 0.808036 1.15043i
\(483\) 0 0
\(484\) −3106.81 8613.78i −0.291774 0.808958i
\(485\) 7932.58 0.742680
\(486\) 0 0
\(487\) 5556.22i 0.516994i 0.966012 + 0.258497i \(0.0832273\pi\)
−0.966012 + 0.258497i \(0.916773\pi\)
\(488\) −12167.3 12273.9i −1.12866 1.13855i
\(489\) 0 0
\(490\) 435.669 620.278i 0.0401664 0.0571863i
\(491\) 7499.65 4329.93i 0.689317 0.397977i −0.114039 0.993476i \(-0.536379\pi\)
0.803356 + 0.595499i \(0.203046\pi\)
\(492\) 0 0
\(493\) 10713.6 + 6185.49i 0.978733 + 0.565072i
\(494\) 2471.19 1147.96i 0.225069 0.104553i
\(495\) 0 0
\(496\) −7908.71 + 1347.12i −0.715951 + 0.121951i
\(497\) 1472.48 + 850.137i 0.132897 + 0.0767281i
\(498\) 0 0
\(499\) −1626.32 2816.87i −0.145900 0.252707i 0.783808 0.621003i \(-0.213274\pi\)
−0.929708 + 0.368296i \(0.879941\pi\)
\(500\) −11116.3 1993.46i −0.994271 0.178301i
\(501\) 0 0
\(502\) −716.889 + 8059.06i −0.0637377 + 0.716520i
\(503\) −2500.59 −0.221662 −0.110831 0.993839i \(-0.535351\pi\)
−0.110831 + 0.993839i \(0.535351\pi\)
\(504\) 0 0
\(505\) −4403.02 −0.387984
\(506\) 171.795 1931.27i 0.0150933 0.169675i
\(507\) 0 0
\(508\) −2829.21 + 15776.8i −0.247099 + 1.37791i
\(509\) −4599.12 7965.92i −0.400496 0.693680i 0.593290 0.804989i \(-0.297829\pi\)
−0.993786 + 0.111309i \(0.964496\pi\)
\(510\) 0 0
\(511\) −13829.6 7984.53i −1.19723 0.691223i
\(512\) 8084.06 + 8298.54i 0.697790 + 0.716303i
\(513\) 0 0
\(514\) −1736.79 + 806.804i −0.149040 + 0.0692346i
\(515\) −957.986 553.093i −0.0819687 0.0473247i
\(516\) 0 0
\(517\) −3691.85 + 2131.49i −0.314057 + 0.181321i
\(518\) −6631.91 + 9442.09i −0.562528 + 0.800891i
\(519\) 0 0
\(520\) −7244.32 7307.82i −0.610931 0.616286i
\(521\) 7635.67i 0.642082i −0.947065 0.321041i \(-0.895967\pi\)
0.947065 0.321041i \(-0.104033\pi\)
\(522\) 0 0
\(523\) −6152.61 −0.514407 −0.257203 0.966357i \(-0.582801\pi\)
−0.257203 + 0.966357i \(0.582801\pi\)
\(524\) 8403.10 3030.83i 0.700556 0.252676i
\(525\) 0 0
\(526\) −1884.13 + 2682.51i −0.156183 + 0.222363i
\(527\) −2998.31 5193.22i −0.247834 0.429260i
\(528\) 0 0
\(529\) 4822.88 8353.48i 0.396390 0.686568i
\(530\) 4002.45 + 8615.98i 0.328029 + 0.706140i
\(531\) 0 0
\(532\) 1781.24 + 1503.49i 0.145162 + 0.122527i
\(533\) −15334.3 + 26559.8i −1.24616 + 2.15841i
\(534\) 0 0
\(535\) 2565.62 1481.26i 0.207329 0.119702i
\(536\) 3192.87 + 12127.4i 0.257297 + 0.977283i
\(537\) 0 0
\(538\) −21744.9 1934.31i −1.74255 0.155007i
\(539\) 519.248i 0.0414946i
\(540\) 0 0
\(541\) 681.956i 0.0541952i 0.999633 + 0.0270976i \(0.00862649\pi\)
−0.999633 + 0.0270976i \(0.991374\pi\)
\(542\) 894.209 10052.4i 0.0708664 0.796658i
\(543\) 0 0
\(544\) −3716.66 + 7821.38i −0.292924 + 0.616432i
\(545\) −7427.67 + 4288.36i −0.583791 + 0.337052i
\(546\) 0 0
\(547\) 2410.39 4174.92i 0.188411 0.326337i −0.756310 0.654214i \(-0.773000\pi\)
0.944721 + 0.327876i \(0.106333\pi\)
\(548\) −3968.54 3349.72i −0.309357 0.261118i
\(549\) 0 0
\(550\) −2638.86 + 1225.85i −0.204584 + 0.0950371i
\(551\) 1930.03 3342.91i 0.149223 0.258462i
\(552\) 0 0
\(553\) −11611.8 20112.3i −0.892922 1.54659i
\(554\) 10710.4 + 7522.78i 0.821378 + 0.576917i
\(555\) 0 0
\(556\) −2904.40 8052.58i −0.221536 0.614219i
\(557\) −5948.96 −0.452541 −0.226271 0.974064i \(-0.572653\pi\)
−0.226271 + 0.974064i \(0.572653\pi\)
\(558\) 0 0
\(559\) 23071.0i 1.74561i
\(560\) 3058.73 8254.06i 0.230813 0.622853i
\(561\) 0 0
\(562\) −6696.98 4703.81i −0.502661 0.353057i
\(563\) −1046.18 + 604.012i −0.0783148 + 0.0452151i −0.538646 0.842532i \(-0.681064\pi\)
0.460331 + 0.887747i \(0.347731\pi\)
\(564\) 0 0
\(565\) 2141.26 + 1236.25i 0.159439 + 0.0920524i
\(566\) −9868.43 21243.5i −0.732864 1.57762i
\(567\) 0 0
\(568\) 1901.53 + 518.418i 0.140469 + 0.0382963i
\(569\) 2663.36 + 1537.69i 0.196229 + 0.113293i 0.594895 0.803803i \(-0.297194\pi\)
−0.398667 + 0.917096i \(0.630527\pi\)
\(570\) 0 0
\(571\) 4651.48 + 8056.60i 0.340908 + 0.590470i 0.984602 0.174813i \(-0.0559322\pi\)
−0.643694 + 0.765283i \(0.722599\pi\)
\(572\) −6938.29 1244.23i −0.507175 0.0909508i
\(573\) 0 0
\(574\) −26132.2 2324.58i −1.90024 0.169035i
\(575\) 3783.60 0.274412
\(576\) 0 0
\(577\) 2594.28 0.187178 0.0935888 0.995611i \(-0.470166\pi\)
0.0935888 + 0.995611i \(0.470166\pi\)
\(578\) 7394.18 + 657.746i 0.532106 + 0.0473333i
\(579\) 0 0
\(580\) −14348.3 2573.05i −1.02721 0.184207i
\(581\) −4514.33 7819.04i −0.322351 0.558328i
\(582\) 0 0
\(583\) 5636.06 + 3253.98i 0.400380 + 0.231160i
\(584\) −17859.3 4869.01i −1.26545 0.345002i
\(585\) 0 0
\(586\) −4441.02 9560.07i −0.313066 0.673930i
\(587\) 11408.0 + 6586.41i 0.802144 + 0.463118i 0.844220 0.535996i \(-0.180064\pi\)
−0.0420762 + 0.999114i \(0.513397\pi\)
\(588\) 0 0
\(589\) −1620.42 + 935.547i −0.113358 + 0.0654475i
\(590\) −8020.69 5633.55i −0.559672 0.393101i
\(591\) 0 0
\(592\) −4647.63 + 12541.7i −0.322663 + 0.870713i
\(593\) 20600.6i 1.42659i 0.700865 + 0.713294i \(0.252798\pi\)
−0.700865 + 0.713294i \(0.747202\pi\)
\(594\) 0 0
\(595\) 6579.60 0.453340
\(596\) 1607.10 + 4455.75i 0.110452 + 0.306232i
\(597\) 0 0
\(598\) 7500.77 + 5268.37i 0.512926 + 0.360267i
\(599\) 5529.60 + 9577.55i 0.377184 + 0.653302i 0.990651 0.136418i \(-0.0435590\pi\)
−0.613467 + 0.789720i \(0.710226\pi\)
\(600\) 0 0
\(601\) 10115.9 17521.2i 0.686581 1.18919i −0.286356 0.958123i \(-0.592444\pi\)
0.972937 0.231070i \(-0.0742227\pi\)
\(602\) −17899.0 + 8314.78i −1.21181 + 0.562932i
\(603\) 0 0
\(604\) 12802.4 + 10806.1i 0.862456 + 0.727973i
\(605\) −4032.54 + 6984.56i −0.270985 + 0.469360i
\(606\) 0 0
\(607\) 24259.0 14005.9i 1.62214 0.936545i 0.635798 0.771856i \(-0.280671\pi\)
0.986346 0.164689i \(-0.0526621\pi\)
\(608\) 2440.47 + 1159.69i 0.162786 + 0.0773547i
\(609\) 0 0
\(610\) −1348.73 + 15162.1i −0.0895223 + 1.00638i
\(611\) 20153.2i 1.33439i
\(612\) 0 0
\(613\) 18577.2i 1.22402i −0.790849 0.612012i \(-0.790361\pi\)
0.790849 0.612012i \(-0.209639\pi\)
\(614\) 4174.52 + 371.342i 0.274381 + 0.0244074i
\(615\) 0 0
\(616\) −1535.26 5831.32i −0.100418 0.381413i
\(617\) −1871.75 + 1080.65i −0.122129 + 0.0705114i −0.559820 0.828614i \(-0.689130\pi\)
0.437691 + 0.899126i \(0.355796\pi\)
\(618\) 0 0
\(619\) −3435.93 + 5951.20i −0.223104 + 0.386428i −0.955749 0.294183i \(-0.904952\pi\)
0.732645 + 0.680611i \(0.238286\pi\)
\(620\) 5399.65 + 4557.67i 0.349766 + 0.295227i
\(621\) 0 0
\(622\) −9472.34 20390.9i −0.610621 1.31447i
\(623\) −10226.4 + 17712.6i −0.657641 + 1.13907i
\(624\) 0 0
\(625\) 263.949 + 457.172i 0.0168927 + 0.0292590i
\(626\) 5107.24 7271.36i 0.326080 0.464252i
\(627\) 0 0
\(628\) 1068.39 385.345i 0.0678874 0.0244856i
\(629\) −9997.45 −0.633743
\(630\) 0 0
\(631\) 14045.7i 0.886134i −0.896488 0.443067i \(-0.853890\pi\)
0.896488 0.443067i \(-0.146110\pi\)
\(632\) −18952.5 19118.6i −1.19286 1.20332i
\(633\) 0 0
\(634\) 3102.77 4417.53i 0.194364 0.276723i
\(635\) 12225.9 7058.60i 0.764045 0.441122i
\(636\) 0 0
\(637\) 2125.86 + 1227.37i 0.132229 + 0.0763423i
\(638\) −9056.32 + 4207.01i −0.561980 + 0.261061i
\(639\) 0 0
\(640\) 992.772 10155.4i 0.0613168 0.627231i
\(641\) 9674.91 + 5585.81i 0.596156 + 0.344191i 0.767528 0.641016i \(-0.221487\pi\)
−0.171372 + 0.985206i \(0.554820\pi\)
\(642\) 0 0
\(643\) −3853.78 6674.94i −0.236358 0.409384i 0.723309 0.690525i \(-0.242620\pi\)
−0.959666 + 0.281141i \(0.909287\pi\)
\(644\) −1384.06 + 7718.01i −0.0846886 + 0.472255i
\(645\) 0 0
\(646\) −178.949 + 2011.70i −0.0108989 + 0.122522i
\(647\) 10087.3 0.612943 0.306472 0.951880i \(-0.400852\pi\)
0.306472 + 0.951880i \(0.400852\pi\)
\(648\) 0 0
\(649\) −6714.29 −0.406100
\(650\) 1218.80 13701.4i 0.0735466 0.826789i
\(651\) 0 0
\(652\) 28678.8 + 5142.92i 1.72262 + 0.308915i
\(653\) 11606.7 + 20103.4i 0.695567 + 1.20476i 0.969989 + 0.243148i \(0.0781802\pi\)
−0.274422 + 0.961609i \(0.588487\pi\)
\(654\) 0 0
\(655\) −6813.73 3933.91i −0.406465 0.234673i
\(656\) −29979.9 + 5106.60i −1.78433 + 0.303932i
\(657\) 0 0
\(658\) 15635.3 7263.21i 0.926336 0.430318i
\(659\) 23327.3 + 13468.0i 1.37891 + 0.796115i 0.992029 0.126014i \(-0.0402183\pi\)
0.386883 + 0.922129i \(0.373552\pi\)
\(660\) 0 0
\(661\) 20390.0 11772.2i 1.19982 0.692715i 0.239304 0.970945i \(-0.423081\pi\)
0.960515 + 0.278229i \(0.0897475\pi\)
\(662\) −10983.6 + 15637.7i −0.644847 + 0.918092i
\(663\) 0 0
\(664\) −7368.14 7432.72i −0.430631 0.434406i
\(665\) 2053.00i 0.119717i
\(666\) 0 0
\(667\) 12985.0 0.753794
\(668\) 7731.81 + 21436.8i 0.447834 + 1.24164i
\(669\) 0 0
\(670\) 6348.49 9038.58i 0.366065 0.521180i
\(671\) 5213.74 + 9030.46i 0.299961 + 0.519548i
\(672\) 0 0
\(673\) −11656.7 + 20189.9i −0.667654 + 1.15641i 0.310905 + 0.950441i \(0.399368\pi\)
−0.978559 + 0.205969i \(0.933965\pi\)
\(674\) 11681.5 + 25146.5i 0.667588 + 1.43710i
\(675\) 0 0
\(676\) 10157.6 12034.1i 0.577924 0.684688i
\(677\) 12028.2 20833.5i 0.682840 1.18271i −0.291271 0.956641i \(-0.594078\pi\)
0.974110 0.226072i \(-0.0725886\pi\)
\(678\) 0 0
\(679\) −19031.8 + 10988.0i −1.07566 + 0.621032i
\(680\) 7375.64 1941.84i 0.415945 0.109509i
\(681\) 0 0
\(682\) 4821.39 + 428.885i 0.270705 + 0.0240804i
\(683\) 18439.7i 1.03305i −0.856272 0.516525i \(-0.827225\pi\)
0.856272 0.516525i \(-0.172775\pi\)
\(684\) 0 0
\(685\) 4574.02i 0.255130i
\(686\) 1491.88 16771.3i 0.0830326 0.933428i
\(687\) 0 0
\(688\) −17610.6 + 14603.3i −0.975870 + 0.809223i
\(689\) −26644.4 + 15383.1i −1.47325 + 0.850582i
\(690\) 0 0
\(691\) −7125.35 + 12341.5i −0.392274 + 0.679438i −0.992749 0.120205i \(-0.961645\pi\)
0.600475 + 0.799643i \(0.294978\pi\)
\(692\) −123.037 + 145.766i −0.00675889 + 0.00800750i
\(693\) 0 0
\(694\) −31542.8 + 14652.9i −1.72529 + 0.801462i
\(695\) −3769.81 + 6529.51i −0.205751 + 0.356372i
\(696\) 0 0
\(697\) −11365.8 19686.2i −0.617662 1.06982i
\(698\) −16653.4 11697.0i −0.903067 0.634294i
\(699\) 0 0
\(700\) 11069.1 3992.41i 0.597677 0.215570i
\(701\) 15415.0 0.830549 0.415274 0.909696i \(-0.363686\pi\)
0.415274 + 0.909696i \(0.363686\pi\)
\(702\) 0 0
\(703\) 3119.46i 0.167358i
\(704\) −3442.00 6083.72i −0.184269 0.325695i
\(705\) 0 0
\(706\) 6561.33 + 4608.53i 0.349772 + 0.245672i
\(707\) 10563.7 6098.94i 0.561935 0.324433i
\(708\) 0 0
\(709\) −15877.4 9166.80i −0.841025 0.485566i 0.0165875 0.999862i \(-0.494720\pi\)
−0.857613 + 0.514296i \(0.828053\pi\)
\(710\) −731.343 1574.34i −0.0386575 0.0832170i
\(711\) 0 0
\(712\) −6236.08 + 22873.7i −0.328240 + 1.20397i
\(713\) −5450.97 3147.12i −0.286312 0.165302i
\(714\) 0 0
\(715\) 3104.23 + 5376.68i 0.162366 + 0.281226i
\(716\) 2746.03 15312.9i 0.143330 0.799259i
\(717\) 0 0
\(718\) −9713.14 864.027i −0.504862 0.0449098i
\(719\) −10428.9 −0.540936 −0.270468 0.962729i \(-0.587178\pi\)
−0.270468 + 0.962729i \(0.587178\pi\)
\(720\) 0 0
\(721\) 3064.52 0.158292
\(722\) −18696.2 1663.11i −0.963712 0.0857265i
\(723\) 0 0
\(724\) 39.0653 217.842i 0.00200532 0.0111824i
\(725\) −9743.23 16875.8i −0.499110 0.864483i
\(726\) 0 0
\(727\) 12935.1 + 7468.08i 0.659884 + 0.380984i 0.792233 0.610219i \(-0.208918\pi\)
−0.132348 + 0.991203i \(0.542252\pi\)
\(728\) 27503.1 + 7498.21i 1.40018 + 0.381733i
\(729\) 0 0
\(730\) 6868.81 + 14786.3i 0.348255 + 0.749680i
\(731\) −14809.2 8550.12i −0.749302 0.432610i
\(732\) 0 0
\(733\) −434.025 + 250.584i −0.0218705 + 0.0126269i −0.510895 0.859643i \(-0.670686\pi\)
0.489025 + 0.872270i \(0.337353\pi\)
\(734\) 12232.2 + 8591.63i 0.615121 + 0.432047i
\(735\) 0 0
\(736\) 726.315 + 9060.26i 0.0363754 + 0.453758i
\(737\) 7566.38i 0.378170i
\(738\) 0 0
\(739\) 11047.6 0.549922 0.274961 0.961455i \(-0.411335\pi\)
0.274961 + 0.961455i \(0.411335\pi\)
\(740\) 11081.6 3996.89i 0.550496 0.198552i
\(741\) 0 0
\(742\) −21537.3 15127.3i −1.06558 0.748437i
\(743\) 16450.7 + 28493.5i 0.812272 + 1.40690i 0.911270 + 0.411808i \(0.135103\pi\)
−0.0989987 + 0.995088i \(0.531564\pi\)
\(744\) 0 0
\(745\) 2085.95 3612.98i 0.102582 0.177677i
\(746\) −23408.5 + 10874.1i −1.14885 + 0.533687i
\(747\) 0 0
\(748\) 3370.01 3992.57i 0.164732 0.195164i
\(749\) −4103.60 + 7107.64i −0.200190 + 0.346739i
\(750\) 0 0
\(751\) −32163.5 + 18569.6i −1.56280 + 0.902282i −0.565827 + 0.824524i \(0.691443\pi\)
−0.996972 + 0.0777583i \(0.975224\pi\)
\(752\) 15383.4 12756.4i 0.745977 0.618589i
\(753\) 0 0
\(754\) 4182.82 47022.0i 0.202028 2.27114i
\(755\) 14755.7i 0.711278i
\(756\) 0 0
\(757\) 7256.87i 0.348422i 0.984708 + 0.174211i \(0.0557375\pi\)
−0.984708 + 0.174211i \(0.944263\pi\)
\(758\) −3370.73 299.842i −0.161518 0.0143677i
\(759\) 0 0
\(760\) −605.904 2301.39i −0.0289190 0.109842i
\(761\) 7953.62 4592.02i 0.378868 0.218739i −0.298458 0.954423i \(-0.596472\pi\)
0.677326 + 0.735683i \(0.263139\pi\)
\(762\) 0 0
\(763\) 11880.2 20577.2i 0.563688 0.976336i
\(764\) 16368.1 19391.9i 0.775100 0.918289i
\(765\) 0 0
\(766\) −6248.99 13452.0i −0.294758 0.634520i
\(767\) 15870.8 27489.1i 0.747148 1.29410i
\(768\) 0 0
\(769\) 17525.0 + 30354.2i 0.821806 + 1.42341i 0.904336 + 0.426821i \(0.140366\pi\)
−0.0825304 + 0.996589i \(0.526300\pi\)
\(770\) −3052.60 + 4346.09i −0.142868 + 0.203406i
\(771\) 0 0
\(772\) 1199.93 + 3326.87i 0.0559412 + 0.155100i
\(773\) 1390.01 0.0646768 0.0323384 0.999477i \(-0.489705\pi\)
0.0323384 + 0.999477i \(0.489705\pi\)
\(774\) 0 0
\(775\) 9445.72i 0.437807i
\(776\) −18091.4 + 17934.2i −0.836914 + 0.829642i
\(777\) 0 0
\(778\) −2593.37 + 3692.27i −0.119507 + 0.170147i
\(779\) −6142.58 + 3546.42i −0.282517 + 0.163111i
\(780\) 0 0
\(781\) −1029.84 594.579i −0.0471839 0.0272416i
\(782\) −6161.57 + 2862.28i −0.281761 + 0.130889i
\(783\) 0 0
\(784\) 408.736 + 2399.61i 0.0186195 + 0.109312i
\(785\) −866.311 500.165i −0.0393885 0.0227410i
\(786\) 0 0
\(787\) 2740.75 + 4747.12i 0.124139 + 0.215015i 0.921396 0.388625i \(-0.127050\pi\)
−0.797257 + 0.603640i \(0.793717\pi\)
\(788\) 24285.2 + 4355.02i 1.09787 + 0.196879i
\(789\) 0 0
\(790\) −2100.87 + 23617.3i −0.0946146 + 1.06363i
\(791\) −6849.70 −0.307898
\(792\) 0 0
\(793\) −49295.7 −2.20749
\(794\) 192.018 2158.61i 0.00858247 0.0964815i
\(795\) 0 0
\(796\) −2519.40 + 14049.1i −0.112183 + 0.625575i
\(797\) −15906.0 27550.0i −0.706926 1.22443i −0.965992 0.258573i \(-0.916748\pi\)
0.259065 0.965860i \(-0.416585\pi\)
\(798\) 0 0
\(799\) 12936.3 + 7468.79i 0.572784 + 0.330697i
\(800\) 11230.1 7742.28i 0.496304 0.342164i
\(801\) 0 0
\(802\) 504.515 234.366i 0.0222133 0.0103189i
\(803\) 9672.33 + 5584.32i 0.425067 + 0.245413i
\(804\) 0 0
\(805\) 5980.91 3453.08i 0.261863 0.151186i
\(806\) −13152.4 + 18725.6i −0.574783 + 0.818339i
\(807\) 0 0
\(808\) 10041.8 9954.50i 0.437212 0.433413i
\(809\) 2788.69i 0.121193i −0.998162 0.0605966i \(-0.980700\pi\)
0.998162 0.0605966i \(-0.0193003\pi\)
\(810\) 0 0
\(811\) 23968.2 1.03778 0.518889 0.854841i \(-0.326346\pi\)
0.518889 + 0.854841i \(0.326346\pi\)
\(812\) 37988.3 13701.6i 1.64178 0.592157i
\(813\) 0 0
\(814\) 4638.31 6603.73i 0.199721 0.284349i
\(815\) −12831.1 22224.1i −0.551476 0.955184i
\(816\) 0 0
\(817\) −2667.85 + 4620.86i −0.114243 + 0.197874i
\(818\) 11246.5 + 24210.0i 0.480714 + 1.03482i
\(819\) 0 0
\(820\) 20468.7 + 17277.0i 0.871703 + 0.735778i
\(821\) −2750.46 + 4763.94i −0.116921 + 0.202512i −0.918546 0.395314i \(-0.870636\pi\)
0.801625 + 0.597827i \(0.203969\pi\)
\(822\) 0 0
\(823\) 4259.38 2459.15i 0.180404 0.104156i −0.407078 0.913393i \(-0.633452\pi\)
0.587483 + 0.809237i \(0.300119\pi\)
\(824\) 3435.28 904.433i 0.145235 0.0382372i
\(825\) 0 0
\(826\) 27046.6 + 2405.92i 1.13931 + 0.101347i
\(827\) 17035.6i 0.716307i 0.933663 + 0.358153i \(0.116593\pi\)
−0.933663 + 0.358153i \(0.883407\pi\)
\(828\) 0 0
\(829\) 9284.88i 0.388995i 0.980903 + 0.194498i \(0.0623077\pi\)
−0.980903 + 0.194498i \(0.937692\pi\)
\(830\) −816.753 + 9181.69i −0.0341565 + 0.383977i
\(831\) 0 0
\(832\) 33043.5 + 288.386i 1.37690 + 0.0120168i
\(833\) −1575.69 + 909.728i −0.0655397 + 0.0378394i
\(834\) 0 0
\(835\) 10035.6 17382.2i 0.415925 0.720403i
\(836\) −1245.78 1051.53i −0.0515387 0.0435022i
\(837\) 0 0
\(838\) −30456.5 + 14148.2i −1.25549 + 0.583223i
\(839\) 4605.12 7976.30i 0.189495 0.328215i −0.755587 0.655048i \(-0.772648\pi\)
0.945082 + 0.326833i \(0.105982\pi\)
\(840\) 0 0
\(841\) −21243.4 36794.6i −0.871024 1.50866i
\(842\) −2501.63 1757.09i −0.102389 0.0719160i
\(843\) 0 0
\(844\) 3989.20 + 11060.2i 0.162694 + 0.451077i
\(845\) −13870.1 −0.564670
\(846\) 0 0
\(847\) 22343.0i 0.906394i
\(848\) −28607.5 10601.2i −1.15847 0.429299i
\(849\) 0 0
\(850\) 8343.24 + 5860.10i 0.336671 + 0.236470i
\(851\) −9087.77 + 5246.83i −0.366069 + 0.211350i
\(852\) 0 0
\(853\) −6216.93 3589.35i −0.249547 0.144076i 0.370010 0.929028i \(-0.379354\pi\)
−0.619557 + 0.784952i \(0.712688\pi\)
\(854\) −17766.2 38244.9i −0.711881 1.53245i
\(855\) 0 0
\(856\) −2502.39 + 9178.66i −0.0999183 + 0.366496i
\(857\) −13290.3 7673.16i −0.529741 0.305846i 0.211170 0.977449i \(-0.432273\pi\)
−0.740911 + 0.671603i \(0.765606\pi\)
\(858\) 0 0
\(859\) 18277.1 + 31656.9i 0.725969 + 1.25742i 0.958574 + 0.284844i \(0.0919419\pi\)
−0.232604 + 0.972571i \(0.574725\pi\)
\(860\) 19833.4 + 3556.69i 0.786412 + 0.141026i
\(861\) 0 0
\(862\) 47508.2 + 4226.07i 1.87719 + 0.166984i
\(863\) 27501.0 1.08476 0.542378 0.840135i \(-0.317524\pi\)
0.542378 + 0.840135i \(0.317524\pi\)
\(864\) 0 0
\(865\) 168.006 0.00660388
\(866\) 13290.6 + 1182.26i 0.521518 + 0.0463914i
\(867\) 0 0
\(868\) −19267.9 3455.28i −0.753452 0.135115i
\(869\) 8121.23 + 14066.4i 0.317024 + 0.549102i
\(870\) 0 0
\(871\) 30977.7 + 17885.0i 1.20510 + 0.695763i
\(872\) 7244.63 26573.0i 0.281347 1.03197i
\(873\) 0 0
\(874\) 893.104 + 1922.56i 0.0345649 + 0.0744070i
\(875\) −23864.7 13778.3i −0.922027 0.532332i
\(876\) 0 0
\(877\) 4880.15 2817.56i 0.187903 0.108486i −0.403098 0.915157i \(-0.632066\pi\)
0.591000 + 0.806671i \(0.298733\pi\)
\(878\) −14997.2 10533.7i −0.576459 0.404892i
\(879\) 0 0
\(880\) −2139.25 + 5772.83i −0.0819480 + 0.221139i
\(881\) 51429.9i 1.96676i 0.181554 + 0.983381i \(0.441887\pi\)
−0.181554 + 0.983381i \(0.558113\pi\)
\(882\) 0 0
\(883\) −7015.23 −0.267363 −0.133681 0.991024i \(-0.542680\pi\)
−0.133681 + 0.991024i \(0.542680\pi\)
\(884\) 8380.25 + 23234.6i 0.318844 + 0.884011i
\(885\) 0 0
\(886\) 4535.21 + 3185.43i 0.171968 + 0.120786i
\(887\) −18173.6 31477.6i −0.687948 1.19156i −0.972501 0.232900i \(-0.925179\pi\)
0.284553 0.958660i \(-0.408155\pi\)
\(888\) 0 0
\(889\) −19554.8 + 33869.9i −0.737734 + 1.27779i
\(890\) 18937.9 8797.38i 0.713258 0.331336i
\(891\) 0 0
\(892\) −7391.22 6238.70i −0.277440 0.234178i
\(893\) 2330.45 4036.46i 0.0873299 0.151260i
\(894\) 0 0
\(895\) −11866.4 + 6851.07i −0.443184 + 0.255873i
\(896\) 11685.2 + 25739.9i 0.435685 + 0.959721i
\(897\) 0 0
\(898\) 643.230 7230.99i 0.0239030 0.268710i
\(899\) 32416.9i 1.20263i
\(900\) 0 0
\(901\) 22804.0i 0.843188i
\(902\) 18276.7 + 1625.79i 0.674663 + 0.0600143i
\(903\) 0 0
\(904\) −7678.42 + 2021.56i −0.282501 + 0.0743761i
\(905\) −168.812 + 97.4639i −0.00620057 + 0.00357990i
\(906\) 0 0
\(907\) 3011.58 5216.21i 0.110251 0.190961i −0.805620 0.592432i \(-0.798168\pi\)
0.915872 + 0.401472i \(0.131501\pi\)
\(908\) −13739.9 11597.4i −0.502174 0.423869i
\(909\) 0 0
\(910\) −10577.9 22770.8i −0.385333 0.829498i
\(911\) −2996.17 + 5189.52i −0.108965 + 0.188734i −0.915351 0.402656i \(-0.868087\pi\)
0.806386 + 0.591390i \(0.201420\pi\)
\(912\) 0 0
\(913\) 3157.29 + 5468.58i 0.114448 + 0.198230i
\(914\) 2407.51 3427.66i 0.0871263 0.124045i
\(915\) 0 0
\(916\) 5767.05 2080.06i 0.208023 0.0750295i
\(917\) 21796.6 0.784936
\(918\) 0 0
\(919\) 88.2115i 0.00316630i 0.999999 + 0.00158315i \(0.000503932\pi\)
−0.999999 + 0.00158315i \(0.999496\pi\)
\(920\) 5685.41 5636.01i 0.203742 0.201971i
\(921\) 0 0
\(922\) 19629.2 27946.8i 0.701141 0.998240i
\(923\) 4868.56 2810.86i 0.173619 0.100239i
\(924\) 0 0
\(925\) 13637.9 + 7873.87i 0.484771 + 0.279883i
\(926\) 38958.5 18097.7i 1.38257 0.642254i
\(927\) 0 0
\(928\) 38540.6 26570.8i 1.36332 0.939903i
\(929\) −18113.2 10457.7i −0.639695 0.369328i 0.144802 0.989461i \(-0.453745\pi\)
−0.784497 + 0.620133i \(0.787079\pi\)
\(930\) 0 0
\(931\) 283.858 + 491.657i 0.00999256 + 0.0173076i
\(932\) −1131.35 + 6308.84i −0.0397625 + 0.221730i
\(933\) 0 0
\(934\) −11.5948 + 130.345i −0.000406203 + 0.00456642i
\(935\) −4601.72 −0.160954
\(936\) 0 0
\(937\) 20055.2 0.699227 0.349614 0.936894i \(-0.386313\pi\)
0.349614 + 0.936894i \(0.386313\pi\)
\(938\) −2711.25 + 30479.0i −0.0943767 + 1.06095i
\(939\) 0 0
\(940\) −17325.1 3106.88i −0.601151 0.107803i
\(941\) −1432.61 2481.36i −0.0496300 0.0859616i 0.840143 0.542365i \(-0.182471\pi\)
−0.889773 + 0.456403i \(0.849138\pi\)
\(942\) 0 0
\(943\) −20663.2 11929.9i −0.713560 0.411974i
\(944\) 31028.9 5285.28i 1.06981 0.182226i
\(945\) 0 0
\(946\) 12518.4 5815.29i 0.430243 0.199864i
\(947\) 7218.72 + 4167.73i 0.247705 + 0.143013i 0.618713 0.785617i \(-0.287654\pi\)
−0.371008 + 0.928630i \(0.620988\pi\)
\(948\) 0 0
\(949\) −45725.8 + 26399.8i −1.56409 + 0.903028i
\(950\) 1828.50 2603.30i 0.0624467 0.0889076i
\(951\) 0 0
\(952\) −15005.8 + 14875.4i −0.510861 + 0.506422i
\(953\) 39658.3i 1.34802i −0.738724 0.674008i \(-0.764571\pi\)
0.738724 0.674008i \(-0.235429\pi\)
\(954\) 0 0
\(955\) −22350.5 −0.757324
\(956\) 16463.1 + 45644.7i 0.556960 + 1.54420i
\(957\) 0 0
\(958\) −23869.3 + 33983.6i −0.804993 + 1.14610i
\(959\) −6335.80 10973.9i −0.213341 0.369517i
\(960\) 0 0
\(961\) −7038.75 + 12191.5i −0.236271 + 0.409233i
\(962\) 16072.7 + 34599.3i 0.538674 + 1.15959i
\(963\) 0 0
\(964\) 27140.8 32154.7i 0.906791 1.07431i
\(965\) 1557.47 2697.62i 0.0519553 0.0899892i
\(966\) 0 0
\(967\) 9529.32 5501.75i 0.316900 0.182962i −0.333110 0.942888i \(-0.608098\pi\)
0.650010 + 0.759926i \(0.274765\pi\)
\(968\) −6594.12 25046.2i −0.218949 0.831629i
\(969\) 0 0
\(970\) 22348.5 + 1988.00i 0.739759 + 0.0658049i
\(971\) 18334.6i 0.605958i −0.952997 0.302979i \(-0.902019\pi\)
0.952997 0.302979i \(-0.0979813\pi\)
\(972\) 0 0
\(973\) 20887.4i 0.688199i
\(974\) −1392.45 + 15653.5i −0.0458081 + 0.514961i
\(975\) 0 0
\(976\) −31202.9 37628.6i −1.02334 1.23408i
\(977\) −32261.5 + 18626.2i −1.05643 + 0.609932i −0.924444 0.381319i \(-0.875470\pi\)
−0.131990 + 0.991251i \(0.542137\pi\)
\(978\) 0 0
\(979\) 7152.24 12388.0i 0.233490 0.404416i
\(980\) 1382.86 1638.33i 0.0450754 0.0534025i
\(981\) 0 0
\(982\) 22213.9 10319.2i 0.721868 0.335335i
\(983\) −5395.60 + 9345.46i −0.175069 + 0.303229i −0.940185 0.340664i \(-0.889348\pi\)
0.765116 + 0.643892i \(0.222682\pi\)
\(984\) 0 0
\(985\) −10865.3 18819.3i −0.351470 0.608764i
\(986\) 28633.2 + 20111.3i 0.924816 + 0.649570i
\(987\) 0 0
\(988\) 7249.79 2614.85i 0.233448 0.0841999i
\(989\) −17949.0 −0.577092
\(990\) 0 0
\(991\) 12374.8i 0.396669i −0.980134 0.198334i \(-0.936447\pi\)
0.980134 0.198334i \(-0.0635532\pi\)
\(992\) −22618.8 + 1813.24i −0.723941 + 0.0580346i
\(993\) 0 0
\(994\) 3935.37 + 2764.11i 0.125576 + 0.0882016i
\(995\) 10887.1 6285.66i 0.346878 0.200270i
\(996\) 0 0
\(997\) −4549.81 2626.84i −0.144528 0.0834431i 0.425992 0.904727i \(-0.359925\pi\)
−0.570520 + 0.821284i \(0.693258\pi\)
\(998\) −3875.90 8343.56i −0.122935 0.264640i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 216.4.l.b.35.32 64
3.2 odd 2 72.4.l.b.11.1 64
4.3 odd 2 864.4.p.b.143.12 64
8.3 odd 2 inner 216.4.l.b.35.23 64
8.5 even 2 864.4.p.b.143.21 64
9.4 even 3 72.4.l.b.59.10 yes 64
9.5 odd 6 inner 216.4.l.b.179.23 64
12.11 even 2 288.4.p.b.47.12 64
24.5 odd 2 288.4.p.b.47.11 64
24.11 even 2 72.4.l.b.11.10 yes 64
36.23 even 6 864.4.p.b.719.21 64
36.31 odd 6 288.4.p.b.239.11 64
72.5 odd 6 864.4.p.b.719.12 64
72.13 even 6 288.4.p.b.239.12 64
72.59 even 6 inner 216.4.l.b.179.32 64
72.67 odd 6 72.4.l.b.59.1 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.4.l.b.11.1 64 3.2 odd 2
72.4.l.b.11.10 yes 64 24.11 even 2
72.4.l.b.59.1 yes 64 72.67 odd 6
72.4.l.b.59.10 yes 64 9.4 even 3
216.4.l.b.35.23 64 8.3 odd 2 inner
216.4.l.b.35.32 64 1.1 even 1 trivial
216.4.l.b.179.23 64 9.5 odd 6 inner
216.4.l.b.179.32 64 72.59 even 6 inner
288.4.p.b.47.11 64 24.5 odd 2
288.4.p.b.47.12 64 12.11 even 2
288.4.p.b.239.11 64 36.31 odd 6
288.4.p.b.239.12 64 72.13 even 6
864.4.p.b.143.12 64 4.3 odd 2
864.4.p.b.143.21 64 8.5 even 2
864.4.p.b.719.12 64 72.5 odd 6
864.4.p.b.719.21 64 36.23 even 6